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Abstract: This paper describes dynamic Valuation-Based System (VBS) for reliability assess-
ment of systems under uncertainty. The reliability data and dependencies between components
are represented using variables, sample spaces of variables, a set of valuations represented
by probabilities, and basic probability assignments (bpas) that map sample spaces of sets of
variables to the set of valuations. The uncertainties considered here are related to the states
of components and their dependencies. The imprecise reliability of systems under uncertainty
is estimated by an interval composed of upper and lower bounds. The proposed dynamic VBS
approach is finally applied on a valve system and compared to the classical Bayesian Network
approach.
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1. INTRODUCTION

Reliability is defined as the ability of a system to perform
a required function under given conditions during a given
time interval. It is a part of RAMS (Reliability, Avail-
ability, Maintainability, Safety) attributes and is used to
evaluate the performance of a system (see Birnbaum et al.
(1961)). Nowadays, for systems which involve humankind
such that railway and aeronautical systems, some safety
standards introduce RAMS requirements which have to
be satisfied to ensure the safety design of such systems.

In this paper, reliability is used to evaluate the perfor-
mance of systems and Valuation-Based System (VBS) is
used to model systems. VBS was introduced by Shenoy
(1989) to provide a framework of knowledge representation
and reasoning under uncertainty. Xu et al. (1996) have
proposed a decision support system. The system integrates
Bayesian decision analysis and reasoning which is based
on belief functions theory introduced by Dempster (1967)
to suggest the optimal decision or the optimal sequence of
decisions. It is applied on a nuclear waste disposal problem
to find the location of the leakage of radioactive product
in a river. Xu (1997) has also proposed a decision calculus
using belief functions and VBS to help the decision maker
to select an appropriate decision alternative when there
are uncertainties concerning the states of events. This
calculus is applied on an oil wildcatter problem to decide
either to drill for oil or not. Benavoli et al. (2009) have
developed an automatic information fusion system in VBS
to support a commander’s decision making. The system
is applied on a threat assessment problem to assess the
probability of a threat which is modeled by a network

of entities and relationships between them. Uncertainties
in the relationships are represented by belief functions. A
sequence of incoming valuations is used to make dynamic
inference.

There are already many tools to evaluate the reliability,
such as reliability block diagrams, fault trees, etc. Here we
choose VBS because of the following reasons:

• VBS provides a compact representation of system
components and their dependencies;

• VBS is well adapted to represent and propagate
uncertainties in models;

• VBS can model and evaluate performances of multi-
state systems.

In our knowledge, VBS has not been used to evaluate
the reliability of systems before. Because VBS can model
systems and represent the knowledge about systems quan-
titatively, the reliability of systems is a measurable param-
eter in VBS modeling. However, VBS is a static modeling
tool. It only supports to evaluate the reliability at a given
instant. We propose a new dynamic VBS approach which
allows evaluating the valuations as a function of time and
then computing the reliability of systems over time. We
also take into account uncertainties which are related to
the states of components and the relationships between
them. We compare this approach with a Dynamic Bayesian
Network (DBN) approach proposed by Weber and Jouffe
(2003).

The reminder of the paper is organized as follows. Section
2 presents VBS briefly. Section 3 presents the method of
reliability assessment in dynamic VBS. Section 4 applies
the dynamic VBS approach on a valve system, compares
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the proposed dynamic VBS approach with DBN approach
and takes model uncertainties into account. Section 5 gives
some conclusions and perspectives.

2. VALUATION-BASED SYSTEM

VBS was introduced by Shenoy (1989) in 1989. A VBS is
a framework for representation and reasoning with knowl-
edge under uncertainty. It is made up of two parts: a static
part concerned with representation of knowledge, and a
dynamic part concerned with reasoning with knowledge.
The static part consists of variables and valuations. The
dynamic part consists of two operators: combination and
marginalization.

2.1 Variables

A real-world problem can be modeled by a finite set of
variables. For a variable X, its frame ΩX is all the possible
values of this variable.

Given a finite nonempty set Φ of variables {A,B,C, ...},
we let ΩΦ denote the Cartesian product of ΩX for X in
Φ: ΩΦ = ×{ΩX |X ∈ Φ}. We call ΩΦ the frame for Φ. We
regard the elements of ΩΦ as configurations of Φ. Subsets
of Φ will be denoted by r, s, t, . . . .

