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Abstract: This paper presents a car parking control concept for real-time application. It utilizes
a two-degrees-of-freedom control scheme consisting of a feedforward and a feedback controller.
The reference trajectory is constructed in two steps. First a geometric path is planned by solving
a local static optimization problem, which is formulated by discretizing the path. Second a path-
following problem in the form of an optimal control problem considering the physical limitations
is solved. The solution of this optimal control problem yields the time parametrization of the
geometric path. In order to account for model uncertainties and disturbances, a Lyapunov-
based feedback controller is designed for the trajectory error system. Simulation studies show
the applicability and efficiency of the proposed approach.
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1. INTRODUCTION

One topic of recent research in automobile industry is
autonomous driving, which is especially challenging in
urban environments. A special subject within this area of
research is autonomous parking control, where close dis-
tances to obstacles and multiple driving direction changes
have to be handled under consideration of the non-
holonomic constraints of the car.

A common approach to tackle this challenge is to subdivide
the task into a kinematic and a dynamic subproblem by
means of the so-called Path-Velocity-Decomposition (Kant
and Zucker, 1986). The kinematic subproblem can be
solved geometrically, e.g., by stringing together lines and
arcs (Hsieh and Özgüner, 2008; Kim et al., 2010). Other
approaches calculate a holonomic path and move along it
by considering the non-holonomic constraints (Laumond
et al., 1994; Müller et al., 2007).

For the dynamic subproblem, henceforth referred to as
path-following, different solutions are reported in the lit-
erature, see, e.g., (Nielsen et al., 2010) for a geometric
approach and (Aguiar et al., 2004) for Lyapunov-based
methods. Faulwasser et al. (2011) introduced an efficient,
optimization based concept for differentially flat systems,
which systematically accounts for the physical constraints
of the car.

The stabilization of the trajectory error system is achieved
by various techniques, e.g., the path deformation method
(Khatib et al., 1997), Lyapunov-based controllers (Sicil-
iano and Khatib, 2008) or linear control strategies (Her-
mosillo and Sekhavat, 2003).

In this paper, we present a trajectory generator consisting
of a novel fast geometric path planner and an optimization
based solution for the path-following problem similar to
Faulwasser et al. (2011). The geometric planner consists

of a series of static optimization problems, which is ob-
tained by discretising the path. Obstacles are described by
inequality constraints based on the Minkowski sum. The
formulation of this optimization problem was tailored to
be solved numerically in a very efficient way.

The path-following problem exploits the flatness property
of the car enabling the reformulation of the system dy-
namics in form of a linear second order differential equa-
tion. The solution of an optimal control problem subject
to these system dynamics considering maximum velocity,
acceleration and steering angle speed calculates a time
evolution along the geometric path.

Additionally, a trajectory tracking feedback controller is
presented. To this end, the error system is transformed into
a chained-form system. The control inputs are calculated
using an integrator backstepping method and the stability
of the closed-loop system is proven utilizing Barbalat’s
lemma.

The paper is organized as follows: After the problem state-
ment in Section 2, the basic concept of the geometric path
planner is presented in Section 3. Section 4 is devoted to
the path-following and Section 5 to the feedback controller
design. Simulation studies are carried out in Section 6.

2. PROBLEM STATEMENT

In this paper, we strive for a systematic and real-time
capable control scheme for autonomous car parking. This
requires the calculation of a trajectory in narrow environ-
ments. The trajectory has to consider the physical limita-
tions of the car as well as its non-holonomic constraints. As
the environment is usually dynamic the planning process
has to be fast enough to be able to calculate a new trajec-
tory in real-time if changes are detected. Additionally, an
efficient feedback controller is needed to account for model
errors and disturbances.
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Fig. 1. Notation for parallel, garage and angle parking.

2.1 Environment

Subsequently, three common parking scenarios, namely
parallel, garage and angle parking, will be considered.
These scenarios and the corresponding notations are
shown in Figure 1, whereby the shaded polygons represent
obstacles like other cars. The lines to the left and right side
of each scenario are boundaries, which shall not be violated
like, e.g., the kerbstone or the lane separator of the street.

