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Abstract: The paper extends the notion of oscillations in the sense of Yakubovich to hybrid
dynamics. Several sufficient stability and instability conditions for a forward invariant set are
presented. The consideration is motivated by analysis of a model of two-link compass-gait biped
robot.

1. INTRODUCTION

Oscillations constitute one of the main operating modes
for many systems in nature or in techniques Fransoise
[2005], King [2009], Kurths et al. [2007], Burkin et al.
[1996], Rogers [1999], Tass [2007]. In some cases it is
required to maintain the oscillations, in other cases the
oscillations have to be suppressed Chernousko and Frad-
kov [2000], Fradkov and Pogromsky [1998], Shiriaev and
de Wit [2004]. In all cases the conditions of existence of
sustained oscillations is of great importance since they al-
low one to analyze/design a system with desired oscillating
properties.

There are many stability theories and definitions of oscilla-
tions Fradkov and Pogromsky [1998]. Among them in this
work we choose one proposed by Prof. Yakubovich almost
40 years ago Yakubovich [1973]. This approach is rather
generic, and it covers periodical and chaotic oscillations.
Contrarily to a pure periodical case, when existence condi-
tions are rather sophisticated Mallet-Paret and Sell [1996],
the conditions of oscillations in the sense of Yakubovich
(Y-oscillations) are simple. For Lurie systems, they are for-
mulated in the frequency domain Yakubovich [1973, 1975],
Yakubovich and Tomberg [1989], Burkin et al. [1996]. For
a generic nonlinear system, the conditions of Y-oscillations
are given using Lyapunov arguments Efimov and Fradkov
[2009] or applying homogeneity framework Efimov and
Perruquetti [2010]. The main goal of the present paper
is to extend the notion of Y-oscillations to hybrid dynam-
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ical systems. For this purpose several stability/instability
Lyapunov conditions are formulated for hybrid dynamics.

There exist many applications where the system has a
hybrid dynamics (continuous and discontinuous) and it
is oscillating. The most important one comes from robot
locomotion Freidovich and Shiriaev [2010], Morris and
Grizzle [2009], Spong et al. [2006]. The phenomenon has
a hybrid nature, due to impacts occurring when a leg
is hitting the ground, and the main operating mode
is a periodical oscillation. The design/analysis of robot
locomotion as a periodically oscillating system is rather
sophisticated Freidovich and Shiriaev [2010], Morris and
Grizzle [2009], Shiriaev et al. [2010], Shiriaev and de Wit
[2004]. However, relaxing the periodicity requirement and
considering Y-oscillations, it is possible to develop more
constructive conditions for analysis and design of robot
motion.

The problem is introduced and illustrated for a two-
link compass-gait biped robot model in Section 2. Some
preliminaries are given in Section 3. The main result on
conditions of Y-oscillations in hybrid systems is presented
in Section 4. An example is given in Section 5.

2. MOTIVATION

Dynamics of a two-link compass-gait biped robot with a
control torque applied at the hip (schematically shown in
Fig. 1) can be described by the hybrid system Freidovich
and Shiriaev [2010]:
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ẋ1 = x2;

p1ẋ2 − p2(c13ẋ4 + s13x
2
4)− p4 sin(x1) = u;

ẋ3 = x4;
p3ẋ4 − p2(c13ẋ2 − s13x22) + p5 sin(x3) = −u,

x ∈ C;


x+1 = x−3 ;
x+3 = x−1 ;

A

[
x+2
x+4

]
= B

[
x−2
x−4

]
,

x ∈ D,

(1)

where x = [x1 x2 x3 x4]T ∈ R4 is the state vector of the
robot, u ∈ R is the control torque; s13 = sin(x1 − x3),
c13 = cos(x1 − x3),

A =

[
p1 − p2c− p3 − p2c−
−p2c− p3

]
, B =

[
p7c
− − p6 −p6
−p6 0

]
,

c− = cos(x−1 − x−3 ); C = R4, D = {x ∈ R4 : cos(x1 +
ψ) = cos(x3 + ψ)} define the sets with continuous and
discrete dynamics respectively; pi, i = 1, 7 are the robot
parameters related with its physical counterparts pre-
sented in Fig. 1 as p1 = (mH + m)l2 + ma2, p2 = mlb,
p3 = mb2, p4 = (mH l + mb + ml)g, p5 = mbg, p6 = mab,
p7 = mH l

2 + 2mal; ψ is the slope of the walking surface.
The standard abbreviations

x− = x(t−) = lim
ε→0

x(t− |ε|), x+ = x(t+) = lim
ε→0

x(t+ |ε|)

are used to denote the values before and after jumps of a
solution.

