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Abstract: In a previous work we developed a convex infinite dimensional linear programming
(LP) approach to approximating the region of attraction (ROA) of polynomial dynamical
systems subject to compact basic semialgebraic state constraints. Finite dimensional relaxations
to the infinite-dimensional LP lead to a truncated moment problem in the primal and a
polynomial sum-of-squares problem in the dual. This primal-dual linear matrix inequality (LMI)
problem can be solved numerically with standard semidefinite programming solvers, producing
a hierarchy of outer (i.e. exterior) approximations of the ROA by polynomial sublevel sets, with
a guarantee of almost uniform and set-wise convergence. In this companion paper, we show that
our approach is flexible enough to be modified so as to generate a hierarchy of polynomial inner
(i.e., interior) approximations of the ROA with similar convergence guarantees.

1. INTRODUCTION

Given an autonomous nonlinear system and a target set,
the region of attraction (ROA) is the set of all states that
end in the target set at a given time without leaving the
state constraint set 5 . The ROA is one of the principal
sets associated to any dynamical system and goes by many
other names in the literature (e.g., backward reachable set
or capture basin [4]).

In [6] we showed (in a controlled setting) that there is
a genuinely primal convex characterization of the ROA.
Optimization over system trajectories is formulated as
optimization over occupation measures, leading to an
infinite dimensional linear programming (LP) problem
in the cone of nonnegative measures. Finite dimensional
relaxations of the dual of this problem then provide a
converging sequence of outer approximations to the ROA.
For a description of alternative techniques for numerical
approximations of the ROA, please consult [5] or [6] and
the many references therein.

In this paper we show, within the same measure-theoretic
framework, that there exists an infinite dimensional LP
whose finite-dimensional relaxations provide a converging
sequence of inner approximations to the ROA. This paper
can therefore be seen as a complement to [6]. To simplify
our developments and to emphasize our contribution, we
focus only on the uncontrolled setting. The main idea is to
construct a converging sequence of outer approximations
to the complement of the ROA. There are certain difficul-
ties, topological in nature, associated with this approach.
A careful distinction had to be made between trajecto-
ries leaving the constraint set and trajectories hitting its
boundary. This then translates to a (sometimes subtle, but
necessary) distinction between open and closed semialge-

5 There are various modifications on this setup (e.g., one may
consider asymptotic convergence instead of finite-time reachability,
with or without constraints, in the presence of disturbances and/or
uncertainty, or in a controlled setting); most of these modifications
are amenable to the methods presented in this paper, sometimes with
different qualitative results.

braic sets. Fortunately, the LP formulation proposed in [6]
was flexible enough to allow for these modifications.

Generally speaking, and consistently with our previous
work [6], we believe that the main virtues of our approach
are overall convexity, conceptual simplicity and compact-
ness. Both primal and dual finite-dimensional relaxations
turn out to be linear matrix inequalities (LMI), also
called semidefinite programming (SDP) problems, with
no tuning parameters besides the relaxation order and no
initialization data besides the defining ingredients of the
problem. In addition, the inner approximations obtained
are particularly simple – they are given by a sublevel set
of a single polynomial of a predefined degree. Therefore,
an ROA approximation in analytic form can be readily
obtained by solving a single LMI using freely available
software (e.g., SeDuMi [12]).

2. PROBLEM STATEMENT

Consider the autonomous system

ẋ(t) = f(t, x(t)), x(t) ∈ X ⊂ Rn, t ∈ [0, T ] (1)

with a given vector field f with polynomial entries fi ∈
R[t, x], i = 1, . . . , n, final time T > 0. The state trajectory
x(·) is constrained to a nonempty open 6 basic semialge-
braic set 7

X := {x ∈ Rn : gX(x) > 0}, (2)

where the polynomial gX ∈ R[x] is such that the set

X̄ := {x ∈ Rn : gX(x) ≥ 0} ⊃ X
is compact 8 .

