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Abstract: Stabilizing a quantum system in a desired state has important implications in
quantum information science. In control engineering, stabilization is usually achieved by the
use of feedback. The closed-loop control paradigm consists of measuring the system in a non-
destructive manner, analyzing in real-time the measurement output to estimate the dynamical
state and finally, calculating a feedback law to stabilize the desired state. However, the rather
short dynamical time-scales of most quantum systems impose important limitations on the
complexity of real-time output signal analysis and retroaction. An alternative control approach
for quantum state stabilization, bypassing a real-time analysis of output signal, is called reservoir
engineering.
In this paper, we start with a general description of quantum reservoir engineering. We then
apply this method to stabilize the ground state (lowest energy state) of a single two-level
quantum system. Applying the averaging theorem and some simple Lyapunov techniques, we
prove the convergence of our proposed scheme. This scheme has recently been successfully
implemented on a superconducting qubit and has led to a fast and reliable reset protocol for
these qubits.

Keywords: Quantum systems, Reservoir engineering, Control by inter-connection, Lyapunov
stabilization, Averaging.

1. INTRODUCTION

While feedback loops are the most important ingredient in
classical control theory, their application for the control of
quantum systems had been longly considered as counter-
intuitive or even impossible. This is due to two major
difficulties. The first one comes from the subtleties in the
theory of quantum measurements: any measurement im-
plies an instantaneous strong perturbation to the system’s
state. The concept of quantum non-demolotion (QND)
measurement has played a crucial role in understanding
and resolving this difficulty Braginski and Khalili [1992].
In the context of cavity quantum electro-dynamics (cavity
QED) with Rydberg atoms Haroche and Raimond [2006], a
first experiment on continuous QND measurements of the
number of microwave photons was performed by the group
at Laboratoire Kastler-Brossel (ENS) Guerlin et al. [2007].
Later on, this ability of performing continuous measure-
ments allowed the same group to perform the first experi-
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ment where a continuous quantum feedback protocol sta-
bilized highly non-classical states of the microwave field in
the cavity, the so-called photon number states Sayrin et al.
[2011]. In the context of circuit quantum electrodynamics
(circuit QED) Devoret et al. [2004], recent advances in
quantum-limited amplifiers Roch et al. [2012], Vijay et al.
[2012] have opened doors to high-fidelity non-demolition
measurements and real-time feedback for superconducting
qubits.

The second difficulty is due to the rather short dynamical
time scales for these systems. This imposes important
limitations on the complexity of real-time analysis that
one can perform on the measurement output. Indeed, the
time-consuming data acquisition and post-treatment of
the output signal, lead to an important latency in the
feedback procedure.

An alternative stabilization approach, bypassing a real-
time analysis of measurement output signal and there-
fore avoiding the effect of the feedback latency, is called
reservoir engineering. It consists of coupling the system
of interest S to another quantum system, which we will
call reservoir R. The latter is a strongly dissipative system
with many degrees of freedom. By engineering the coupling
between S and R, it has been shown that one can stabilize
interesting quantum states in S Poyatos et al. [1996].
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Fig. 1. Reservoir engineering : the aim is to stabilize system
S in a target state. This is achieved by coupling
S to another dissipative quantum system R. By
adequately engineering the interaction between S and
R, one can use the dissipation of R to stabilize a
predefined target state in S.

This idea is extremely counter-intuitive since dissipation
is usually associated to the loss of quantum features.

In the next section, we give a general model for quantum
reservoir engineering. Next, in Section 3, we apply this
idea to stabilize the state of lowest energy (ground state)
of a single qubit. This process is sometimes referred to
as qubit cooling. We will show how this is achieved by
coupling the qubit (system S) to a cavity (reservoir R)
and by applying some appropriate driving fields. Section 4
is devoted to a proof of the convergence of this scheme and
finally, in Section 5 we finish by some concluding remarks
and further directions.

