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Abstract: We consider the scenario where a controller communicates with a mobile robot
via a network. Our objective is to design the control law such that the robot tracks a given
reference trajectory while reducing the usage of the communication channel. For that purpose,
we design a nonlinear event-triggered feedback law. We follow an emulation-like approach in
the sense that we first synthesize the controller while ignoring the communication constraints
and we then derive an appropriate triggering condition. We prove that the states of the
robot’s model practically converge towards the states of the reference system which generates
the desired trajectory to be tracked, using an invariance principle for hybrid systems. The
existence of a dwell-time between any two transmissions is discussed. We have implemented
the proposed strategy on a benchmark where the controller is located on a remote computer
which communicates with the mobile robot via a IEEE 802.11g wireless network. The proposed
event-triggering strategy is shown to significantly reduce the need for communication compared
to a classical time-triggered setup while ensuring similar, if not better, tracking performances.

1. INTRODUCTION

Event-triggered control is currently attracting a lot of
attention because of its abilities to significantly reduce
the need for communication in control systems, which is
extremely useful in networked control systems. The idea
is to transmit data between the controller and the plant
whenever a state-dependent criterion is satisfied and not
periodically as in traditional setups. In that way, the
transmissions are adapted to the state of the system and
they only occur when it is needed. Various techniques
have been developed, see Arzén [1999], Astrom and Bern-
hardsson [2002], Heemels et al. [2009], Henningsson et al.
[2008], Tabuada [2007] to mention a few. Most of them
address the stabilization of equilibrium points, while very
few controllers have been synthesized to stabilize time-
varying trajectories, see e.g. Tallapragada and Chopra
[2011]. It appears that tracking control induces additional
difficulties as only approximate tracking can usually be
ensured under communication constraints because of the
time-varying component of the control law, see for more
detail Postoyan et al. [2012]. As a consequence, available
results on the stabilization of equilibrium points are not
directly applicable in this context.

In this paper, we investigate the event-triggered tracking
control of a mobile robot whose dynamics is described

by a nonholonomic system. We follow an emulation-like
approach (see e.g. Tabuada [2007], Nešić and Teel [2004]).
Thus, we first design the controller while ignoring the
communication constraints and we derive the triggering
strategy afterwards. We have selected the state-feedback
controller of Jiang and Nijmeijer [1997] among others,
because the law is continuous and an explicit Lyapunov
function is provided. The continuity of the feedback law
helps to guarantee the existence of a minimum amount of
time between any two transmissions, under some condi-
tions on the reference trajectories. This point is essential
in practice as the hardware cannot transmit infinitely
fast. The Lyapunov function is used to design the event-
triggering condition. It has to be noted that it is a weak
Lyapunov function in the sense that it does not strictly
decrease along the solutions of the closed-loop system (in
the absence of communication constraints), see Jiang and
Nijmeijer [1997]. This is an important difference with ex-
isting Lyapunov-based event-triggered controllers, which
rely on strong Lyapunov functions (see Tabuada [2007],
Postoyan et al. [2011], Seuret and Prieur [2011] and the
references therein).

We model the problem using the hybrid formalism of
Goebel et al. [2012], like in Donkers and Heemels [2012],
Forni et al. [2010], Postoyan et al. [2011], Seuret and
Prieur [2011]. The event-triggering condition is inspired
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by the technique in Anta and Tabuada [2012], Forni et al.
[2010] where the Lyapunov function is forced to decrease
at a certain rate, except that we exclude a region of
the state-space, which we call a dead-zone, to allow the
existence of dwell-times. We prove that the solutions of the
robot’s model converge to a neighborhood of the reference
trajectory under some conditions on these references.
This neighborhood depends on a tuneable parameter ε
which defines the dead-zone of the triggering condition.
The parameter ε can be used to adjust the accuracy of
the tracking error at the price of more transmissions.
The analysis relies on an invariance principle for hybrid
systems developed in Sanfelice et al. [2007]. The existence
of a dwell-time is discussed and sufficient conditions are
given to ensure it. Finally, the designed controller has
been implemented on a benchmark where the controller
is located on a remote controller and communicates with
the robot via a IEEE 802.11g wireless network. The
obtained results show that we can significantly reduce the
amount of transmission compared to periodic sampling
while ensuring similar, if not better, performances. Notice
that we do not rely on a local linear approximation of the
plant’s dynamics as in other studies where experimental
tests have been lead (see Heemels et al. [1999], Lehmann
and Lunze [2011], Henningsson and Cervin [2009], Téllez-
Guzmán et al. [2012]) but on a global nonlinear model.