6 The requirement of the constraint set being open is merely
technical, for this considerably simplifies the developments and the
proofs.
7 For clarity of exposition we consider the constraint set given by a
single superlevel set of a polynomial. The approach can, however,
be straightforwardly extended to constraint sets defined by the
intersection of finitely many polynomial superlevel sets.
8 Note that the closed semialgebraic set X̄ = {x : gX(x) ≥ 0}
can be strictly larger than the closure of the open semialgebraic set
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The vector field f is polynomial and therefore Lipschitz
on the compact set X̄. As a result, for any x0 ∈ X̄ there
exists a unique maximal solution x(·) to ODE (1). The
time interval on which this solution is defined contains the
time interval on which x(t) ∈ X̄.

2.1 Region of attraction (ROA)

Given a final time T and an open bounded basic semial-
gebraic target set

XT := {x ∈ Rn : gT (x) > 0} ⊂ X,
the region of attraction (ROA) is defined as

X0 :=
{
x0 ∈ X : ∃x(·) s.t. ẋ(t) = f(t, x(t)), x(0) = x0,

x(T ) ∈ XT , x(t) ∈ X ,∀t ∈ [0, T ]
}
. (3)

In words, the ROA is the set of all initial states from X for
which the unique solution to (1) stays in X for all t ∈ [0, T ]
and ends in the target set at time T .

2.2 Complement ROA

The idea to get inner approximations of the ROA X0 is to
construct outer approximations of the complement ROA
Xc

0 := X \ X0. By continuity of solutions to (1), the set
Xc

0 is equal to

Xc
0 =

{
x0 ∈ X : ∃x(·) s.t. ẋ(t) = f(t, x(t)) and

∃ t ∈ [0, T ] s.t. x(t) ∈ X∂ and/or x(T ) ∈ Xc
T

}
,

where

Xc
T := {x ∈ Rn : gX(x) ≥ 0, gT (x) ≤ 0}

is the complement of XT in X and

X∂ := {x ∈ Rn : gX(x) = 0}.
In words, Xc

0 is the set of initial states that give rise to
trajectories which do not end up in XT at time T and/or
violate the state constraint at some point between 0 and
T .

3. OCCUPATION MEASURES

In this section we introduce the concept of occupation
measures and show how the nonlinear system dynamics
can be equivalently described by a linear equation on
measures.

3.0.0.1. Notation We will use the following notation.
The vector space of all signed Borel measures with support
contained in a Borel set K is denoted by M(K). The
support (i.e., the smallest closed set whose complement
has a zero measure) of a measure µ is denoted by sptµ.
The space of continuous functions on K is denoted by
C(K) and likewise the space of continuously differentiable
functions is C1(K). The indicator function of a set K (i.e.,
the function equal to one on K and zero otherwise) is
denoted by IK(·). The symbol λ denotes the n-dimensional
Lebesgue measure (i.e., the standard n-dimensional vol-
ume). The integral of a function v w.r.t a measure µ over
a set K is denoted by

∫
K
v(x) dµ(x). Sometimes we for

simplicity omit the integration variable and/or the set over
which we integrate if they are obvious from the context.

X = {x : gX(x) > 0}, consider in R e.g. gX(x) = (1− x2)(2 + x)2.
For a similar reason, note also that X bounded does not imply X̄
bounded. Indeed, in R2 with gX(x) = (1−x2

1−x2
2)(2+x1)2 we have

X = {x : ||x|| < 1} and X̄ = {x : ||x|| ≤ 1} ∪ {x : x1 = −2}.

Now assume x0 ∈ X̄ and define the first hitting time of
X∂ as

τ(x0) := min
{
T, inf{t ≥ 0 : x(t | x0) ∈ X∂}

}
, (4)

where x(· | x0) denotes the unique trajectory starting from
x0 (which is well defined on the time interval [0, τ(x0)]).
Then we define the occupation measure associated to the
trajectory starting from x0 by

µ(A×B | x0) :=

∫ τ(x0)

0

IA×B(t, x(t)) dt

for all Borel 9 sets A×B ⊂ [0, T ]× X̄. The interpretation
is that the occupation measure measures the time spent
by the trajectory x(· | x0) in subsets of the state space.