Fig. 1. Schematic of the compass-gait biped on a shallow
slope

For ψ = 2.87π/180 and u = 0 the system has two
(known) nontrivial periodic solutions Freidovich and Shiri-
aev [2010]. If the value of ψ is changed or if it is a
time-varying signal (that corresponds to a walking on
an irregular surface), then the conditions of existence of
periodical solutions is an open question. That is more,
there is no practically applicable theoretical approach that
can address this problem for a time-varying surface slope.

The approaches, for a constant ψ, for detection of periodi-
cal oscillating modes and their stabilization are largely re-
ported in the literature (see Freidovich and Shiriaev [2010],
Morris and Grizzle [2009], Shiriaev et al. [2010], Shiriaev
and de Wit [2004] and references therein). This analysis
and design methods are very complex and, frequently,
only local. The problem complexity is originated by hybrid
nature of the dynamics and by complicacy of the periodic
motion. It is hard to analyze and stabilize such type of
behavior. However, if we would skip the requirement that
the motion has to be periodical, allowing other types of
oscillating behavior (that is a natural relaxation for a time-
varying ψ), then the oscillation existence conditions could

be more simple and global. We would like to demonstrate
this developing Y-oscillation concept, which is introduced
in the next section.

3. PRELIMINARY RESULTS

This section has three parts. The first one deals with the
hybrid system formalism introduction following Cai et al.
[2007, 2008], Ye et al. [1998]. The second part introduced
(pre)asymptotic stability definition and its equivalent Lya-
punov characterization from Cai et al. [2008]. The third
part is devoted to presentation of Lyapunov sufficient
conditions of instability for hybrid systems.

In this work, R denotes the real numbers, R+ the non-
negative real numbers, Z and Z+ are stated for integers
and nonnegative integers respectively. The symbol | · |
denotes an absolute value for a real scalar or vector,
|x|A = infy∈A |y − x| is the distance from a point x ∈ Rn
to a set A ⊂ Rn. It is said that the function α : R+ → R+

belongs to class K if α(0) = 0 and it is strictly increasing,
it is from class K∞ if α ∈ K and it is radially unbounded.

3.1 Hybrid systems

The considered hybrid system has the following form:{
ẋ ∈ F(x) x ∈ C;

x+ ∈ G(x) x ∈ D, (2)

where x ∈ O ⊂ Rn is the state vector (it may contain con-
tinuously changing and discrete or logic-based variables);
C ⊂ O and D ⊂ O are the sets where flow or jumps can
occur respectively; the (set-valued) maps F : O ⇒ Rn
and G : O ⇒ Rn determine the continuous and discrete
dynamics of the system (2). Following Cai et al. [2008] we
impose the Standing Assumptions (SAs) on (2):

(SA1) the sets C ⊂ O and D ⊂ O are relatively closed
in O (i.e. there exist some closed sets YC , YD such that
D = YD ∩ O and C = YC ∩ O);

(SA2) the map F : O ⇒ Rn is outer semicontinuous and
locally bounded, F(x) is nonempty and convex for any
x ∈ C;

(SA3) the map G : O ⇒ Rn is outer semicontinuous and
locally bounded, G(x) is nonempty subset of O for any
x ∈ D.