The paper is organized as follows. In Section 2, the
controller of Jiang and Nijmeijer [1997] is recalled and the
hybrid model is introduced. The event-triggering condition
is designed in Section 3 where the analytical results are
presented. Section 4 shows the experimental results. The
proofs have been omitted for space reasons.

Notation. Let R = (−∞,∞), R≥0 = [0,∞), R>0 =
(0,∞), Z≥0 = {0, 1, 2, . . .}, Z>0 = {1, 2, . . .}. For (x, y) ∈
R

n+m, the notation (x, y) stands for [xT, yT]T. For a
piecewise continuous function f : R → R

n, f(t+) stands
for lim

s→t, s>t
f(s) for t ∈ R. We recall that the function sinc

is defined from R to R by sinc(x) = sin x
x

when x 6= 0,
and sinc(0) = 1, and it is continuously differentiable with
the derivative sinc′(x) = x cosx−sin x

x2 when x 6= 0, and

sinc′(0) = 0.

2. SYSTEM MODEL

2.1 Jiang and Nijmeijer’s controller

We consider a mobile robot for which the dynamics are
defined by the following nonholonomic system

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = w, (1)

where (x, y) are the Cartesian coordinates and θ is the
angle between the heading direction and the x-axis, (v, w)
denotes the control input vector, see Figure 1. Our ob-
jective is to make the system (1) track a given trajectory
(xr , yr, θr). We restrict our attention to the case where
(xr , yr, θr) satisfies the following dynamical equations

ẋr = vr cos(θr), ẏr = vr sin(θr), θ̇r = wr, (2)

where vr and wr are the feedforward inputs to system (2).
In practice, the term wr is obtained by differentiating θr.
The term vr is deduced by using that v2r = (ẋr)

2 + (ẏr)
2

and its sign is obtained by investigating the first equations

x

y

θ

Fig. 1. Mobile robot.

of (2) for the given trajectory (xr , yr, θr). We refer to
(2) as the reference system. We use the following error
coordinates (see Kanayama et al. [1990])

(

xe

ye
θe

)

=

(

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

)(

xr − x
yr − y
θr − θ

)

(3)

which allow us to derive the error system

ẋe = wye − v + vr cos(θe)
ẏe = −wxe + vr sin(θe)

θ̇e = wr − w.
(4)

It has to be noticed that the change of coordinates in (3)
is invertible and that the transformation matrix and its
inverse are bounded. As a consequence, if we can guarantee
that xe, ye, θe converge to a neighborhood of the origin,
then so do xr − x, yr − y, θr − θ. In Jiang and Nijmeijer
[1997], the following controller is shown to ensure the
global convergence of xe, ye, θe towards the origin (under
some conditions on the feedforward terms vr and wr)

v = v1 + c4x̄e, w = wr + γyevrsincθe + c5γθe, (5)

where c4, c5, γ > 0 are design parameters and

x̄e := xe − c3wye
v1 := vr cos θe − c3ẇye + c3w(wxe − vr sin θe)

(6)

with c3 > 0. We do not necessarily require to differentiate
online ẇ to compute the term v1 in (6) as we can replace
ẇ by its algebraic expression by using (1), (2) and (5).

2.2 Assumptions on the feedforward terms

In Section 3, we will use an invariance principle developed
in Sanfelice et al. [2007] to prove some stability proper-
ties hold for the event-triggered controlled system. We
will need for that to work with an autonomous system
which generates solutions that have a compact range (see
Sanfelice et al. [2007]) which loosely speaking means that
it exhibits bounded solutions. We see that the system (4)
is time-varying and thus non-autonomous in general when
the terms vr and wr are time-varying. The assumption
below allows us to derive an autonomous system from (4)
under some conditions on the feedforward terms vr and
wr.