2.2 Valuations

For a finite set of valuations Ψ = {ρ, σ, τ, . . . } associated
to subsets of Φ, each valuation represents knowledge about
a subset of variables in Φ. For example, ρ is a valuation
for r, where r ⊆ Φ. Valuations are primitives in the
description of VBS, so no definition is required. VBS can
represent knowledge in different domains including proba-
bility theory, belief functions theory (see Dempster (1967),
Shafer (1976)), possibility theory (see Dubois and Prade
(1999)). According to the operations in the dynamic part,
valuations are objects that can be combined, marginalized
and solved.

2.3 Combination

A mapping ⊕ : Ψ × Ψ → Ψ is called combination which
allows aggregating knowledge. The combination operator
has three properties:

• Domain: if ρ is a valuation for r, and σ is a valuation
for s, then ρ⊕ σ is a valuation for r ∪ s
• Commutativity: ρ⊕ σ = σ ⊕ ρ
• Associativity: ρ⊕ (σ ⊕ τ) = (ρ⊕ σ)⊕ τ

The combination of all valuations, ⊕Ψ, is called the joint
valuation.

2.4 Marginalization

A mapping −X : Ψ → Ψ is called marginalization which
allows coarsening knowledge by marginalizing X out of the
domain of a valuation. The marginalization operator has
three properties:

• Domain: if ρ is a valuation for r , and X ∈ r, then
ρ−X is a valuation for r\{X}.

r

ρ

s

σ

t

τα

Fig. 1. Illustration of a valuation network

• Order does not matter: if ρ is a valuation for r ,X ∈ r,
and Y ∈ r, then (ρ−X)−Y = (ρ−Y )−X = ρ−{X,Y }

• Local computation: if ρ and σ are valuations for r
and s, respectively, X ∈ r , and X /∈ s, then (ρ ⊕
σ)−X = (ρ−X)⊕ σ

Sometimes ρ−{X,Y } is denoted by ρ↓r\{X,Y }.

2.5 Making inference

Making inference with these two operators means find-
ing marginals of the joint valuation for the variables of
interest. Thus, if X is a variable of interest, (⊕Ψ)↓X

is computed by marginalizing all the other variables in
Φ\{X} out of the joint valuation ⊕Ψ.

A graphical representation of a VBS is called a valuation
network. Fig. 1 shows a valuation network. In the illustra-
tion, r, s, t are variables, ρ, σ, τ, α are valuations.

2.6 Basic probability assignment

VBS can represent uncertainty using different theories. In
this paper, probability is chosen as the valuation and is
used to represent the uncertainty.

For a variable of interest X, Ω is its frame of discernment.
The mapping mΩ : 2Ω → [0, 1] is called bpa on the
measurable space (Ω, 2Ω) if ∀A ∈ 2Ω ,

∑
A⊆Ωm

Ω(A) =

1, mΩ(A) ≥ 0, and mΩ(∅) = 0.

A bpa mΩ is assigned to each subset of 2Ω instead of Ω.
mΩ(A) represents the subjective probability assigned to
the information which exactly supports A. The subsets
A ⊂ Ω such that mΩ(A) > 0 are called focal sets.

Given a set Ω and a bpa mΩ on (Ω, 2Ω), the lower bound
of the probability of a set A on Ω represents the sum of
all probabilities of subsets that support A as follows (see
Shafer (1976))

P (A) =
∑

B|B⊆A

mΩ(B), A ⊆ Ω (1)

The upper bound of the probability of A on Ω is defined
as the total amount of probabilities of subsets that are
consistent with A as follows

P (A) =
∑

B|B∩A 6=∅

mΩ(B), A ⊆ Ω (2)

The meaning of P (A) and P (A) can be explained by the
following example. Suppose that a component has three
states: s1, s2 and s3. s1 is supposed to be a working state.
s2 is supposed to be a failed state. s3 is an unknown state.
It is either a working state or a failed state. An expert gives
probabilities at time t to the three states of the component
as follows: mΩ(s1) = 0.8,mΩ(s2) = 0.1,mΩ(s3) = 0.1.
In this case, a probability can be given to an event A:
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Fig. 2. System S. (a) Reliability block diagram. (b) Valu-
ation network.

“the component is in the working state at time t”, in
the form [P (working), P (working)] = [mΩ(s1),mΩ(s1) +
mΩ(s3)] = [0.8, 0.9]. The value 0.8 represents all the
information that totally supports the event A, whereas
the value 0.9 represents all the information that totally
or partially supports the event A according to the expert.
The length of the interval P (A) − P (A) represents the
imprecision about A. The probability of the event A is
included in the closed interval composed of the lower and
upper bounds.