2. RESERVOIR ENGINEERING

Consider a quantum system S, of state ρS (called density
operator, defined in a Hilbert space HS) and Hamiltonian
HS . The state space for the system is given by the space of
all Hermitian, semi-definite positive, trace-class operators
ρS , defined on HS and of unit trace. The system is
inevitably coupled to an undesired environment E which
induces a dissipation of rate γ. The dynamics of ρS are
given by the following Lindblad master equation.

d

dt
ρS = −i[HS(t), ρS ] + γL[LS ]ρS , (1)

where the commutator is defined as [A,B] = AB −BA,

L[LS ]ρS = LSρSL
†
S −

1

2
L†SLSρS −

1

2
ρSL

†
SLS ,

and LS is an operator which reflects how the system is
coupled to the environment E . Usually, ρS will converge to
a state in thermodynamical equilibrium with E , which does
not represent the quantum features that are of interest to
us.

Now consider another quantum system called reservoir
R, of which the state is defined in a Hilbert space HR
and of Hamiltonian HR. We assume that this reservoir
is very dissipative: its dissipation rate κ � γ. Now we
couple the system and the reservoir through an interaction
Hamiltonian Hint. The state space of the joint system-
reservoir is defined on the Hilbert space HS ⊗ HR (⊗
symbolizes the tensor product). Its Hamiltonian H is given
by

H = HS ⊗ IR + IS ⊗HR + Hint,

where IS,R are simply the identity operators for the system
and reservoir. The system-reservoir state ρ follows the
dynamics
d

dt
ρ = −i[H(t), ρ] + γL[LS ⊗ IR]ρ+ κL[IS ⊗ LR]ρ. (2)

The idea of reservoir engineering is to engineer R and
its coupling to S in such a way that S converges close
to some predefined target state ρ̄S , i.e. the dynamics (2)
converges to a close neighborhood of a state of the form
ρ∞ = ρ̄S ⊗ ρR, where ρR is an arbitrary state in the
reservoir. In practice we usually assume γ = 0, and design
the interaction such that (2) converges exactly towards
ρ̄S ⊗ ρR. Then taking γ 6= 0 but assuming κ � γ, the
steady state of (2) will remain close to ρ̄S⊗ρR. The power
of this method is that it is a “plug and play” stabilization
scheme: once the interaction has been engineered, no
further action is required, and in particular there is no
need for real-time output signal acquisition, processing and
retroaction.

Such reservoir engineering schemes are particularly ap-
pealing in circuit QED systems, where one can easily
engineer a large class of quantum systems (reservoirs) and
interaction Hamiltonians. While reservoir engineering is
usually used for the stabilization of non-classical states
such as Schrödinger cat states or entangled states Poyatos
et al. [1996], Sarlette et al. [2011], Krauter et al. [2011], in
the next Section we present a rather classical application
of such a technique and stabilize the ground state (lowest
energy state) of a two-level quantum system.

3. COOLING OF A SINGLE QUBIT

A quantum bit of information (qubit) is usually encoded
in a two-level system. A crucial task in most experiments
is the ability to initialize this qubit in its ground state.
If the qubit interacts with a cold environment, simply
waiting for a sufficiently long time ensures that the qubit
will decay to its ground state. However, recent progress
in extending the decay times of superconducting qubits
makes it necessary to look for fast and efficient ways to
actively prepare the ground state, thus avoiding the long
passive initializations by waiting for equilibration with the
cold bath. Furthermore, very often for superconducting
qubits, the thermal environment is hot on the scale of the
transition frequency and therefore, even by equilibration,
the qubit ends up with some population in the excited
state. A fast active cooling of the qubit can also help reduce
this thermal population.

One can consider a measurement-based feedback scheme
to stabilize the ground state Ristè et al. [2012]. In this aim,
one performs a fast, single-shot and high-fidelity projective
measurement of the qubit state. Whenever we find the
qubit in its excited state, we apply a π-pulse rotating the
qubit state back to the ground state. While this feedback
scheme seems very straight-forward, it necessitates a high-
fidelity and fast measurement which, in general, would
be possible using a quantum-limited amplifier Roch et al.
[2012]. Here, instead, we propose a reservoir engineering
scheme by coupling the qubit to a highly dissipative
reservoir (here a cavity mode), which efficiently stabilizes
the qubit in its ground state, thus cooling it. Before
going to the details of the cooling scheme, we recall some
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notations allowing us to present the mathematical model
behind the system we consider.