Without loss of generality we concentrate on convex poly-
gonal obstacles. Every non-convex polygon can be sub-
divided into multiple convex polygons, which is usually
referred to as convex decomposition (Liu et al., 2010).
A non-polygonal obstacle can always be included into a
slightly larger polygon.

2.2 System Dynamics

The mathematical model of the car is based on the simple
kinematic model with Ackerman steering as depicted in
Figure 2. The tire slip angle is neglected, which is justified
at the low velocities during parking manoeuvres. Hence
the car can be described by one front and one rear wheel.
The motion of the car is characterised by the coordinates
(x, y) of a reference point PR, which is located at the
centre of the rear axle, as well as the orientation θ of the
longitudinal axis of the car. The differential equations in
the state q = [x, y, θ, v, δ]T , with the velocity v and the
steering angle δ of the car, read as

q̇ =











ẋ
ẏ

θ̇
v̇

δ̇











=













v cos(θ)
v sin(θ)
v

L
tan(δ)

a
ζ













. (1)

Here uA = [a, ζ]T describes the control input composed of
the acceleration a and the steering angle speed ζ, and L
denotes the wheelbase.

3. PATH PLANNING

Considering the dynamic model (1) for the motion plan-
ning results in high computational costs. Therefore, the
kinematic path planning problem is separated from the
dynamic velocity planning problem by means of the well-
known Path-Velocity-Decomposition (Kant and Zucker,
1986). This reduces the problem to find a feasible geo-
metric path, which is parametrised in the parameter s. To
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v

δ

PR

L

Fig. 2. Kinematic model of the car.

this end, the velocity can be expressed as v = D ds
dt , where

D ∈ {−1, 1} refers to the driving direction of the car, with
D = 1 for velocities v ≥ 0 and D = −1 for v < 0. Thus,
the first three differential equations of (1) can be rewritten
as

q̄′ =





x′

y′

θ′



 =

(

D cos(θ)
D sin(θ)
Dul

)

, (2)

where (·)′ denotes the derivative with respect to the path
parameter s and ul = tan(δ)/L is the new control input.

To obtain a feasible path, a fast geometric path planner
based on a constrained static optimization problem is
used. In the following, we give a short explanation of the
basic idea of the path planner. Due to page limitations, a
detailed description of this algorithm is beyond the scope
of this paper.

In a first step, (2) is discretised with respect to the path
parameter s by means of a Runge-Kutta discretisation of
second order yielding the difference equations

q̄i+1 =











xi +Dηi cos
(

θi +D
ηiuli

2

)

yi +Dηi sin
(

θi +D
ηiuli

2

)

θi +Dηiuli











= f(q̄i,ui, D),

(3)
with the step length ηi ∈ [ηmin, ηmax]. The new control
input u = [ul, η]

T consists of the steering input ul and the
step length η. Note that the step length is constrained by
a minimum and maximum value, ηmin and ηmax, respec-
tively. The steering input ul is limited to the maximum
steering input ul,m = tan(δm)/L, with the maximum
steering angle δm.

The whole path can now be composed of N steps, whereby
N is not fixed in advance. In each step, a constrained static
optimization problem is solved to determine the control
input ui, where the end point of the step (i − 1) serves
as the starting point of the ith step. An illustration of this
procedure is shown in Figure 3. The whole path is planned
in backward direction from the parking position q̄P to the
starting position q̄S . In this example, four iterations have
already been performed leading to the positions q̄i, i =
1, . . . , 4. For the fifth iteration a suitable steering input ul5

and step length η5 have to be found leading to a position
q̄5 inside the shaded arc. The shaded arc illustrates the
feasible region determined by the constraints. Note that
for illustration purpose the step length is depicted much
larger than at the actual planning process.