The occupation measure enjoys the following important
property: for any measurable function v(t, x) the equality∫ τ(x0)

0

v(t, x(t)) dt =

∫
[0,T ]×X̄

v(t, x) dµ(t, x | x0) (5)

holds. In words, the time integral of a function evaluated
along the trajectory x(· | x0) is equal to the integral of
the function w.r.t. the occupation measure associated to
x0. Therefore, loosely speaking, all information about the
trajectory x(· | x0) is encoded by the occupation measure
µ(· | x0).

Now suppose that the initial state is not a single point but
that its spatial distribution is given by an initial measure
µ0 ∈ M(X̄). Then we define the average occupation
measure µ ∈M([0, T ]× X̄) as

µ(A×B) :=

∫
X̄

µ(A×B | x0) dµ0(x0).

Lastly, we define the final measure µT ∈M([0, T ]× X̄) by

µT (B) :=

∫
X̄

IB(x(T | x0)) dµ0(x0).

To derive an equation linking the three principal measures,
consider a test function v ∈ C1([0, T ]×X̄) evaluated along
a trajectory. Using the chain rule and equation (5) we
obtain

v
(
τ(x0), x(τ(x0) | x0)

)
− v(0, x0) =

τ(x0)∫
0

d

dt
v(t, x(t | x0)) dt

=

∫ τ(x0)

0

(
∂v

∂t
+ grad v · f(t, x(t | x0))

)
dt

=

∫
[0,T ]×X̄

(
∂v

∂t
+ grad v · f(t, x)

)
dµ(t, x | x0)

=

∫
[0,T ]×X̄

Lv(t, x) dµ(t, x | x0)

where the linear operator L : C1([0, T ]× X̄)→ C([0, T ]×
X̄) is defined by

v 7→ Lv :=
∂v

∂t
+ grad v · f.

Integrating the above equation w.r.t. µ0 leads to the
equation∫

[0,T ]×X̄
v(t, x) dµT (t, x)−

∫
X̄

v(0, x) dµ0(x) =∫
[0,T ]×X̄

Lv(t, x) dµ(t, x) ∀ v ∈ C1([0, T ]× X̄), (6)

9 For brevity we drop the adjective “Borel” in the sequel.
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which is a linear equation linking the measures µ0, µ and
µT . Equation (6) is sometimes referred to as Liouville’s
equation.

4. PRIMAL LP

In this section we follow the approach developed in [6]
and derive an infinite-dimensional linear programming
(LP) characterization of the complement ROAXc

0 . Certain
sublevel sets of feasible solutions to the dual of this LP
then yield inner approximations to the ROA X0.

The basic idea is to maximize the mass of the initial
measure µ0 under the constraint that it is dominated by
the Lebesgue measure, i.e., µ0 ≤ λ. System dynamics is
captured by Liouville’s equation (6) and state and terminal
constraints are handled by suitable constraints on the
support of the measures. The key idea is then to split the
final measure in two measures such that each measure is
supported on a suitable compact basic semialgebraic set.
More explicitly, we let

µT := µ1
T + µ2

T

with µ1
T ∈M([0, T ]×X∂) and µ2

T ∈M({T}×Xc
T ). That is,

we require that sptµ1
T ⊂ [0, T ] ×X∂ and sptµ2

T ⊂ {T} ×
Xc
T . The interpretation is that measure µ1

T models the
trajectories that leave X, whereas measure µ2

T models
the trajectories that end in Xc

T (i.e., not in XT ). These
support constraints on the final measure(s) along with
system dynamics enforce that the support of the initial
measure µ0 must be contained in Xc

0 . Since there are no
other constraints on µ0 besides µ0 ≤ λ, maximization of its
mass should yield the restriction of the Lebesgue measure
λ to Xc

0 .

The constraint µ0 ≤ λ can be rewritten equivalently
as µ0 + µ̂0 = λ for some nonnegative slack measure
µ̂0 ∈M(X). This is equivalent to requiring that

∫
w dµ0 +∫

w dµ̂0 =
∫
w dλ for all test functions w ∈ C(X̄).

In addition, we can drop the time argument from the
definition of µ2

T since its time component is supported on
a singleton.

This leads to the following optimization problem:

p∗ = sup

∫
1 dµ0

s.t.