The building block of most circuit QED experiments
consists of a single superconducting qubit dispersively
coupled to a single cavity mode, modeled by a quantum
harmonic oscillator. The state space for a single qubit
is defined on a two dimensional complex Hilbert space
HS = span{|g〉 , |e〉}, where |g〉 stands for the ground and
|e〉 the excited state. Also, the state space for the quantum
harmonic oscillator is defined on the infinite dimensional
Hilbert space denoted by HR (also called Fock space) with
inner-product 〈. | .〉HR

and norm ‖ · ‖HR
. Also the set

{|n〉 : n ∈ Z+
0 = {0, 1, · · · }} denotes the canonical

basis of the Fock space HR. Physically, the state |n〉 is
a Fock state representing a quantum state with precisely
n photons.

For a qubit we define the Pauli operators

σx = |g〉 〈e|+ |e〉 〈g| ,
σy = i(|g〉 〈e| − |e〉 〈g|), σz = |e〉 〈e| − |g〉 〈g| .

Also, for the harmonic oscillator, we define the annihila-
tion, a, and creation, a†, operators as well as the photon
number operator N = a†a:

a |n〉 =
√
n |n− 1〉 ,a† |n〉 =

√
n+ 1 |n+ 1〉 ,N |n〉 = n |n〉 ,

for n ∈ Z+
0 . Their domains are given by

D(a) = D(a†) =

{ ∞∑
n=0

cn |n〉 | (cn)∞n=0 ∈ h1(C)

}
,

D(N) =

{ ∞∑
n=0

cn |n〉 | (cn)∞n=0 ∈ h2(C)

}
,

where

hk(C) =

{
(cn)∞n=0 ∈ l2(C) |

∞∑
n=0

nk|cn|2 <∞
}
.

The qubit of frequency ωq has a Hamiltonian HS =
ωq

2 σz,
and the cavity of frequency ωc has a Hamiltonian HR =
ωca
†a. The interaction Hamiltonian for dispersive coupling

is given by Hint = −χ2σz ⊗ a†a. Hence, the total qubit-
cavity Hamiltonian is well approximated by Haroche and
Raimond [2006]

H0 =
ωq
2
σz ⊗ IR + ωcIS ⊗ a†a− χ

2
σz ⊗ a†a,

defined on the Hilbert space HS ⊗ HR, where IS and IR
denote the identity operators of the Hilbert spaces HS
and HR. A way to understand this Hamiltonian is that
the bare qubit and cavity frequencies are given by ωq and
ωc. Whenever the two are coupled, the cavity frequency
gets shifted by ±χ/2 based on the qubit state being |e〉
or |g〉. In the same way the qubit’s frequency gets shifted
by a multiple of χ depending on the number of photons in
the cavity.

We effectively engineer the interaction Hamiltonian be-
tween the qubit and the cavity by applying two electric
driving fields close to the resonance frequencies of the qubit
and cavity transitions. The total Hamiltonian is then given
by

H(t) = H0+

(uq(t)σ+ + u∗q(t)σ−)⊗ IR + IS ⊗ (uc(t)a
† + u∗c(t)a), (3)

|g, 0〉

|e, 0〉 |g, 1〉

|e, 1〉 |g, 2〉

|e, 2〉

ωc − χ/2

ωc − χ/2

ωc + χ/2

ωc + χ/2

ωq

ωq − χ

ωq − 2χ

1

Fig. 2. Diagram for cavity-assisted qubit cooling: 1) (blue
arrows) a drive uc at resonance with the harmonic
oscillator’s frequency when the qubit is in the excited
state (frequency ωc − χ/2), drives the cavity to a co-
herent state with an average photon number of n̄ (here
n̄ = 2); 2) (red arrow) a drive uq at resonance with
the qubit’s frequency when the harmonic oscillator
is in the Fock state |n̄〉 (frequency ωq − n̄χ) induces
oscillations between |e〉 ⊗ |n̄〉 and |g〉 ⊗ |n̄〉; 3) (green
arrows) the population in |g〉 ⊗ |n̄〉 that does not see
the drive uc gradually decays at a rate κ towards
|g〉 ⊗ |0〉.