To find a suitable control input for each step i, the
constrained static optimization problem
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Fig. 3. Basic idea of the geometric path planner.

min
ui

lOi
(q̄i+1) (4a)

s.t. q̄i+1 = f (q̄i,ui, D) (4b)

umin ≤ ui ≤ umax (4c)

hP

(

q̄i+1

)

≤ 0, (4d)

with the cost function

lOi
(q̄i+1) = rθe

2
θi+1

+ eTPi+1
RePi+1

(5)

is defined. Thereby, ePi
= [xi − xS , yi − yS ]

T denotes
the distance of the car at step i to the starting position
[xS , yS ]

T , and eθi = θi − θO refers to the difference be-
tween the car orientation and a predefined target angle
θO. The parameter rθ > 0 and the positive semi-definite
matrix R serve as weighting terms in the cost function.
The constraint (4b) corresponds to (3) and the control
input ui is constrained by umin = [−ul,m, ηmin]

T and
umax = [ul,m, ηmax]

T . For collision avoidance the bound-
aries of the obstacles are transformed into the inequality
constraint (4d) by means of the Minkowski-sum (Lozano-
Perez, 1983).

If a driving direction change should be necessary for
obstacle avoidance or to reach the starting position, two
heuristic rules mimicking the behaviour of a human driver
are implemented. If these rules apply, a direction switching
point is added at this position and the driving direction is
set to D = −D.

A detailed description of these rules as well as the choice of
the weighting parameters and the target angle θO is going
to be published in an upcoming publication. Although
this is a local planning algorithm, global convergence for
specific geometric conditions can be guaranteed.

4. PATH-FOLLOWING

The path obtained by the planner described in the pre-
vious section consists of nSP + 1 segments, where nSP

corresponds to the number of direction switching points.
An example for nSP = 3 path segments is illustrated in
Figure 4.

Each segment is parametrised in the path parameter s. To
follow this geometric path, a mapping

t → sj(t), sj(t0,j) = s0,j , sj(Tj) = sE,j (6)

for each path segment j, with the path start and end
positions s0,j and sE,j , is needed. This mapping is required
to consider the physical limits of the maximum velocity
vm, acceleration am and steering angle speed ζm. The
geometric path planner already takes into account the
limit of the steering angle δm.

To address this issue, we pick up an approach proposed by
Faulwasser et al. (2011) concerning path-following for flat
systems (Fliess et al., 1995). Hereby, the path-following

q̄P

q̄S s0,1

s0,2

s0,3

sE,1
sE,2

sE,3

1

2
3

Fig. 4. Geometric path with nSP = 3 segments.

problem is reformulated as a linear SISO system to find a
timing law for the path evolution. The flatness of the car
model (1) as well as the implementation of this approach
are described in next subsections.

4.1 Flatness of the car

All states and control inputs of a flat system can be
parametrised in terms of a flat output ξ and its time
derivatives. For the model (1), a flat output is given by
ξ = [x, y]T . The parametrisation of the state q is obtained
in the form

θ = arctan

(

ẏ

ẋ

)

(7a)

v = D
√

ẋ2 + ẏ2 (7b)

δ = arctan

(

L

D

ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3
2

)

. (7c)

The control input uA can be parametrised by differentiat-
ing (7b) and (7c) resulting in

a = D
ẋẍ+ ẏÿ
√

ẋ2 + ẏ2
(8a)

ζ =
L

D

(vθ̈ − θ̇a)

v2 + L2θ̇2
, (8b)

where θ̇ and θ̈ are the time derivatives of (7a). The
drawback of this parametrisation is the singularity for
v = 0, which occurs at the starting and parking position
as well as at the driving direction switching points. A
method to avoid this singularity is to replace derivatives
with respect to the time t by derivatives with respect to
the path parameter s. For a function σ(s(t)) the relations

σ̇ = ṡσ′ (9a)

σ̈ = s̈σ′ + ṡ2σ′′. (9b)

hold. Applying these relations to (7) and (8) yields the
parametrisation of the states and the control inputs

θ = arctan

(

y′

x′

)

(10a)

v = ṡσ1 (10b)

δ = arctan

(

L

D

x′y′′ − y′x′′

σ3
1

)