These assumptions allow one to define solutions of the
system (2) on hybrid time domains Cai et al. [2007, 2008].
A subset E ⊂ R+ × Z+ is a compact hybrid time domain

if E =
⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 ≤ t0 ≤ . . . ≤ tJ . It is a hybrid time domain if for all
(T, J) ∈ E, E ∩ ([0, T ]×{0, 1, . . . , J}) is a compact hybrid
time domain. A hybrid arc is a function φ : E ⇒ O defined
on a hybrid time domain E, and such that φ(·, j) is locally
absolutely continuous for each j. A hybrid arc φ : domφ⇒
O is a solution (trajectory) of (2) if φ(0, 0) ∈ C ∪D and:

(S1) φ̇(t, j) ∈ F[φ(t, j)] for all j ∈ Z+ and almost all
t ∈ R+ such that (t, j) ∈ domφ and φ(t, j) ∈ C;

(S2) φ(t, j + 1) ∈ G[φ(t, j)] for all (t, j + 1) ∈ domφ and
φ(t, j) ∈ D.

The conditions C ∪ D = O guarantees existence of
solutions for all initial conditions. A solution φ to the
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hybrid system is called nontrivial if domφ contains at
least one point different from (0, 0); it is called maximal
if its domain cannot be extended. A solution is called
complete if its domain is unbounded (complete solutions
are maximal), let S(x) denote the set of all maximal
solutions for (2) starting from a point x ∈ O. The hybrid
system (2) is said to be forward complete on O if for all
x ∈ O, each φ ∈ S(x) is complete. The hybrid system
(2) is said to be forward invariant on a set A ⊂ O if, for
all x ∈ A, each φ ∈ S(x) is such that φ(t, j) ∈ A for all
(t, j) ∈ domφ (this definition of forward invariance does
not need existence of trajectories for all points of A). A
point x0 is called an equilibrium of (2) if it is forward
invariant for the system.

If G(D) ∩D 6= ∅, then multiple consequent switches or a
Zeno-behavior are possible. In many cases (if D ⊂ C, for
example) such a behavior does not correspond to physical
nature of the considered system, but it is hard to avoid it
in the formulation (2) since the sets C and D are closed.
In addition, if D ⊂ C then on the intersection C ∩ D
multiple solutions can be initiated, while frequently in
practice only a jump is possible in D. Let us define the set
of maximal solutions initiated from a point x ∈ O without
multiple consequent switches with jumps in D as Ŝ(x), i.e.

Ŝ(x) = {φ ∈ S(x) : tj 6= tj+1, tj+1 = arg inft>tj φ(t, j) ∈
D, (tj+1, j + 1) ∈ domφ}. This set can be empty or,

if G(D) ∩ D = ∅ then Ŝ(x) = S(x). Further, talking
about a solution φ of the system (2) we will understand
a maximal solution φ ∈ S(x) for some x ∈ O, except the

restrictionφ ∈ Ŝ(x) is explicitly stated.

3.2 Stability of hybrid systems

A continuous function ω : O → R+ is proper on O if
ω(xi) → +∞ when xi converges to a boundary of O
or |xi| → +∞. For a compact set A ⊂ O, the function
ω is a proper indicator for A on O if it is proper and
A = {x ∈ O : ω(x) = 0}.
Definition 1. Cai et al. [2008] Let A ⊂ O be compact.

(1) A is prestable for the system (2) if for each ε > 0,
there exists δ > 0 such that any solution φ with
|φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ε for all (t, j) ∈
domφ.

(2) A is preattractive for the system (2) if there exists
δ > 0 such that any solution φ with |φ(0, 0)|A ≤ δ
is bounded with respect to O, and if it is complete,
then limt+j→+∞ |φ(t, j)|A = 0.

(3) A is preasymptotically stable if it is prestable and
preattractive.

(4) A is asymptotically stable if it is preasymptotically
stable and there exists δ > 0 such that any maximal
solution φ with |φ(0, 0)|A ≤ δ is complete.

The set of all x ∈ O from which all solutions are bounded
with respect to O and the complete ones converge to A
is called the basin of preattraction and denoted as OaA. If
the conditions of Definition 1 are valid for any δ ∈ R+,
then the set A is globally preattractive/preasymptotically
or asymptotically stable for (2).

Definition 2. A compact set A ⊂ O is called Non-
Zeno (NZ) prestable (preattractive/preasymptotically sta-
ble/asymptotically stable) for the system (2) if the cor-

responding properties of Definition 1 are satisfied for all
φ ∈ Ŝ only.