∫
v dµ1

T +

∫
v(T, ·) dµ2

T −
∫
v(0, ·) dµ0 =

∫
Lv dµ ∀ v ∈ C1∫

w dµ0 +

∫
w dµ̂0 =

∫
w dλ ∀w ∈ C

µ0 ≥ 0, µ ≥ 0, µ1
T ≥ 0, µ2

T ≥ 0, µ̂0 ≥ 0
spt µ ⊂ [0, T ]× X̄, spt µ0 ⊂ X̄, spt µ̂0 ⊂ X̄
spt µ1

T ⊂ [0, T ]×X∂ , spt µ2
T ⊂ Xc

T ,
(7)

where the supremum is over the vector of nonnegative
measures

(µ0, µ, µ
1
T , µ

2
T , µ̂0) ∈ M(X̄)×M([0, T ]× X̄)

×M([0, T ]×X∂)×M(Xc
T )×M(X̄).

Problem (7) is an infinite-dimensional LP in the cone of
nonnegative measures. Indeed, the objective is linear, the
first two constraints are linear equality constraints and
the remaining constraints are conic constraints (the set of
nonnegative measures supported on a given set is a positive
cone in the vector space of all measures supported on the
same set).

The discussion leading to problem (7) is formalized in the
following result.

Theorem 1. The optimal value of LP problem (7) is equal
to the volume of the complement ROA Xc

0 , that is,
p∗ = λ(Xc

0). Moreover, the supremum is attained by the
restriction of the Lebesgue measure to the complement
ROA Xc

0 .

Proof. Closely follows arguments in [6]. By definition of
the relaxed complement ROA, the unique trajectory x(·)
associated to any initial condition x0 ∈ Xc

0 either hits X∂

at some t ∈ [0, T ] or ends in Xc
T . Therefore for any initial

measure µ0 ≤ λ with sptµ0 ⊂ X ⊂ X̄ there exist an
occupation measure µ, final measures µ1

T , µ2
T and a slack

measure µ̂0 such that the constraints of problem (7) are
satisfied. One such measure µ0 is the restriction of the
Lebesgue measure to Xc

0 , and therefore p∗ ≥ λ(Xc
0).

Now we show that p∗ ≤ λ(Xc
0). Take a vector of mea-

sures (µ0, µ, µ
1
T , µ

2
T , µ̂0) feasible in (7) and suppose that

λ(sptµ0 \Xc
0) > 0. Since any level set of a polynomial has

a zero Lebesgue measure we have λ(X∂) = 0 and

λ(sptµ0 \ (Xc
0 ∪X∂)) = λ(sptµ0 \Xc

0) > 0.

By a superposition principle [1, Theorem 3.2] using argu-
ments of [6, Appendix A, Lemma 4], there exists a family
of admissible trajectories of the ODE (1) starting from
µ0 generating the occupation measure µ and the final
measure µT = µ1

T + µ2
T . However, this is a contradiction

since sptµ0 \ (Xc
0 ∪ X∂) ⊂ X0, which means that all

trajectories starting from sptµ0 \ (Xc
0 ∪ X∂) neither hit

X∂ nor end in X̄c
T . Thus, λ(sptµ0 \ Xc

0) = 0 and so
λ(sptµ0) ≤ λ(Xc

0). Combining this with the constraint
µ0 ≤ λ we get µ0(X) = µ0(sptµ0) ≤ λ(sptµ0) ≤ λ(Xc

0)
for any feasible µ0. Therefore p∗ ≤ λ(Xc

0) and thus in fact
p∗ = λ(Xc

0).

5. DUAL LP

In this section we derive a dual LP on continuous func-
tions, prove the absence of a duality gap between the
primal and dual LPs and relate feasible solutions to the
dual to the indicator function of the complement ROA
Xc

0 .

By standard infinite-dimensional LP theory (see, e.g., [2]),
the dual to LP (7) reads

d∗ = inf

∫
X

w(x) dλ(x)

s.t. Lv(t, x) ≤ 0, ∀ (t, x, u) ∈ [0, T ]× X̄
w(x) ≥ v(0, x) + 1, ∀x ∈ X̄
v(T, x) ≥ 0, ∀x ∈ Xc

T
v(t, x) ≥ 0, ∀(t, x) ∈ [0, T ]×X∂

w(x) ≥ 0, ∀x ∈ X̄,
(8)

where the infimum is over (v, w) ∈ C1([0, T ]× X̄)×C(X̄).