(10c)

a =
s̈σ2

1 + ṡ2σ2

σ1
(10d)

ζ =
L

D

ṡ(θ′′σ2
1 − θ′σ2)

σ3
1

(

1 + L2θ′
2

σ2
1

) (10e)

with

σ1 = D
√

x′2 + y′2 and σ2 = x′x′′ + y′y′′. (11)
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Since
√

x′
2 + y′2 = 1 according to (2), (11) simplifies to

σ1 = D and σ2 = 0, (12)

and thus the parametrisation for the velocity and the
control inputs read as

v = Dṡ (13a)

a = Ds̈ (13b)

ζ =
L

D

ṡθ′′

1 + L2θ′2
. (13c)

4.2 Trajectory Generation

The system state q and the control input uA are
parametrised by the flat output ξ(s) = [x(s), y(s)]T , the
path parameter s and its time derivatives. The geometric
path planner from Section 3 provides the path segments
ξj(sj) = [xj(sj), yj(sj)]

T , j = 1, . . . , nSP + 1. To obtain a
suitable trajectory, a time evolution of the path parameter
is needed, which ensures that the constraints of the car are
not violated. This task is carried out for each path segment
j separately yielding sj(t).

To this end, the evolution of the path parameter is de-
scribed by the linear system (Faulwasser et al., 2011)

χ̇j =

(

χ2,j

κj

)

, (14)

with the new state χj = [χ1,j , χ2,j ]
T = [sj , ṡj ]

T and
the control input κj = s̈j . A time parametrisation of
the path segment j has to fulfil the terminal conditions
χj(0) = [s0,j , 0]

T and χj(Tj) = [sE,j , 0]
T . A feasible

control input κj , which considers the physical limitations
of the car, is obtained as a solution of the constrained
optimal control problem (OCP) with free end time Tj

min
κj(·),Tj

J(κj(·)) = min
κj(·),Tj

∫ Tj

0

1 + rχ2
χ2
2,j + rκκ

2
jdt (15a)

s.t. χ̇j = [χ2,j , κj ]
T , χj(0) = [s0,j , 0]

T (15b)

χj(Tj) = [sE,j , 0]
T

|v(χj)| ≤ vm (15c)

|a(χj)| ≤ am (15d)

|ζ(χj)| ≤ ζm. (15e)

The functions v(χj), a(χj) and ζ(χj) in (15c)-(15e) di-
rectly follow from (13).

The whole trajectory of the parking manoeuvre is obtained
by solving the OCP (15) for each path segment j =
1, . . . , nSP + 1. This is numerically still more efficient
than calculating the whole trajectory at once, since at the
switching points the geometric path is not continuously
differentiable. Note that for each segment the time can be

transformed to tj ∈ [0, Tj ] by tj = t−
∑j−1

k=1 Tk.

By using the obtained time parametrisation sj(t), j =
1, . . . , nSP + 1, the desired state qd(t) and the desired
control inputs uA,d(t) can be calculated from (10) and (13)
yielding the feedforward part of the controller.

5. FEEDBACK CONTROLLER

For the feedback controller design, we introduce a reference
vehicle

q̇d =











ẋd

ẏd
θ̇d
v̇d
δ̇d











=













vd cos(θd)
vd sin(θd)
vd
L

tan(δd)

ad
ζd













= fd(qd,uA,d). (16)

Let
(

xe

ye
θe

)

=

[

cos (θd) sin (θd) 0
− sin (θd) cos (θd) 0

0 0 1

](

x− xd

y − yd
θ − θd

)

(17)

denote the tracking error of the car to the reference vehicle
expressed in a Frenèt frame attached to the reference vehi-
cle. We look for a controller that stabilizes the tracking er-
ror system (17) asymptotically. Therefore, similar to Sicil-
iano and Khatib (2008), a new state z = [z1, z2, z3, z4, z5]

T

is introduced as

z1 = xe (18a)

z2 = ye (18b)

z3 = tan (θe) (18c)

z4 =
tan (δ)− cos (θe) tan (δd)