where uq ∈ C and uc ∈ C are the two complex control
amplitudes (representing the two drive’s phase and power).
Here σ− = |g〉 〈e| and σ+ = |e〉 〈g| are, respectively,
the qubit’s lowering and raising operators. Neglecting the
decoherence of the qubit, which we assume to happen at
a much slower rate than that of the harmonic oscillator,
the system’s evolution is modeled by the Lindblad type
master equation

d

dt
ρ = −i[H(t), ρ] + κL[IS ⊗ a]ρ. (4)

Here the state space is given by the set of trace-class oper-
ators ρ, defined on the Hilbert space HS ⊗HR which are
semi-definite positive, Hermitian and of unit trace. We also
note that this system is a bilinear control system and that
the well-posedness of the equation for smooth bounded
control fields uc and uq can be derived from Davies [1977].

Throughout this paper we assume the harmonic oscilla-
tor’s decay rate κ to be much smaller than the coupling
strength χ. This regime, which is becoming a very frequent
regime in the recent circuit QED experiments is called the
strong dispersive regime. While the coupling strength χ
represents the separation between the two spectral lines (in
a spectroscopy experiment) for the harmonic oscillator’s
frequency as a function of the qubit state, the decay rate
κ provides the linewidth of each of these spectral lines. The
assumption χ � κ corresponds then to the case of well-
resolved spectral lines where one can selectively control the
harmonic oscillator’s state conditioned on the qubit state.
The idea of the cooling scheme is then as follows (see also
Fig. 2):
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Fig. 3. The population of the excited state
Tr ((|e〉 〈e| ⊗ IR)ρ) for various choices of n̄. Following
a numerical optimization, we change the qubit
drive’s amplitude |uq| according to the choice
of n̄: |uq| = n̄κ/2. These choices ensure near-
optimal convergence rates which turn out to be
well-approximated by κ/7 and are independent of n̄.

(1) By applying a drive uc(t) = |uc|e−i(ωc−χ/2)t at reso-
nance with the harmonic oscillator’s frequency when
the qubit is in the excited state, and of appropriate
constant amplitude |uc|, we drive the harmonic oscil-
lator with a rate of κ to an average number of photons
of n̄ conditioned on the qubit state being |e〉. This
drive does not affect the harmonic oscillator’s state
when the qubit is in the ground state;

(2) We also apply a drive uq(t) = |uq|e−i(ωq−n̄χ)t at reso-
nance with the qubit’s frequency when the harmonic
oscillator is in the Fock state |n̄〉. In this way, we
induce oscillations between the state |e〉 ⊗ |n̄〉 and
|g〉 ⊗ |n̄〉. The frequency of these oscillations is given
by |uq|;

(3) During the oscillations between |e〉⊗|n̄〉 and |g〉⊗|n̄〉,
the population in |g〉⊗ |n̄〉 that does not see the drive
uc(t) gradually decays at a rate κ towards |g〉 ⊗ |0〉.

In three steps, we have therefore pumped the population
from the state |e〉 ⊗ |0〉 to the state |g〉 ⊗ |0〉. Note that
the pumping rate in this scheme should be given by an
aggregate of the decay rate κ and the oscillation rate
|uq|. By assuming both these rates much stronger than
the qubit’s heating rate (that we have neglected in the
dynamics (4)), we can cool the qubit much faster than it
absorbs thermal photons and therefore we would decrease
its temperature Geerlings et al. [2013]. Here, however,
neglecting the qubit’s heating dynamics, we do not discuss
this temperature reduction. We treat this protocol solely
as a stabilization scheme, studying its convergence rate
through numerical simulations and proving analytically its
convergence. Before passing to the details of a mathemat-
ical proof of convergence, let us illustrate the performance
of the protocol by some numerical simulations.