The intuition is that given x0 ∈ Xc
0 the constraint Lv ≤ 0

forces v to decrease along trajectories as long as it does
not hit X∂ or end in Xc

T . Because of the constraint v ≥ 0
on [0, T ] × X∂ ∪ {T} × Xc

T we must have v(0, ·) ≥ 0 on
Xc

0 . Consequently, w(x) ≥ 1 on Xc
0 . This instrumental

observation is formalized in the following Lemma.

Lemma 2. If Lv ≤ 0 on [0, T ]×X̄, v ≥ 0 on ([0, T ]×X∂)∪
({T} ×Xc

T ) and w ≥ v(0, ·) + 1 on X, then w ≥ 1 on Xc
0 .

Proof. Take x0 ∈ Xc
0 and consider the first hitting time

of X∂ , τ := τ(x0), defined by (4). By definition of Xc
0 the

trajectory starting from x0 will either hit X∂ or end in Xc
T .
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Therefore x(τ) ∈ ([0, T ]×X∂)∪ ({T}×Xc
T ) and x(t) ∈ X

for t ∈ [0, τ ]. Therefore v(τ, x(τ)) ≥ 0, Lv(t, x(t)) ≤ 0,
∀ t ∈ [0, τ ] and so

0 ≤ v(τ, x(τ)) = v(0, x0) +

∫ τ

0

Lv(t, x(t)) dt ≤ v(0, x0)

≤ w(x0)− 1.

The following result is of key importance for subsequent
developments.

Theorem 3. There is no duality gap between primal LP
problems (7) on measures and dual LP problem (8) on
functions, that is, p∗ = d∗.

Proof. Here we only outline the basic steps; for a detailed
argument in a similar setting see [6, Theorem 2]. Since the
supports of all measures are compact, the initial measure
is dominated by the Lebesgue measure and the final time
is finite, we have µ0(X̄) ≤ λ(X̄) < ∞, µT ([0, T ] ×
X̄) = µ0(X̄) < ∞ and µ([0, T ] × X) ≤ TµT ([0, T ] ×
X̄) <∞, where the last two inequalities follow by plugging
in v(t, x) = 1 and v(t, x) = t in Liouvillel’s equation (6).
Therefore p∗ < ∞ and the feasible set of problem (7)
is weakly-* bounded. Furthermore, the feasible set of (7)
is nonempty since (µ0, µ, µ

1
T , µ

2
T , µ̂0) = (0, 0, 0, 0, λ) is a

trivial feasible point; therefore 0 ≤ p∗ < ∞. The absence
of a duality gap then follows from [2, Theorem 3.10] using
Alaoglu’s theorem (see, e.g., [10, Chapter 5]) and the weak-
* continuity of the adjoint of the operator L.

Next, we establish our first convergence 10 result.

Theorem 4. There is a sequence of feasible solutions to
problem (8) such that its
w-component converges from above to IX0 in L1 norm and
almost uniformly.

Proof. Follows by the same arguments as Theorem 3 in
[6].

6. LMI RELAXATIONS

In this section we derive finite dimensional semidefinite
programming (SDP) or linear matrix inequality (LMI)
relaxations to the infinite dimensional LPs (7) and (8)
and establish several convergence results relating these
relaxations to the infinite dimensional LPs and to the
ROA.

In what follows, Rk[·] denotes the vector space of real
multivariate polynomials of total degree less than or equal
to k.