L cos3 (θe)
+ k2z2 (18d)

z5 = v cos (θe)− vd, (18e)

with k2 > 0. The term k2z2 is added to be able to influence
ye, which would not be the case otherwise. Differentiating
(18) yields the system dynamics in chained-form

ż1 =
vd
L

tan(δd)z2 + z5 (19a)

ż2 =−
vd
L

tan(δd)z1 + vdz3 + z3z5 (19b)

ż3 =− k2vdz2 + vdz4

+ z5

(

z4 − k2z2 + (1 + z23)
tan(δd)

L

)

(19c)

ż4 =w2 (19d)

ż5 =w3 (19e)

with the abbreviated control inputs

w2 =k2ẏe +

(

3
tan (δ)

cos (θe)
− 2 tan (δd)

)

sin (θe)

L cos3 (θe)
θ̇e

−
ζd

L cos2 (δd) cos2 (θe)
+

ζ

L cos2 (δ) cos3 (θe)
(20a)

w3 =a cos (θe)− vθ̇e sin (θe)− ad. (20b)

The control input for the car uA = [a, ζ]T can be obtained
from (20)

a =
1

cos (θe)

(

w3 + vθ̇e sin (θe) + ad

)

(21a)

ζ =L cos2 (δ) cos3 (θe)

(

w2 − k2ẏe

−

(

3
tan (δ)

cos (θe)
− 2 tan(δd)

)

sin (θe)

L cos3 (θe)
θ̇e

+
ζd

L cos2 (δd) cos2 (θe)

)

. (21b)

In a first step, we want to stabilize the subsystem (19a)-
(19d) with the control input w2 and the virtual control
input z5 = w1. In Siciliano and Khatib (2008) it is shown
that the feedback law of the form
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w1 = −k1v
2
d

(

z1 +
z3
k2

(

z4 +
1 + z23
L

tan (δd)

))

(22a)

w2 = −k4z4v
2
d − k3vdz3, k1 > 0, k3 > 0, k4 > 0 (22b)

renders the closed-loop system stable in the sense of
Lyapunov. For this, the Lyapunov function is chosen as

V1 =
1

2
z21 +

1

2
z22 +

1

2k2
z23 +

1

2k2k3
z24 > 0 (23)

and the time derivative of V1 along a solution curve of
(19a)-(19d) with z5 = w1 and w2 according to (22b) takes
the form

V̇1 =
z4

k2k3
w2 +

vdz3z4
k2

+ w1

(

z1 +
z3
k2

(

z4 +
1 + z23

L
tan(δd)

))

(24)

or

V̇1 =W1 = −k4v
2
dz

2
4 (25)

− k1v
2
d

(

z1 +
z3
k2

(

z4 +
1 + z23
L

tan(δd)

))2

≤ 0,

respectively. Furthermore, under the assumption of a uni-
formly continuous vd(t) 6= 0 and δd(t) application of Bar-
balat’s lemma yields the asymptotic result

lim
t→∞

zj(t) = 0, j = 1, . . . , 4. (26)

Since w1 is only a virtual control input, the feedback law
for the real control input w3 is obtained by employing
the integrator backstepping approach. According to the
backstepping standard procedure, see (Krstic et al., 1995),
an augmented Lyapunov function of the form

V2 = V1 +
1

2
(z5 − w1)

2 > 0 (27)

is introduced. The time derivative along a solution curve
of the tracking error system (19) with w2 from (22b) reads
as

V̇2 =W1 + (z5 − w1)

(

w3 − ẇ1 + z1

+
z3
k2

(

z4 +
1 + z23

L
tan (δd)

))

. (28)

It can be immediately seen that the feedback law

w3 =ẇ1 − z1 −
z3
k2

(

z4 +
1 + z23

L
tan (δd)

)

− k5(z5 − w1), k5 > 0, (29)

thus results in

V̇2 = W1 − k5(z5 − w1)
2 ≤ 0, (30)

guaranteeing the stability of the closed-loop system. Sim-
ilar arguments as in Siciliano and Khatib (2008) can be
utilized to prove that

lim
t→∞

z(t) = 0 (31)

provided that vd(t) 6= 0 and δd(t) are uniformly continu-
ous.