The simulations of Fig. 3 illustrate the convergence of
the scheme. Here, we have simulated the Lindblad master
equation (4) considering the parameters χ = 10κ (the
simulations are done in the rotating frame of the Hamil-
tonian

ωq

2 σz ⊗ IR + ωcIS ⊗ a†a): each curve corresponds
to a particular choice of n̄; a numerical study shows that
for a particular choice of n̄, the optimal choice of the
qubit’s drive amplitude |uq| (ensuring a near-optimal con-
vergence rate) is near n̄κ/2. Indeed, as it appears in the
simulations of Fig. 3 this near-optimal convergence rate

is well-approximated by κ/7 and is independent of n̄. An
analytical study of this optimal convergence rate remains
to be done.

4. CONVERGENCE PROOF

While all the results of this section can be proven in
the infinite dimensional framework of the dynamics (4),
for simplicity sakes we consider only a finite dimensional
approximation. Indeed, we truncate the Fock space to
the space HNmax

R spanned by (|n〉)0≤n≤Nmax , where Nmax

is a maximum number of photons much larger than n̄.
Therefore, ρ is a 2(Nmax +1)×2(Nmax +1) Hermitian non-

negative matrix defined on HS ⊗ HNmax

R with unit trace.
Also the annihilation operator a is an upper-triangular ma-
trix with (

√
n)1≤n≤Nmax as upper diagonal, the remaining

elements being 0.

We prove the following theorem on the convergence of the
engineered system towards a small neighborhood of the
ground state Πg0 = (|g〉 ⊗ |0〉)(〈g| ⊗ 〈0|).
Theorem 1. Consider the system (4) where the drives uc(t)

and uq(t) are simply given by uc(t) = κ
√
n̄

2 e−i(ωc−χ/2)t and

uq(t) = |uq|e−i(ωq−n̄χ)t and n̄ ∈ {1, 2 · · · }. Furthermore,

assume that κ
√
n̄

2 , |uq| are much smaller than χ and take

ε = max
(√

n̄
2 κ, |uq|

)
/χ. Then, for small enough ε, the

dynamics (4) admits a unique globally asymptotically
stable periodic orbit γε = Πg0 +O(ε).

Proof. Let us start by re-writing the dynamics in the
rotating frame of the free Hamiltonian H0. By defining
ρ̃ = eitH0ρe−itH0 , and applying the operator identities
(derived from Campbell-Baker-Hausdorff formula):

ã = eitH0 (IS ⊗ a) e−itH0 = e−itωc (cos(
tχ

2
)IS + i sin(

tχ

2
)σz) ⊗ a,

σ̃− = eitH0 (σ− ⊗ IR)e−itH0 = σ− ⊗ exp

(
−it(ωq − χa†a)

)
,

we have

d

dt
ρ̃ = −i[uq(t)σ̃+ + u∗q(t)σ̃−, ρ̃]

− i[uc(t)ã† + u∗c(t)ã, ρ̃] + κL[ã]ρ̃.

Averaging the terms of frequency χ in the right hand side
of this equation, we find the averaged dynamics

d

dt
ρav = −i|uq|[σx⊗Πn̄, ρav]− iκ

√
n̄

2
[Πe⊗ (a+ a†), ρav]

+ κL[Πg ⊗ a]ρav + κL[Πe ⊗ a]ρav, (5)

where Πg = |g〉 〈g|, Πe = |e〉 〈e| and Πn̄ = |n̄〉 〈n̄|. Ap-
plying the averaging theorem Guckenheimer and Holmes
[1983], we only need to prove that the averaged dynam-
ics (5) is globally asymptotically stable at Πg0. Note, in
particular, that the diagram of Fig. 2 actually represents
this averaged dynamics: qubit oscillating when the cavity
is in the Fock state |n̄〉 〈n̄| and cavity driven when the
qubit is in the excited state |e〉 〈e|.
In the aim of proving the asymptotic convergence of ρav

towards Πg0, we define three projection operators on the

Hilbert space HS ⊗HNmax

R :
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Πg,>n̄ = Πg ⊗
∑
m>n̄

Πm, Πg,<n̄ = Πg ⊗
∑
m<n̄

Πm,

Π⊥ = Πg ⊗Πn̄ + Πe ⊗ IR.