Derivation of the finite dimensional relaxations is standard
and the reader is referred to [6, Section 5] or to the com-
prehensive reference [9]; therefore we only highlight the
main ideas. First of all, since the supports of all measures
feasible in (7) are compact, these measures are deter-
mined by their moments, i.e., by integrals of all monomials
(which is a sequence of real numbers when indexed in,
e.g., the canonical monomial basis). Therefore, it suffices
to restrict the test functions w(x) and v(t, x) in (7) to all
monomials, reducing the linear equality constraints of (7)
to linear equality constraints on the moments. Next, by
the celebrated Putinar Positivstellensatz (see [9, 11]), the
constraint that the support of a measure is included in a
given compact basic semialgebraic set is equivalent to the

10Please refer to [6] or, e.g., [3] for definitions of the various types of
convergence relevant in this context.

feasibility of an infinite sequence of LMIs involving the so-
called moment and localizing matrices, which are linear
in the coefficients of the moment sequence. By truncating
the moment sequence and taking only the moments corre-
sponding to monomials of total degree less than or equal
to 2k we obtain a necessary condition for this truncated
moment sequence to be the first part of a moment sequence
of a measure with the desired support.

This procedure leads to the primal SDP relaxation of order
k
p∗k = max (y0)0

s.t. Ak(y, y0, y
1
T , y

2
T , ŷ0) = bk

Mk(y) � 0, Mk−dXi
(gX , y) � 0

Mk(y0) � 0, Mk−dX (gX , y0) � 0
Mk(y1

T ) � 0, Mk−dT (gX , y
1
T ) � 0, Mk−dT (−gX , y1

T ) � 0
Mk(y2

T ) � 0, Mk−dT (gX , y
2
T ) � 0, Mk−dT (−gT , y2

T ) � 0
Mk(ŷ0) � 0, Mk−dX (gX , ŷ0) � 0
Mk−1(t(T − t), y) � 0, Mk−1(t(T − t), y1

T ) � 0
(9)

where the notation � 0 stands for positive semidefinite and
the minimum is over moment sequences (y, y0, y

1
T , y

2
T , ŷ0)

truncated to degree 2k corresponding to measures µ, µ0,
µ1
T , µ2

T and µ̂0. The linear equality constraint captures
the two linear equality constraints of (7) with v(t, x) ∈
R2k[t, x] and w(x) ∈ R2k[x] being monomials of total
degree less than or equal to 2k. The matrices Mk(·) are the
moment and localizing matrices, following the notations of
[9] or [6]. In problem (9), a linear objective is minimized
subject to linear equality constraints and LMI constraints;
therefore problem (9) is an SDP problem.

The SDP problem dual to problem (9) turns out to be the
sum-of-squares problem
d∗k = inf w · l

s.t. −Lv(t, x) = p(t, x) + q1(t, x)t(T − t) + q2(t, x)gX(x)
w(x)− v(0, x)− 1 = p0(x) + q01(x)gX(x)

v(t, x) = pT 1(x) + qT 1(t, x)t(T − t) + r(x)gX(x)

v(T, x) = pT 2(x) + qT 2(x)gX(x)− qT 3(x)gT (x)
w(x) = s0(x) + s1(x)gX(x),

(10)
where l is the vector of Lebesgue moments over X indexed
in the same basis in which the polynomial w(x) with
coefficients w is expressed. The minimum is over polyno-
mials v(t, x) ∈ R2k[t, x], w(x) ∈ R2k[x], over the polyno-
mial r(x) and polynomial sum-of-squares p(t, x), q1(t, x),
q2(t, x), q01(x), pT 1(x), pT 2(x), qT 1(x), qT 2(x), qT 3(x),
s0(x), s1(x) of appropriate degrees. The constraints that
polynomials are sum-of-squares can be written explicitly
as LMI constraints (see, e.g., [9]), and the objective is
linear in the coefficients of the polynomial w(x); therefore
problem (10) can be formulated as an SDP problem.
Theorem 5. There is no duality gap between primal LMI
problem (9) and dual LMI problem (10), i.e. p∗k = d∗k.

Proof. Follows by the same arguments based on standard
SDP duality theory as Theorem 4 in [6].

Now we prove our main convergence results.
Theorem 6. Let wk ∈ R2k[x] denote the w-component of
a solution to the dual LMI problem (10) and let w̄k(x) =
mini≤k wi(x). Then 1 − wk converges from below to IX0

in L1 norm and 1− w̄k converges from below to IX0 in L1

norm and almost uniformly.