Assumption 1. The signals vr and wr can be written as
the output of a bounded autonomous dynamical system
i.e. there exist a continuous vector field fχ : Rnχ → R

nχ ,
a continuously differentiable vector field u : R

nχ → R
2

(where nχ ∈ Z>0) and χ0 ∈ R
nχ such that

(vr(t), wr(t)) = u(χ(t)) ∀t ≥ 0 (7)

where χ(t) is the solution of χ̇ = fχ(χ) with initial
condition χ(0) = χ0 and such that the closure of the set
{z ∈ R

nχ : ∃t ≥ 0 z = χ(t)} is compact. 2
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Assumption 1 allows us to transform the system (4) into an
autonomous system with the extended state (xe, ye, θe, χ)
and vr, wr being functions of χ. One might argue that it
suffices to introduce the time as an extra variable to derive
an autonomous system. However, the solution of the sys-
tem will then not be bounded because of the time variable.
That is the reason why we have imposed Assumption 1. It
has to be emphasized that our results apply to a class of
reference trajectories (which are solutions to (2) and of the
χ-system of Assumption 1), rather than a single trajectory.
A simple sufficient condition to verify the satisfaction of
Assumption 1 is given below.

Lemma 2. If there exist α1, . . . , αm, β1, . . . , βm ∈ R with
m ∈ Z>0 and a continuously differentiable vector field
u : R

nχ → R
2 such that (vr(t), wr(t)) = u(sin(α1t +

β1), . . . , sin(αmt + βm))) for all t ≥ 0, then Assumption
1 holds. 2

It is important to emphasize that we do not need to
explicitly build up the χ-system of Assumption 1 in the
remaining part of the paper but we only need to make
sure that such a system does exist. Assumption 1 implies
the following properties which correspond to the first
conditions of Proposition 2 in Jiang and Nijmeijer [1997].

Lemma 3. Under Assumption 1, there exists an initial
condition χ(0) ∈ R

nχ for the χ-system of Assumption 1
such that the signals vr, wr, v̇r and ẇr are bounded on
[0,∞) by M > 0. 2

We also make the following assumption on the feedforward
terms which is satisfied by the reference trajectories stud-
ied in Section 4.

Assumption 4. One of the following conditions needs to
hold. (i) The signal wr is not constantly equal to 0, i.e.
∃t ≥ 0 such that wr(t) 6= 0. (ii) The signal vr is not
constant, i.e. ∃t1, t2 ≥ 0 such that vr(t1) 6= vr(t2). 2

These assumptions are used to ensure the convergence
of the states of the robot’s model (1) towards the state
of the reference system (2). These are different from the
conditions of Proposition 2 in Jiang and Nijmeijer [1997]
where vr or wr is required not to converge to zero. We do
tolerate vr and wr to converge to zero but wr cannot be
constantly equal to zero or vr cannot be constant. These
conditions come from the stability analyzes which are
different: Barbalat’s lemma is used in Jiang and Nijmeijer
[1997] while invariance principles will be invoked here.

2.3 Controller implementation & hybrid model

We consider the scenario where the controller (v, w) in
(5) is digitally implemented and communicates with the
robot (1) via a network, see Figure 2. We assume that
the controller has access to the robot’s measurements, the
reference trajectory and the feedforward terms vr and wr .
Our objective is to reduce the usage of the network from
the controller to the robot while ensuring the convergence
of the robot’s states towards the reference trajectory. We
will design for that purpose an event-triggering condition
which will decide when the robot’s input needs to be
updated. We write the obtained model using the formalism
of Goebel et al. [2012] like in Donkers and Heemels [2012],
Forni et al. [2010], Postoyan et al. [2011], Seuret and Prieur
[2011]

Robot

Event-triggered transmissions

Remote controller

(v(ti), w(ti))

(x(t), y(t), θ(t))

v(t), w(t)
xr(t), yr(t), θr(t), vr(t), wr(t)

Triggering condition

Fig. 2. Controller implementation.

ẋe = (w + ew)ye − v − ev + vr cos(θe)
ẏe = −(w + ew)xe + vr sin(θe)

θ̇e = wr − w − ew
ėw = fw(q)
ėv = fv(q)
χ̇ = fχ(χ)



























q ∈ C,

x+
e = xe

y+e = ye
θ+e = θe
e+w = 0
e+v = 0
χ+ = χ



























q ∈ D

(8)

where q := (xe, ye, θe, ew, ev, χ), ev := v̂−v and ew := ŵ−
w (where v̂, ŵ are respectively the values of v, w at the last
jump instant), χ comes from Assumption 1 and v, w are
defined in (5). The sets C and D are closed and are defined
by the triggering condition. Indeed, the set C corresponds
to the region of the state-space where the triggering
condition is not satisfied and D is defined as the region of
the state-space where the triggering condition is verified.
In that way, defining the triggering condition is equivalent
to defining the sets C and D. We recall that when q ∈ C ∩
D, the system can either jump or flow, the latter only if
flowing keeps q in C. For more detail about hybrid systems
of the form of (8), see Goebel et al. [2012]. The vector fields
fw and fv are respectively obtained by computing the
algebraic expressions of −ẇ and −v̇ using (5) and (8). We
use the notation φ = (φxe

, φye
, φθe , φew , φev , φχ) to denote

a solution to (8) in the following in order to avoid any
confusion with the state vector q = (xe, ye, θe, ew, ev, χ).
We consider the term vr and wr in (8) as functions of χ.
In that way, the system (8) is autonomous. We recall the
following definitions which will be used in the following.