Noting that Πg,>n̄ + Πg,<n̄ + Π⊥ = IS ⊗ IR, we have

ρav(t) = (Πg,>n̄+Πg,<n̄+Π⊥)ρav(t)(Πg,>n̄+Πg,<n̄+Π⊥).

As the matrix ρav is a non-negative Hermitian matrix
one can define its square root

√
ρav which is also a non-

negative Hermitian matrix. The idea will be to prove
that Πg,>n̄

√
ρav and Π⊥

√
ρav converge to the zero matrix,

and then to conclude by proving that Πg,<n̄ρav(t)Πg,<n̄

converges to Πg0.

We start by proving that Πg,>n̄
√
ρav converges to zero.

Noting that (Πg,>n̄
√
ρav)(Πg,>n̄

√
ρav)∗ = Πg,>n̄ρavΠg,>n̄,

we only need to show that Tr (Πg,>n̄ρavΠg,>n̄) converges
to zero. With this aim, we prove the stronger statement
that

Tr
(
a†aΠg,>n̄ρav(t)Πg,>n̄

)
→ 0 as t→∞. (6)

Indeed, since a†aΠn = nΠn, the statement (6) clearly im-
plies that Tr (Πg,>n̄ρavΠg,>n̄) also converges to 0. Inserting
the equation (5), and applying simple relations such as
Πg,>n̄Πe = Πg,>n̄Πn̄ = 0, we have

d

dt
a†aΠg,>n̄ρav(t)Πg,>n̄ = κΠg,>n̄L[IS ⊗ a]ρav(t)Πg,>n̄.

Taking the trace of this equation and applying the identity
Tr (AB) = Tr (BA), and the fact that the operators a†a
and Πg,>n̄ commute, we have

d

dt
Tr
(
a†aΠg,>n̄ρav(t)Πg,>n̄

)
=κ

(
Tr
(
(a†)2aΠg,>n̄aρav(t)Πg,>n̄

)
− Tr

(
(a†a)2Πg,>n̄ρav(t)Πg,>n̄

))
.

We apply now the operator identity

(a†)2aΠg,>n̄a− (a†a)2Πg,>n̄ =

− a†aΠg,>n̄ − n̄(n̄+ 1)Πg ⊗Πn̄+1.

Therefore, we have

d

dt
Tr
(
a†aΠg,>n̄ρav(t)Πg,>n̄

)
= −κTr

(
a†aΠg,>n̄ρav(t)Πg,>n̄

)
− κn̄(n̄+ 1)Tr (Πg ⊗ Πn̄+1ρav(t)Πg ⊗ Πn̄+1) ,

which clearly proves the statement (6) and even ensures
an exponential convergence rate of κ.

Assuming Πg,>n̄
√
ρav = 0, let us now prove that Π⊥

√
ρav

converges to zero, or equivalently Tr (Π⊥ρavΠ⊥) converges
to zero. Defining ρ⊥ = Π⊥ρavΠ⊥, and applying the
dynamics (5), we have

d

dt
ρ⊥ = −i|uq|[σx ⊗Πn̄, ρ⊥]− iκ

√
n̄

2
[Πe ⊗ (a + a†), ρ⊥]

− n̄κΠg ⊗Πn̄ρ⊥Πg ⊗Πn̄ + κL[Πe ⊗ a]ρ⊥, (7)

Taking the trace of this equation, we have

d

dt
Tr (ρ⊥) = −n̄κTr (Πg ⊗Πn̄ρ⊥(t)Πg ⊗Πn̄) ≤ 0.