The control inputs for the trajectory tracking control are
obtained by substituting (22b) and (29) into (21).

Note that the tracking error is only stabilized asymptot-
ically if vd 6= 0, which is not the case at the direction
switching points and the parking position. Therefore, we
cannot guarantee asymptotic stability. However, the track-
ing error is monotonically decreased as long as vd 6= 0.

Table 1. Parameters of the car.

lc wc L vm δm am ζm
4.7 m 1.8 m 2.7 m 1 m/s 40◦ 0.5 m/s2 20 ◦/s

Table 2. Geometric configuration of the park-
ing scenarios.

a b ds α

parallel 5.5m 2.2m 4m 0◦

garage 2.3m 5m 7m 0◦

angle 4.7m 2.3m 5m 45◦

Table 3. Parameters for the trajectory genera-
tion and controller.

rχ2
2.5

rκ 10

k1:5 [0.2, 0.53, 0.27, 0.55, 2.75]T

Extensive simulation studies confirm that the deviation
from the desired trajectory at the parking position for
typical parking manoeuvres is considerably small.

Siciliano and Khatib (2008) present controllers for fixed
positions, which drive the error to zero even for vd = 0.
These controllers apply an additional oscillating velocity
to force the car towards the desired position. As the
distance to the obstacles is very small for typical parking
manoeuvres, these additional velocity inputs may lead to
collisions and are therefore not suitable for the problem
under consideration.

6. SIMULATION RESULTS

To verify the computational efficiency of the motion plan-
ner and the effectiveness of the feedback controller, sim-
ulation studies for three different parking scenarios are
carried out in the following. The dimensions and dynamic
constraints are chosen similar to a mid-sized commercial
vehicle. These parameters are shown in Table 1, where lc
represents the length and wc the width of the car. The
maximum steering angle speed is set to ζm = 15◦/s, which
is below the actual physical limit, in order to provide
some reserve for the feedback controller. The geometric
configuration of the parking scenarios is summarized in
Table 2 with the notation according to Figure 1. The
dimensions of the parallel parking lot are chosen such
that an additional switching point inside the parking lot
is needed. For garage parking another obstacle outside the
parking lot is added.

The weighting terms for the optimization problem of the
trajectory generation as well as the control parameters are
given in Table 3, where k1:5 = [k1, . . . , k5]

T .

All scenarios are simulated in Matlab/Simulink on
an Intel Core i7 machine. The optimization problems
are solved with the SQP solver of the numeric software
package SNOPT, see (Gill et al., 2006). To solve the OCP
(15) for the path-following, a full discretisation is applied
beforehand.

The result of the geometric path planner is illustrated in
Figure 5. Feasible paths for all scenarios are obtained in
less than 15ms computation time.

The path-following problem calculates a solution between
two switching points in less than 50ms. The desired control
input uA,d is printed in Figure 6.
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Fig. 5. Planned (solid line) and executed (dashed line) trajectory of the reference point PR as well as executed trajectory
with car boundaries for parallel, garage and angle parking (from the left to the right).
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Fig. 6. Planned (solid line) and executed (dashed line) trajectory for parallel, garage and angle parking (from the left
to the right).

To verify the performance of the feedback controller, an
initial error ē(0) = q̄(0) − q̄d(0) = [30cm, 30cm, 0◦]T

is introduced for all three scenarios. This deviation is
corrected within a few driving meters leading to errors at
the parking position of |ē(sE,nSP+1)| ≤ [3cm, 3cm, 3◦]T . At
the direction switching points, uA,d = [0,±ζm]T is applied
to reach the desired steering angle δd,i+1 of the next step
in a fast manner. The dashed lines in Figure 5 show the
simulated trajectories and the dashed lines in Figure 6
refer to the applied control inputs.
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