Definition 5. (Goebel et al. [2008]). We say that a solu-
tion φ to (8) is:

• complete if its domain 1 domφ is unbounded.
• a dwell-time solution if there exists τ ∈ R>0

such that for any j ∈ Z≥0, tj+1 − tj ≥ τ where
domφ =

⋃

([tj , tj+1], j). 2

For the sake of convenience, we denote

q̇ = f(q) q ∈ C, q+ = g(q) q ∈ D. (9)

1 The domain of φ is the subset of R≥0 × Z≥0 where φ is defined,
see Goebel et al. [2012] for more detail.
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We will now design the triggering condition, i.e. the sets
C and D in (8), such that the errors xe, ye, θe practically
converge to the origin and such that the usage of the
communication channel, i.e. the number of jumps for
system (8), is minimized. The tuneable parameter will be
given by the triggering condition.

3. EVENT-TRIGGERED TRACKING CONTROL

3.1 Design of the triggering condition

We follow the main steps of the proof of Proposition 2 in
Jiang and Nijmeijer [1997] to build up the event-triggering
condition. The Lyapunov-like candidate function below is
considered in Jiang and Nijmeijer [1997]

V (q) =
1

2
x̄2
e +

1

2
y2e +

1

2γ
θ2e , (10)

where x̄e is defined in (6) and γ comes from (5). By
differentiating the function V along the vector fields of the
system (9) on the set C, we obtain, by following similar
lines as in Jiang and Nijmeijer [1997],

〈∇V (q), f(q)〉 = −Σ(q) + Λ(q) (11)

where Σ(q) := c3w
2y2e+c4x̄

2
e+c5θ

2
e and Λ(q) := x̄e(ewye−

ev − c3ewρ(xe, ye, θe, vr)ye + c3wewxe)− yeewxe − 1
γ
θeew,

with ρ(xe, ye, θe, vr) := −γxevrsincθe − (γyevrsinc
′(θe) +

c5γ). We note that we recover (41) in Jiang and Nijmeijer
[1997] when ev = ew = 0 (as we have in this case Λ(q) = 0).

We use (11) to design the triggering condition. We define
the flow and the jump sets as follows

C :=
{

q : 〈∇V (q), f(q)〉 ≤ −σΣ(q) or V (q) ≤ ε2
}

D :=
{

q : 〈∇V (q), f(q)〉 ≥ −σΣ(q) and V (q) ≥ ε2
}

(12)
where σ ∈ (0, 1) and ε > 0 are design parameters. The
idea is to force V to decrease with the rate σΣ(q) like
in Tabuada [2007], where σ ∈ (0, 1). We take σ ∈ (0, 1)
in order to allow some flow between two jumps, see e.g.
Tabuada [2007] or Section III in Anta and Tabuada [2012].
In addition, we impose that condition only when V (q) ≥ ε2

as we cannot otherwise guarantee the existence of dwell-
time solutions to (8) in general, as discussed in more detail
in Section 3.3. It has to be noticed that C ∪D = R

nq .

Similar ideas are followed in Forni et al. [2010], Anta and
Tabuada [2012], Postoyan et al. [2011], Seuret and Prieur
[2011] to design the triggering condition. Nevertheless,
none of the strategies proposed in these papers directly
applies to our problem. Indeed, the triggering condition
is designed based on a weak Lyapunov function V (as
opposed to strong Lyapunov functions) which induces non-
trivial difficulties to prove stability: we need to resort to
invariance principles for hybrid systems (see Sanfelice et al.
[2007]) and the existence of dwell-times is a priori not
ensured for every solution. We therefore have to modify
the policy and to derive a different stability analysis.

3.2 Stability results

We are ready to state the main results of this section.

Theorem 6. Consider the system (8) and suppose Assump-
tions 1 and 4 are satisfied, then the following holds.