If for the system (2) the set A is (pre)asymptotically
stable, then it is also NZ (pre)asymptotically stable, the
converse is in general false.

Definition 3. Let X ⊂ O be open and ω : X → R+

be continuous. A function V : X → R+ is said to be a
smooth Lyapunov function for (X ,F,G, C,D, ω) if there
exist α1, α2 ∈ K∞ such that

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) ∀x ∈ X .

In this work we will use the following designations:

SupDV (x) = sup
f∈F(x)

〈∇V (x), f〉 ,

InfDV (x) = inf
f∈F(x)

〈∇V (x), f〉 ;

SupV +(x) = sup
g∈G(x)∩X

V (g),

InfV +(x) = inf
g∈G(x)∩X

V (g).

This definition does not impose a restriction on derivative
or increment of V since both stability and instability
properties will be studied below.

Theorem 4. Cai et al. [2008] Let A be compact and X be
open, A ⊂ X ⊂ O, and let ω be a proper indicator for A
on X . The following statements are equivalent for (2):

1) There exists a smooth Lyapunov function V for
(X ,F,G, C,D, ω) such that

SupDV (x)≤−V (x) ∀x ∈ X ∩ C; (3)

SupV +(x)≤ e−1V (x) ∀x ∈ X ∩D
and G(D ∩ X ) ⊂ X .

2) The set A is preasymptotically stable, its basin of
preattraction OaA contains X , and X is forward invariant
for (2).

Remark 5. Note that the sufficient part of this theorem
holds if the condition (3) is replaced with the following
one:

SupDV (x)≤−ρ[ω(x)] ∀x ∈ X ∩ C; (4)

SupV +(x)≤ λV (x) ∀x ∈ X ∩D,
for some function ρ ∈ K and a constant λ ∈ [0, 1).
Indeed, in this case V [φ(t, j)] ≤ σ1(V [φ(tj , j)])σ2(etj−t)
for all j ∈ Z+ and t ∈ [tj , tj+1] such that (t, j) ∈ domφ
and φ(t, j) ∈ C for some functions σ1, σ2 ∈ K; and
V [φ(t, j + 1)] ≤ λV [φ(t, j)] for all (t, j + 1) ∈ domφ
and φ(t, j) ∈ D. Therefore, according to Definition 1 the
system is prestable and preattractive with respect to the
set A (A is preasymptotically stable).

Remark 6. For the sufficient part of Theorem 4 it is
enough to have a continuously differentiable or a Lipschitz
continuous function V (the same for the results presented
below). For a Lipschitz continuous function V the Dini
derivatives have to be used.
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Following Ye et al. [1998], a more simple for verification
sufficient condition can be proposed for NZ preasymptot-
ical stability of A based on the following assumption.

Assumption 1. For all φ ∈ Ŝ, sup(t,j)∈domφ t = +∞ iff
sup(t,j)∈domφ j = +∞.

These conditions imply that the hybrid time domains of
complete solutions in Ŝ are unbounded with respect to
both t and j. This assumption excludes from consideration
a case with a finite number of jumps and the Zeno-
behavior. The reasons for this condition introduction are
the following. If the number of switches is finite for a
complete solution φ ∈ Ŝ, then the asymptotic transients
are predefined by the continuous dynamics only. The Zeno-
behavior is rather usual in hybrid models, but frequently
it has no physical meaning, like in the compass-gait biped
robot or the bouncing ball Cai et al. [2008], for instance.

Theorem 7. Let A be compact and X be open, A ⊂ X ⊂
O, and let ω be a proper indicator for A on X . Let
Assumption 1 be satisfied and there exist a differentiable
Lyapunov function V for (X ,F,G, C,D, ω) such that

SupDV (x)≤ 0 ∀x ∈ X ∩ C, (5)

G(D∩X ) ⊂ X and for any solution φ ∈ Ŝ for all (tj+1, j+
1) ∈ domφ such that φ(tj , j) ∈ X and φ(tj+1, j + 1) ∈ X
for some α ∈ K
V [φ(tj+1, j + 1)]− V [φ(tj , j)]

tj+1 − tj
≤ −α(V [φ(tj+1, j + 1)]).(6)

Then the set A is NZ preasymptotically stable, its basin of
preattraction OaA contains X , and X is forward invariant
for (2).