Proof. It follows from Theorem 4 and from the density
of polynomials in the space of continuous functions on
compact sets (for a detailed argument in a similar setting
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see [6, Theorem 5]) that wk and w̄k converge from above
to IXc

0
in L1 and almost uniformly on X, respectively.

Therefore 1 − wk and 1 − w̄k converge from below to
IX0

= 1− IXc
0

on X in the same manner.

The next Corollary follows immediately from Theorem 6.

Corollary 7. The sequence of infima of LMI problems (10)
converges monotonically from above to the supremum of
the LP problem (8), i.e., d∗ ≤ d∗k+1 ≤ d∗k and limk→∞ d∗k =
d∗. Similarly, the sequence of maxima of LMI problems (9)
converges monotonically from above to the maximum of
the LP problem (7), i.e., p∗ ≤ p∗k+1 ≤ p∗k and limk→∞ p∗k =
p∗.

Proof: Follows the proof of Corollary 1 in [6]. 2

Our last results establishes set-wise convergence of inner
approximations to the ROA.

Theorem 8. Let wk ∈ R2k[x] denote the w-component of
a solution to the dual LMI problem (10) and let X0k :=
{x ∈ X : wk(x) < 1}. Then X0k ⊂ X0,

lim
k→∞

λ(X0 \X0k) = 0 and λ(X0 \ ∪∞k=1X0k) = 0.

Proof. Follows the proof of Theorem 6 in [6]. From
Lemma 2 we have wk(x) ≤ 1 ⇒ x ∈ X0 for all x ∈ X,
and therefore IX0k

≤ IX0 . Since wk ≥ 0 on X we also have
1−wk ≤ IX0k

on X and therefore 1−wk ≤ IX0k
≤ IX0 on

X. From Theorem 6, we have 1 − wk → IX0
in L1 norm

on X. Consequently,

λ(X0) =

∫
X

IX0
dλ = lim

k→∞

∫
X

1− wk dλ

≤ lim
k→∞

∫
X

IX0k
dλ = lim

k→∞
λ(X0k)

≤ lim
k→∞

λ(∪ki=1X0i) = λ(∪∞k=1X0k).

But since X0k ⊂ X0 for all k, we must have

lim
k→∞

λ(X0k) = λ(X0) and λ(∪∞k=1X0k) = λ(X0),

which proves the theorem.

7. NUMERICAL EXAMPLES

In this section we present two numerical examples. The
primal problems on measures were modeled using Glop-
tipoly 3 [7] interfaced with the SDP solver SeDuMi [12];
this solver also returns the solution to the dual SDP
relaxation. In Section 7.3 we then investigate how tight
low order approximations can be obtained.

In general, for high order relaxations to be reached, the
approach requires that the data are properly scaled (e.g.
to unit boxes); in particular the time interval [0, T ] should
be scaled to [0, 1] by multiplying the vector field f by T .

7.1 Univariate cubic dynamics

Consider the system given by

ẋ = x(x− 0.5)(x+ 0.5),

the constraint set X = [−1, 1], the final time T = 10
and the target set XT = [−0.3, 0.3]. The ROA in this
setup is X0 = [−0.5, 0.5]. Polynomial approximations to
the complement ROA for degrees d ∈ {16, 24} are shown
in Figure 1. As expected, the functional convergence of
the polynomial to the discontinuous indicator function is
rather slow. A slightly better convergence is observed in
the volume error of the sublevel set approximation to the
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Fig. 1. Univariate cubic dynamics – polynomial approxi-
mations (solid line) to the complement ROA indicator
function IXc

0
= I[−1,−0.5] + I[0.5,1] (dashed line) for

degrees d ∈ {16, 24}.

ROA documented in Table 1. The relatively slow conver-
gence could be significantly improved if a tighter constraint
set X was employed; see Section 7.3 below. Alternative
polynomial bases (e.g. Chebyshev polynomials) would also
allow tighter higher order approximations; see [8] for more
details.