(i) Any solution to (8) is complete.
(ii) For any ∆ ≥ 0 there exists ∆ ≥ 0 such that for any

solution φ to (8) with 2 |φ(0, 0)| ≤ ∆, it holds that
|φ(t, j)| ≤ ∆ for all (t, j) ∈ domφ.

(iii) Any dwell-time solution to (8) with φew (0, 0) =
φev (0, 0) = 0 approaches 3 the set {q : max{|xe|, |ye|,
|θe|} ≤ Mε} with M =

√
2max{1,√γ,M + γ

√
2M +

c5γ
3

2

√
2} where γ, c5 and M come from (5) and

Lemma 3. 2

Item (ii) of Theorem 6 ensures that the states of system
(8) are bounded. Item (iii) of Theorem 6 guarantees that
any dwell-time solution to (8) converges to a neighborhood
of the origin whose ‘size’ depends on the design parameter
ε. Therefore, by taking ε small, we ensure the convergence
of the states of the robot closer to the reference trajectory.
Nevertheless, this may give rise to more transmissions as
discussed in Section 4. The fact that the solution needs to
start from zero for the ev and ew variables in item (iii)
of Theorem 6 adds no conservatism. Indeed, it suffices
to transmit the control input to the robot once at the
beginning of the experiment and to take this time to be
the initial time to guarantee it (note that the system
(8) satisfies the semi-group property, see Sanfelice et al.
[2007]). It has to be noticed that Theorem 6 does not
ensure the existence of dwell-time solutions to (8): this
is discussed in the following.

3.3 Existence of dwell-time solutions

First, note that the system (8) may generate Zeno solu-
tions (i.e. solutions which constantly jump) since g(D) ∩
D 6= ∅. Indeed, take q ∈ A where A := {q : Σ(q) =
0 and V (q) ≥ ε2}. Then q ∈ D and G(q) ∈ D. As
a consequence, we cannot guarantee that every solution
to (8) is a dwell-time solution in general. The following
proposition provides sufficient conditions to ensure that
there always exist dwell-time solutions to (8).

Proposition 7. Consider system (8) and suppose the fol-
lowing holds for a solution φ to (8).

(i) Assumptions 1 and 4 hold.
(ii) There exists δ > 0 such that |wr(t, j)| ≥ δ for all

(t, j) ∈ domφ.
(iii) The initial condition φ(0, 0) is such that |(φxe

(0, 0),
φye

(0, 0), φθe(0, 0))| ≤ ∆ where ∆ ≥ 0 and γ(M +

c5)max{∆(2+c3(M+γ∆M+c5γ∆))
√

γ−1γ̄, ε
√

γ−1}
< δ, with γ = 1

2
min{1, γ} and γ̄ = 1

2
max{1, γ} and

where γ, c5, c3,M come from (5), (6) and Lemma 3.

Then φ is a dwell-time solution. 2

Item (ii) of Proposition 7 means that the feedforward
term wr has the same sign for all time and does not
converge to the origin. It is satisfied in scenarios where
the reference trajectory follows an ellipsoidal path or a

2 Throughout the paper, the initial condition φ(0, 0) is always
assumed to be such that φχ(0, 0) = χ0 where χ0 comes from
Assumption 1.
3 A solution φ to (8) approaches the set A ⊂ R

n if for all ǫ > 0, there
exists (t̄, j̄) ∈ domφ such that for all (t, j) satisfying (t, j) < (t̄, j̄),
(t, j) ∈ domφ, φ(t, j) ∈ A + ǫB where B is the unitary ball centered
at the origin.
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circular path.The constant δ can be computed based on
the available expression of wr . We argue that item (iii)
of Proposition 7 can always be verified by selecting γ
sufficiently small.

4. EXPERIMENTAL VALIDATION

We start by briefly describing the benchmark depicted
in Figure 2. The robot is a Khepera 4 III provided by
k-team, which is equipped with an onboard computing
platform with wireless capabilities. Its coordinates are
obtained by odometry. The communication is ensured via
a IEEE 802.11g wireless network. As a consequence, the
event-triggered controller, which is located on a remote
computer, verifies the transmission condition periodically
every Teval = 20 ms, and not continuously 5 as in Section
2-3. This is justified by the fact that the time-interval
between each position update varies from 10 to 15 ms.
Moreover, the computation time at each step is less than
1 ms. In addition, the time for delivering a new control
input is less than 5 ms. We have verified in experiments
that the value of Teval is sufficiently small to maintain
the properties ensured by Theorem 6. The reduction of
the usage of the communication channel only concerns
the transmissions from the controller to the robot, which
corresponds to the dashed channel in Figure 2 (and not
from the robot to the controller where periodic sampling
is applied). The following parameters have been selected
for the control law in (5): c3 = 0.7, c4 = 0.5, c5 = 0.8,
γ = 1.