All proofs are excluded due to space limitation.

Despite of the conditions of Theorem 7 include the inequal-
ity (6) in the time domain for φ ∈ Ŝ, in some cases it is
more simple to apply Theorem 7 than Theorem 4 (that we
will show later on the examples). Note that without the
condition SupV +(x) ≤ V (x) ∀x ∈ X ∩ D the function
V decreasing may be non-monotone, i.e. V [φ(tj+1, j +
1)] > V [φ(tj+1, j)] for some (tj+1, j + 1) ∈ domφ and
φ(tj+1, j) ∈ D. Therefore, the conditions of Theorem 7
admit a local increasing of V after jumps.

3.3 Instability of hybrid systems

This section contains a definition of instability (similarly
to Forni and Teel [2010], Ye et al. [1998]) and the corre-
sponding sufficient Lyapunov conditions.

Definition 8. Let U ⊂ O be compact.

(1) U is preunstable for the system (2) if it is not
prestable in the sense of Definition 1, i.e. there exists
ε > 0 such that for each δ > 0 there is a solution
φ with |φ(0, 0)|U ≤ δ that satisfies |φ(t, j)|U > ε for
some (t, j) ∈ domφ.

(2) U is prerepulsive for the system (2) if there is some
δ > 0 such that for any 0 < δ ≤ δ there exists a
solution φ with |φ(0, 0)|U ≤ δ for which there are some
(t′, j′) ∈ domφ such that the property |φ(t, j)|U > δ
holds for all (t, j) ∈ domφ with t ≥ t′, j ≥ j′.

(3) U is strictly prerepulsive for the system (2) if for some
δ > 0 and any solution φ with |φ(0, 0)|U ≤ δ there
exist some (t′, j′) ∈ domφ such that the property
|φ(t, j)|U > δ holds for all (t, j) ∈ domφ with t ≥ t′,
j ≥ j′.

As in the continuous case Hahn [1967], the hybrid system
(2) can be preattractive with respect to a set A and
preunstable with respect to this set simultaneously. If
the set U is prerepulsive for the system (2), then it is
preunstable, but this set still can be attractive for a
some subset of initial states in a vicinity of U . If it
is strictly prerepulsive, then all existent solutions exit
a neighborhood of U . The domain of prerepulsion OrU
contains x ∈ O such that φ(0, 0) = x and |φ(t, j)|U > δ
for all (t, j) ∈ domφwith t ≥ t′, j ≥ j′ ((t′, j′) ∈ domφ).

Definition 9. A compact set U ⊂ O is called NZ preunsta-
ble (prerepulsive/strictly prerepulsive) for the system (2)
if the corresponding properties of Definition 8 are satisfied
for φ ∈ Ŝ only.

If U is NZ preunstable/prerepulsive for (2), then it is also
preunstable/prerepulsive. If U is strictly prerepulsive, then
it is also NZ strictly prerepulsive.

Theorem 10. Let U ⊂ X be compact and X ⊂ O be open,
G(D∩X ) ⊂ X . Let a continuous function ω : X → R+ be
a proper indicator for U on X . Let also each φ ∈ S with
φ(0, 0) ∈ X be nontrivial.

(1) The set U is strictly prerepulsive for the system (2),
its domain of prerepulsion OrU contains X , if there
exists a differentiable Lyapunov function U : X → R+

for (X ,F,G, C,D, ω) such that for some function
ρ ∈ K and a constant λ ∈ [1,+∞)

InfDU(x)≥ ρ[ω(x)] ∀x ∈ X ∩ C; (7)

InfU+(x)≥ λU(x) ∀x ∈ X ∩D.
(2) Let Assumption 1 be satisfied. The set U is NZ

strictly prerepulsive for the system (2), its domain
of prerepulsion OrU contains X , if there exists a
differentiable Lyapunov function U : X → R+ for

(X ,F,G, C,D, ω) such that for any solution φ ∈ Ŝ
for all (tj+1, j + 1) ∈ domφ such that φ(tj , j) ∈ X
and φ(tj+1, j + 1) ∈ X for some α ∈ K
U [φ(tj+1, j + 1)]− U [φ(tj , j)]

tj+1 − tj
≥ α(U [φ(tj , j)]) (8)

and

InfDU(x)≥ 0 ∀x ∈ X ∩ C. (9)

Note that the condition (8) is sufficient to prove that
the set U is preunstable for the system (2). Contrarily
the condition (7), the conditions (8), (9) do not restrict
the Lyapunov function U behavior after switches (it may
decrease on D).