Therefore, by LaSalle’s invariance principle, the Ω-limit
set for the dynamics (7) is given by the largest in-

variant set included in the set {ρ⊥ | ρ⊥ = ρ†⊥, ρ⊥ ≥
0,Tr (Πg ⊗Πn̄ρ⊥(t)Πg ⊗Πn̄) = 0}. Noting that by invari-
ance, one should also have Πe⊗Πn̄ρ⊥Πe⊗Πn̄ = 0, one has
the following dynamics for ρe = Πeρ⊥Πe in the invariant
set:

d

dt
ρe = −iκ

√
n̄

2
[IS ⊗ (a + a†), ρe] + κL[IS ⊗ a]ρe, (8)

This is the dynamics for a driven damped harmonic oscilla-
tor whose solution converges to the state Tr (ρe(0)) |α〉 〈α|,
where |α〉 = e−|α|

2/2
∑
n
αn
√
n!
|n〉 with α = i

√
n̄ (for the

sake of completeness, we provide a proof of this result in
the Appendix). Since Πn̄ρeΠn̄ is necessarily zero within the
invariant set, we have Tr (ρe) = 0 within the invariant set

which finishes the proof of the statement Π⊥
√
ρav(t)→ 0

as t→∞.

We can therefore restrict ourselves to the dynamics of
ρg,<n̄ = Πg,<n̄ρavΠg,<n̄. By (5), we have

d

dt
ρg,<n̄ = κL[IS ⊗ a]ρg,<n̄.

Once again applying the result of the Appendix ρg,<n̄
converges at a rate κ to |g〉 〈g| ⊗ |0〉 〈0|.
�

5. CONCLUSION AND FURTHER DIRECTIONS

Inspired by quantum reservoir engineering techniques, we
have proposed a cooling scheme for reseting and stabi-
lizing a single qubit around its ground state. The pro-
posed protocol has been, very recently, successfully experi-
mented Geerlings et al. [2013] and provides a very promis-
ing method for rapid cooling of most super-conducting
qubits. Furthermore, we have recently extended this
scheme to the case of preparing and protecting (against
decoherence) a maximally entangled state between two
qubits. This extension will be presented in a forthcoming
paper.

Appendix A. DRIVEN DAMPED QUANTUM
HARMONIC OSCILLATOR

Lemma 2. Consider the dynamics

d

dt
ρ(t) = −iεc[a + a†, ρ(t)] + κL[a]ρ(t) (A.1)

on the Hilbert space HR of the cavity mode. The solution
ρ(t) converges at a rate κ to the coherent state |α〉 〈α|,
where |α〉 = e−|α|

2/2
∑
n
αn
√
n!
|n〉 with α = 2iεc/κ.

Proof. We consider the Lyapunov equation

V (ρ) = Tr
(
a†aD†αρDα

)
,

where Dα = exp(αa† − α∗a) : HR → HR is called the
displacement operator. In particular, one has Dα |0〉 = |α〉,
or equivalently D†α |α〉 = |0〉 (see e.g. [Haroche and Rai-
mond, 2006, page 118]). Noting that Tr (AB) = Tr (BA),
we can write V (ρ) = Tr

(
aD†αρDαa

†), which together
with the positivity of the density matrix ρ implies that
V (ρ) ≥ 0. Also, defining the displaced density matrix
ξ = D†αρDα (which is still a well-defined density matrix),
the Lyapunov function V (ρ) = Tr

(
a†aξ

)
indicates the

average number of photons for the density matrix ξ. In
particular, V (ρ) = 0 implies that ξ = |0〉 〈0| and therefore
ρ = Dα |0〉 〈0|D†α = |α〉 〈α|.
By inserting the dynamics (A.1), and applying the identity
D†αaDα = a− αIR, we have d

dtξ = κL[a]ξ. This, together

with the commutation relation [a,a†a] = a, imply
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d

dt
V (ρ) = −κV (ρ),

and proves the convergence at a rate κ of ρ towards |α〉 〈α|.
�
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