3. RELIABILITY ASSESSMENT IN VBS

In this section, first, the method of reliability assessment
at a given instant in VBS is presented. Then, the method
of reliability assessment over time in dynamic VBS is
proposed. Later, uncertainty is taken into account in the
dynamic VBS model.

‘Dynamic’ means that a process or system is characterized
by constant change, activity, or progress. In this paper, we
aim to compute reliability over time. Thus, the proposed
dynamic model of the system should include a temporal
dimension.

3.1 Reliability assessment at a given instant

VBS is a static modeling tool. It models systems and
represents the knowledge about systems quantitatively, so
the reliability of systems can be measured.

Here we take a system S depicted in Fig. 2(a) as an
example. The system is made up of two components
connected in series. Each component has two states: “0”
denotes the failed state and “1” denotes the working state.

Fig. 2(b) shows the valuation network of the system.
There are three variables represented by circular nodes:
the decision variable System, C1 and C2. There are 3
bpas which represent the valuations by diamond-shaped
nodes. m1 represents the knowledge about the relationship
between all the variables. It can be expressed by the
structure function in Table 1 which can be represented
by the following bpa

mΩC1ΩC2ΩS
1 ({(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}) = 1

where the first parameter represents the state of C1, the
second one represents the state of C2, and the last one
represents the state of System. ΩC1 = ΩC2 = ΩS =
{0, 1}.

C1k C1k+1

mC1

time feedback

Fig. 3. Dynamic valuation network of the variable C1

m2 and m3 represent the knowledge about the variables
C1 and C2. Suppose that an expert gives the following
bpas at time t:

• mΩC1
2 ({0}) = 0.05 There is 0.05 chance that C1 is

failed.
• mΩC1

2 ({1}) = 0.95 There is 0.95 chance that C1 is
working.

• mΩC2
3 ({0}) = 0.02 There is 0.02 chance that C2 is

failed.
• mΩC2

3 ({1}) = 0.98 There is 0.98 chance that C2 is
working.

The reliability of the system can be calculated by (mΩC1
2 ⊕

mΩC2
3 ⊕mΩC1ΩC2ΩS

1 )↓ΩS .

There are many rules of combination in the literature. Here
we use the Dempster’s rule of combination (see Smets and
Kennes (1994)) which is given by

mΩ
i⊕j(H) =

∑
A∩B=H,∀A,B⊆Ωm

Ω
i (A)mΩ

j (B)

1−
∑
A∩B=∅,∀A,B⊆Ωm

Ω
i (A)mΩ

j (B)
(3)

∀ A,B,H ⊆ Ω.

In this rule, it is assumed that all bpas stem from fully
reliable and independent sources. Note that other rules are
defined when the sources are not independent or reliable
(see Denoeux (2006)).

First, we combine the bpas together to get the following
joint valuation

mΩC1ΩC2ΩS
1,2,3 ({(1, 1, 1)}) = 0.931

mΩC1ΩC2ΩS
1,2,3 ({(0, 1, 0)}) = 0.049

mΩC1ΩC2ΩS
1,2,3 ({(1, 0, 0)}) = 0.019

mΩC1ΩC2ΩS
1,2,3 ({(0, 0, 0)}) = 0.001

Then, we marginalize the joint valuation to the variable
System as follows

mΩS ({0}) = 0.069

mΩS ({1}) = 0.931

Thus, the reliability of system S at time t is 0.931.

3.2 Reliability assessment over time

In this subsection, we propose a dynamic VBS approach
to evaluate the reliability of systems over time. A dynamic
VBS is a VBS including a temporal dimension.

Table 1. Structure function of system S

C1 C2 System

0 0 0
0 1 0
1 0 0
1 1 1
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C1k+1 C2k+1

m2 m3

C1k C2k

m4 m5

m1

System

Fig. 4. Dynamic valuation network of system S

We suppose that the state of C1 depends totally on
its previous state. For example, the state probability of
C1(k+1) depends on the state probability of C1(k). It
means that the state probability of C1 can be calculated
by iterative inferences.