Table 1. Univariate cubic dynamics – relative error of
the inner approximations to the ROA X0 = [−0.5, 0.5]
as a function of the approximating polynomial degree.

degree 16 20 24 28

error 11.4 % 6.4 % 4.84 % 4.54 %

7.2 Van der Pol oscillator

Fig. 2. Van der Pol oscillator – degree 18 polynomial
approximation to the indicator function of the com-
plement ROA.
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d = 9 d = 15

Fig. 3. Van der Pol oscillator – polynomial inner approx-
imations (light gray) to the ROA (dark gray) for
degrees d ∈ {9, 15}.

As a second example consider a scaled 11 version of the
uncontrolled reversed-time Van der Pol oscillator given by

11The coefficients were chosen so that the ROA fits within the box
[−1, 1]2.
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Fig. 4. Low order approximations to the ROA. Top:
tighter constraint set X and low order w (compare
with Figure 1). Bottom: low order w only (compare
with Figure 3).

ẋ1 = −2.0x2,

ẋ2 = 0.80x1 + 10(x2
1 − 0.21)x2.

We take T = 1 and XT = {x ∈ Rn : ‖x‖2 ≤ 0.50} and
X := {x ∈ Rn : ‖x‖ ≤ 1.1}. The ROA is bounded, having
the characteristic Van der Pol shape. Plots of polynomial
sublevel set approximations of degrees d ∈ {9, 15} are
shown in Figure 3. We observe a relatively fast convergence
to the ROA, which is also documented by the relative
volume errors reported in Table 2. Figure 2 then shows
a degree 18 polynomial approximation to the indicator
function of the complement ROA.

Table 2. Van der Pol oscillator – relative error of the
inner approximation to the ROA X0 as a function of

the approximating polynomial degree.

degree 9 12 15 18

error 18.3 % 8.4 % 3.8 % 3.1 %

7.3 Low order approximations

In the examples above, relatively high order polynomials
had to be used to obtain tight approximations, which
can limit subsequent applicability of the approximations.
There are several ways to obtain low order approximations
of similar quality. First of all, since the integral of a
polynomial w is minimized over the constraint set X,
it is desirable that X be a good outer approximation
of the ROA. Of course, selecting X is possible only
if it is an artificially specified outer approximation of
the ROA, not a constraint set coming from physical
requirements on the system. More importantly, notice that
in problem (10) the system dynamics enters the constraints
on the polynomial v(t, x), whereas the polynomial w(x)
is only upper-bounding v(t, x) + 1 for t = 0. Since the
inner approximations are given by sublevel sets of w, it
is possible and plausible to choose different degrees of
w and v – low for w and higher for v. Both techniques
are illustrated in Figure 4; in Figure 4 (a) we consider
the univariate cubic dynamics and we both shrink the
constraint set X and choose low order w while keeping
v of higher order. In Figure 4 (b) we consider the Van
Der Pol oscillator, keeping the constraint set X unchanged
and only selecting low order w. The inner approximations
obtained are indeed significantly tighter for the given
degrees (compare with Figures 1 and 3).

8. CONCLUSION

This paper presented an infinite dimensional convex char-
acterization of the region of attraction (ROA) for uncon-
trolled polynomial systems, following the approach ini-
tiated in our previous work [6]. Finite dimensional dual

relaxations yield a converging sequence of inner approx-
imations to the ROA, thereby complementing the outer
approximations of [6]. One of the virtues of the approach
is its conceptual simplicity – the resulting approximation
is the outcome of a single SDP or LMI problem with
no free parameters except for the relaxation order. The
approximations itself are also simple, given by sublevel sets
of polynomials of predefined degrees.

Nevertheless, this approach does not escape the curse of
dimensionality – indeed, whereas the number of variables
of the LMI relaxations grows polynomially with the re-
laxation order, this number grows exponentially with the
state dimension. Tailored structure-exploiting SDP solvers
could enable this approach to reach higher dimensions. In
addition, a different choice of basis functions (e.g., Cheby-
shev polynomials rather than monomials) would improve
numerical conditioning of the LMIs, allowing higher oder
relaxations to be computed.

Future research directions include inner approximations in
a controlled setting and the related problem of robust re-
gion of attraction / reachable set computation with either
unknown but constant uncertainty or a time-varying dis-
turbance. Finally, approximation of the asymptotic region
of attraction and the maximum (controlled) invariant set
are also amenable to similar tools.
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