4. OSCILLATION CONDITIONS

Extending the results from Efimov and Fradkov [2009],
Yakubovich [1973], the definition of Y-oscillations for
hybrid systems can be as follows (recall, a function
g : Rn → R is called monotone if the condition
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x1 ≤ x′1, . . . , xn ≤ x′n implies that everywhere ei-
ther g(x1, . . . , xn) ≤ g(x′1, . . . , x

′
n) or g(x1, . . . , xn) ≥

g(x′1, . . . , x
′
n)).

Definition 11. Yakubovich [1973], Efimov and Fradkov
[2009] A complete solution φ ∈ S(x) with x ∈ O of the
system (2) is called [π−, π+]-oscillation with respect to
the output ψ = η(x) (where η : O → R is a continuous
monotone function) if

limt+j→+∞η[φ(t, j)] = π−; limt+j→+∞η[φ(t, j)] = π+;

−∞ < π− < π+ < +∞.

A complete solution φ ∈ S(x) with x ∈ O of the system
(2) is called oscillating, if there exist some output ψ and
constants π−, π+ such that φ is [π−, π+]-oscillation with
respect to the output ψ. A forward complete system (2)
is called oscillatory, if for almost all x ∈ O the solutions
φ ∈ S(x) of the system are oscillating. The oscillatory
system (2) is called uniformly oscillatory, if for almost all
x ∈ O for corresponding solutions φ ∈ S(x) there exist
the output ψ and the constants π−, π+ not depending on
initial conditions.

In other words the solution φ is oscillating if the output
ψ(t, j) = η[φ(t, j)] is asymptotically bounded and there
is no single limit value of ψ(t, j) for t + j → +∞. The
term “almost all solutions” is used to emphasize that
generally the system (2) has a nonempty set of equilibrium
points, thus there exists a set of initial conditions with
zero measure such that the corresponding solutions are
not oscillating. The notion of oscillations in the sense
of Yakubovich is rather generic including periodical os-
cillations (limit cycles), quasi-periodical, recurrent and
chaotic trajectories. The oscillating trajectories could be
repelling being oscillating. The trajectories also could be
unbounded, it is required to find a function of the state
vector η, that is bounded and admits certain requirements
introduced in Definition 11.

Theorem 12. Let A ⊂ XA and U ⊂ XU ⊂ A be compact
and X = XA ∪XU ⊂ O be open. Let continuous functions
ωA : X → R+, ωU : X → R+ be proper indicators for A
and U on X respectively. Let G(D ∩ X ) ⊂ X , each φ ∈ S
with φ(0, 0) ∈ X be nontrivial and the system (2) have
two Lyapunov functions V and U such that for all x ∈ X :

υ1[ωA(x)] ≤ V (x) ≤ υ2[ωA(x)],
υ3[ωU (x)] ≤ U(x) ≤ υ4[ωU (x)],

υ1, υ2, υ3, υ4 ∈ K∞ and

1) the conditions (4) or (5), (6) with Assumption 1 are
valid for the function V on XA;

2) the conditions (7) or (8), (9) with Assumption 1 are
valid for the function U on XU ;

3) Ω∩Ξ = ∅, where Ω = A∩XU and Ξ ⊂ Rn is a set with
zero Lebesgue measure containing all equilibriums of the
system.

Then the system (2) has an oscillating solution.

Remark 13. If the conditions (4) and (7) are satisfied, then
the system (2) is oscillating.

In the next section we will show an example of this theorem
application.