The dynamic valuation network of C1 with two time
slices is shown in Fig. 3. Every time the state probability
at time step k+1 is computed, it will be sent to the
state probability at time step k to realize the iterative
inferences. Thus, to obtain the state probability at time
step k+1, only the state probability at time step 0 and
the conditional probability between C1(k+1) and C1(k)
are required. mC1 in the valuation network represents the
relationship between C1(k+1) and C1(k). The dashed line
with an arrowhead means the time feedback.

The dynamic valuation network of system S is shown in
Fig. 4. To obtain the state probability of System at time
step k, only the state probabilities of C1 and C2 at time
step 0 and the conditional probabilities of C1 and C2 are
required.

Table 2. CPT of C1 and C2
XXXXXXXXCik

Cik+1 Failed Working

Failed 1 0
Working 0.001 0.999

Table 2 gives the Conditional Probability Table (CPT) of
C1 and C2. We suppose that both of the two components
are working at time step 0. The solid line in Fig. 5 shows
the reliability of system S during 1000 time steps.

3.3 Uncertainty model

In this subsection, uncertainty is taken into account in
the dynamic VBS model of system S. The uncertainty
is supposed to exist in the structure function. It means
that we have a doubt about the model. For example, the
probability that we are sure of the structure function is
supposed to be 0.9. Thus, in the valuation network, m1 is
changed as follows

mΩC1ΩC2ΩS
1 ({(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}) = 0.9

mΩC1ΩC2ΩS
1 (Ω) = 0.1

where mΩC1ΩC2ΩS
1 (Ω) represents our part of ignorance

about the model (i.e. all the combinations of the states
of components & system are possible).

Fig. 5. Reliability of system S

Fig. 6. Valve system

The simulation result is drawn in Fig. 5. The reliability
of the system under uncertainty over time is estimated by
an interval composed of the lower and upper bounds. As
we can see, the precise reliability is always included in the
interval.

4. APPLICATION

4.1 Description of the case study

Weber and Jouffe (2003) have proposed a DBN approach
to evaluate the reliability of a valve system over time.
Reliability in this application represents the probability
that the system is operational at time t. In this section,
our proposed dynamic VBS approach is also applied on the
valve system. Results of these two approaches will be com-
pared to validate the proposed dynamic VBS approach.

Fig. 6 depicts the structure of the valve system. Three
valves are used to distribute or not a fluid. Every valve has
a working state and two failed states: remains closed (RC)
and remains opened (RO). Their corresponding failure
rates are listed as follows:

λ1RC = 1 ∗ 10−3 λ2RC = 2 ∗ 10−3 λ3RC = 3 ∗ 10−3

λ1RO = 2 ∗ 10−3 λ2RO = 3 ∗ 10−3 λ3RO = 4 ∗ 10−3

The time step ∆t = 1. Thus, the corresponding probability
of failure is λ ∗∆t.

If V2 and V3 remain closed, the fluid cannot pass. If V2
and V3 remain open, then V1 can control the passage of
the fluid (if V1 is working). Remains Open and Remains
Closed can be used to classify the system’s failure. The
object is to determine whether or not the system is
controllable. The structure function of the valve system
is given in Table 3.
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Table 3. Structure function of the valve system

V1 V2 V3 System

OK OK OK Working

OK OK RC Working

OK OK RO Working

OK RC OK Working

OK RC RC Failed

OK RC RO Working

OK RO OK Working

OK RO RC Working

OK RO RO Working

RC OK OK Failed

RC OK RC Failed

RC OK RO Failed

RC RC OK Failed

RC RC RC Failed

RC RC RO Failed

RC RO OK Failed

RC RO RC Failed

RC RO RO Failed

RO OK OK Working

RO OK RC Working

RO OK RO Failed

RO RC OK Working

RO RC RC Failed

RO RC RO Failed

RO RO OK Failed

RO RO RC Failed

RO RO RO Failed

1st
layer

2nd
layer

System

m1

V1k+1 V2k+1 V3k+1

V1k+1 V2k+1 V3k+1

m2 m3 m4

V1k V2k V3k

m5 m6 m7

Fig. 7. Dynamic valuation network of the valve system

4.2 Dynamic VBS approach

In this subsection, the proposed dynamic VBS approach
is applied on the valve system. Fig. 7 shows the dy-
namic valuation network of the valve system. In the val-
uation network, there are 7 variables represented by cir-
cular nodes: the decision variable System, V1k+1, V2k+1,
V3k+1, V1k, V2k, V3k. The frame of discernment of the
variable System is given by

ΩS = {Failed,Working}
The frame of discernment of the variables V i is given by

ΩV i = {OK,RC,RO}

There are 7 bpas which represent the valuations by
diamond-shaped nodes: m1,m2,m3,m4,m5,m6,m7.