Two trajectories have been considered for which the paths
are respectively an ellipse and a lemniscate. Assumptions
1 and 4 are guaranteed by using Lemma 2. The triggering
condition (12) has been implemented with σ = 0.5 and we
have studied the influence of ε. Simulations have been run
over Tsimulation = 60 s. We have quantified the usage of the
communication network with the percentage:

r := 100× number of control updates× Teval

Tsimulation

.

The performance of the controller is evaluated by the
constant e which is the average value of |(x−xr , y−yr, θ−
θr)| over the second half of the experiment, i.e.

e :=
2

Tsimulation

∫ Tsimulation

1

2
Tsimulation

∣

∣

∣

∣

∣

(

x(t) − xr(s)
y(t) − yr(s)
θ(t) − θr(s)

)∣

∣

∣

∣

∣

ds.

In that way, e quantifies the tracking accuracy of the
robot after the transient period. Table 1 shows that the
controller only uses the communication channel 13.59%
of the time, in the worst case, and that this quantity
can be significantly decreased by varying ε. Thus, we see
that to increase ε reduces the usage of the communication
channel at the price of degraded tracking performances.
It would be interesting to compare the event-triggered
controller with a time-triggered one. Unfortunately, we
are not aware of any analytical result which allows to
derive an upper bound on the sampling period at which
the controller (5) should be periodically emulated (this is
again due to the fact that the Lyapunov function V in
(10) is weak). Nevertheless, we have implemented the same

4 http://www.k-team.com/
5 We actually have a periodic event-triggered controller, see Heemels
et al. [2013].

ε Ellipse Lemniscate

r e r e

0.01 6.38 % 0.0122 13.59 % 0.0159
0.02 7.46 % 0.0129 9.51 % 0.026
0.05 0.98 % 0.048 2.9 % 0.0542
0.1 0.5 % 0.0731 1.37 % 0.1064
0.2 0.74 % 0.1564 0.87 % 0.1947
0.5 0.67 % 0.5256 0.7 % 0.6371

Table 1. Values of r and e for different ε
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Reference trajectory
Event triggered
Time triggered
Starting positions

Fig. 3. Experimental results for the closed-loop trajectories
when the reference describes an ellipse.L

controller and we have transmitted the control input to the
robot every Tsampling seconds. For a fair comparison, we
have selected Tsampling to be the average inter-transmission
interval of the corresponding event-triggered controller.
We have obtained Tsampling = 1.904s for the ellipse and
Tsampling = 1.234s for the lemniscate. In that way, both
controllers do generate a similar amount of transmissions
over an experiment. Figures 3 and 4 show the trajectories
for each controller with ε = 0.01 for the ellipse and the
lemniscate reference trajectories respectively. Note that ε
impacts the average inter-transmission interval and thus
the sampling period of the time-triggered controller. We
see that the time-triggered controller is not able to ensure
the tracking objective as opposed to the event-triggered
controller. This is due to the fact that the latter adapts the
frequency of control input updates when it is needed. The
experiments have shown that we need to take sampling
periods which are approximately four times smaller than
the ones above for the time-triggered closed-loop system
to ensure the tracking objective.

5. CONCLUSION

An event-triggered feedback law for the tracking control
of a mobile robot has been presented. The problem has
been modeled as an hybrid system using the formalism
of Goebel et al. [2012]. The designed controller consists
in the law of Jiang and Nijmeijer [1997] together with an
event-triggering condition inspired by Forni et al. [2010],
Anta and Tabuada [2012]. We needed to resort to the an
invariance principle of Sanfelice et al. [2007] to prove that
the robot practically tracks the reference trajectories. Suf-
ficient conditions for the existence of a uniform minimum
inter-transmission time have been provided. The controller
has been implemented on a benchmark and we have no-
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Fig. 4. Experimental results for the closed-loop trajectories
when the reference describes a lemniscate.

ticed that it is able to reduce the amount of transmissions
compared to periodic setups for similar performances.
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