5. EXAMPLE

Consider the following planar hybrid system:

F(x) =

[
(1− |x|)x1 + x2
(1− |x|)x2 − x1

]
, G(x) =

[
x2
x1

]
, (10)

where x = [x1 x2]T , O = R2, D = {x ∈ O : x1 +kx2 = 0},
C = O and k ∈ R \ {−1, 1} is a parameter. Note that in
this case D ⊂ C.

The system (10) has the single equilibrium at the origin
for k 6= ±1 (Ξ = {0}). Next, it is easy to verify that the
Lyapunov function W = |x|2 for the continuous dynamics

F has the derivative Ẇ = 2(1 −
√
W )W for all x ∈ R2,

then W (t, t0,W0) = [1 − (1 − W−0.50 )et0−t]−2 for any
initial condition W (t0) = W0, which according to Efimov
and Fradkov [2009], Efimov and Perruquetti [2010] implies
existence of oscillating trajectories into the set W (x) = 1
(for ẋ = F(x)) and forward completeness of (10). To prove
that for any initial condition x(t′, j) ∈ O, t′ ∈ R+, j ∈ Z+

for solutions of the system (10) always there exists a time
instant t′′ ≥ t′ such that x(t′′, j) ∈ D assume that it is not,
then from the expression of W (t, t0,W0) given above the
trajectories of the continuous dynamics converge to the set
where W (x) = 1 and the continuous dynamics is reduced
to a linear oscillator, thus t′′ exists and Assumption 1 is
satisfied.

For the chosen G we have that W (x+) = W (x) for all
x ∈ D, therefore the value of W is not changing for the
discrete dynamics. In addition, for k 6= ±1 the set D\{0} is
not invariant for (10), therefore for the almost all instants
of time the behavior of W is predefined by the continuous
dynamics.

To apply Theorem 12 we can choose the origin as the set
U , U(x) = W (x) and XU = {x ∈ O : |x| < 1}, then U(t, j)
is a strictly increasing function on XU and for any solution
φ ∈ Ŝ of (10) with φ(0, 0) ∈ XU we have U [φ(tj+1, j+1)]−
U [φ(tj , j)] ≥ (tj+1 − tj)2(1 −

√
U [φ(tj , j)])U [φ(tj , j)] for

all (tj , j) ∈ domφ while φ rests in XU , i.e. the conditions
of Theorem 10 are satisfied.

Let us select the set A = {x ∈ O : |x| ≤ 1}, then
XA = O \ A. Using the function W we can prove that
this A is NZ preasymptotically stable for (10). Indeed,

for any solution φ ∈ Ŝ of (10) with φ(0, 0) ∈ XA we
have W [φ(tj+1, j + 1)] − W [φ(tj , j)] ≤ (tj+1 − tj)2(1 −√
W [φ(tj+1, j + 1)])W [φ(tj+1, j+1)] for all (tj , j) ∈ domφ

while φ rests in XA. Select V (x) = max{0,W (x) − 1},
then outside of the set A we have V [φ(tj+1, j + 1)] −
V [φ(tj , j)] ≤ −(tj+1 − tj)α{V [φ(tj+1, j + 1)]} for α(s) =

−(1 −
√

1 + s)(1 + s) ∈ K and all conditions of Theorem
7 are verified.

The set Ω = {x ∈ O : |x| = 1} does not contain the
equilibrium of (10). Therefore, all conditions of Theorem
12 are satisfied and the system (10) has an oscillating
solution.

The system trajectories for different values of k are shown
in Fig. 2. As we can deduce from these results of sim-
ulation, the system stay oscillating for all values of k,
but the types of the oscillating trajectories differ signif-
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icantly (there exist two disjoint oscillating subsets in Ω for
k = |1.5| and a discontinuous limit cycle for k = |0.5|).
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Fig. 2. The hybrid system (10) trajectories for k ∈
{−0.5, 0.5,−1.5, 1.5}

6. CONCLUSIONS

The paper develops the framework of oscillations in the
sense of Yakubovich to the class of hybrid systems (having
continuous and discrete dynamics). Some sufficient Lya-
punov conditions for stability/instability of hybrid sys-
tems are presented. The utility of the proposed theory
is demonstrated on an example. Extensions to different
robotic systems are planned in future works.
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