The bpas m1,m2,m3,m4 represent the knowledge about
the relations between all the variables. m1 can be rep-

Table 4. CPT of mΩV 1
2 ,mΩV 2

3 ,mΩV 3
4

XXXXXXXXV ik

V ik+1 OK RC RO

OK 1−(λiRC−λiRO)∗∆t λiRC∗∆t λiRO∗∆t
RC 0 1 0
RO 0 0 1

resented by the structure function in Table 3. Condi-
tional probabilities in Table 4 can be represented by bpas
m2,m3,m4. It means BN can be transformed into VBS.

The bpas m5,m6,m7 represent the knowledge about the
variables. They will be directly affected to the elements of
the frames of discernment of the variables V1k, V2k, V3k.

For example, the bpa mΩV 1
5 will be affected directly from

observations concerning the valve V1 or experts to the
elements of ΩV 1k

such that

mΩV 1
5 (OK) +mΩV 1

5 (RC) +mΩV 1
5 (RO) = 1

The dynamic valuation network of the valve system is
composed of two layers. In the 2nd layer, the state prob-
abilities of the valve V ik+1 can be deduced recursively
by the CPT and its initial value V i0. All the valves are
supposed to be working at the time step 0. Then, the
state probabilities of V ik+1 obtained in the 2nd layer are
sent to the corresponding variables in the 1st layer. The
state probability of the system can be deduced by the state
probabilities of all the three valves.

The solid line in Fig. 8 shows the reliability obtained by
the dynamic VBS approach.

4.3 Uncertainty model

In this subsection, uncertainty is supposed to exist in the
structure function. It means that we have a doubt about
this structure function. The probability that we are sure
of this structure function is supposed to be 0.8. Thus, in
the dynamic valuation network, m1 is changed as follows

mΩV 1ΩV 2ΩV 3ΩS
1 ({(OK,OK,OK,Working), (OK,OK,RC,

Working), . . . , (RO,RO,RO,Failed)}) = 0.8

mΩV 1ΩV 2ΩV 3ΩS
1 (Ω) = 0.2

The simulation result is drawn in Fig. 8. The reliability
of the system under uncertainty over time is estimated by
an interval composed of the lower and upper bounds. As
we can see, the precise reliability is always included in the
interval. The fact that the precise reliability is included in
the interval follows by the fact that the set of probabilities
associated to the bpas includes the one that gives the
precise reliability.

4.4 Discussion and comparison

Fig. 9 shows the DBN model proposed by Weber and
Jouffe (2003). The solid line in Fig. 10 represents the
reliability of the valve system during 2000 time steps
computed in Weber and Jouffe (2003). The other two
curves represent the evolution of the probabilities of the
two types of failure. We find that the reliability is exactly
the same with the reliability obtained by the proposed
dynamic VBS approach.
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Fig. 8. Reliability obtained by dynamic VBS approach

V1(k) V2(k) V3(k)

V1(k+1) V2(k+1) V3(k+1)

Remains
Opened

Remains
Closed

Fluid Distribution

Fig. 9. DBN model of the valve system

Fig. 10. Reliability obtained by DBN approach

Both of Bayesian Network (BN) and VBS can be used
to represent variables and their conditional dependencies
via graphical models. However, there are some obvious
differences between these two approaches. Above all, BN
is a probabilistic directed graphical model, while VBS can
be probabilistic or non-probabilistic, and it is non-directed.
Besides, the operations in BN are based on the conditional
probability formula, while the operations in VBS are based
on combination and marginalization operators.

VBS can represent and propagate easily model uncer-
tainties. It allocates bpas over subsets of Ω instead of

singletons as done in BN and thus it can represent the
uncertainty of components (model uncertainty).

5. CONCLUSION

In this paper, we propose a dynamic VBS approach to
evaluate the reliability of systems over time. BN can be
transformed into VBS. Thus VBS can be considered as
a generalization of BN. The dynamic VBS approach is
proved to be as effective as DBN. However, compared
to DBN, the dynamic VBS has an advantage: it allows
modeling and quantifying many kinds of uncertainties in
systems. In the future, we will apply the proposed dynamic
VBS approach on more complex systems, such as railway
signalling systems, to study the reliability over time and
analyze different kinds of model uncertainties in systems.
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