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Abstract: We study the problem of straight-line path following for fully actuated marine craft. We
propose a controller that adjusts the speed of the marine craft according to the geometric distance and
the rate of convergence to the path. The control law is derived using the method of least squares, which is
used to find an approximate solution for overdetermined systems. The conditions under which the closed-
loop system is globally asymptotically stable are found. Moreover, a method to ensure zero cross-track
error in the presence of ocean currents is proposed. The stability proof relies on the theory of cascaded
systems. The effectiveness of the method is verified by performing computer simulations.
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1. INTRODUCTION

In marine applications, path following is referred to the task
of forcing a marine craft to follow a geometric path without
imposing a timing law; i.e. it is not specified when the craft has
to be at a given point on the path. Path following of marine craft
is required in many operations such as cable laying, towing,
and dredging, and control systems must be designed in a way
that they act accurately and cost-effectively. In this sort of
operations, fully actuated marine craft are typically employed.

A great of number of articles have been published on motion
control of marine craft. Much of the work on path following
is rooted in the work of Samson (1992) where land robots
are considered. The path maneuvering problem addressed in
(Hauser and Hindman, 1997) was generalized by Skjetne et al.
(2004) where the geometric task of regulating the position and
orientation is decoupled from the dynamic task of controlling
the speed of the craft along the path.

In maritime applications, a classical method for path following
is to define an error space using the concept of Serret-Frenet
frame; e.g. see (Encarnacao et al., 2000; Lapierre and Soetanto,
2007). The principles of guidance-based path following were
reviewed in (Breivik and Fossen, 2005a). A nonlinear adap-
tive path-following controller was proposed for fully actuated
vessels in (Almeida et al., 2007) to cope with ocean currents.
To deal with modeling uncertainties, Kaminer et al. (2005)
proposed a robust path-following controller for fully actuated
marine vehicles. Fossen (2011) provides a profound insight into
marine control systems.

Generally, path-following controllers for marine craft com-
prise decoupled speed controllers and heading autopilots; e.g.
(Fredriksen and Pettersen, 2006; Breivik and Fossen, 2005b).
As a result, the controller always tries to maintain the speed
as desired even if the marine craft does not move on the path.
This is while a captain may change the speed according to the
distance to the path and the rate of convergence.

Peymani and Fossen (2012) proposed a controller based on
backstepping such that the control system increases the forward
velocity when the craft is not on the path. In the present paper,
the authors provide an alternative controller which modifies
the speed according to the geometric error, which is the error
between the craft and a desired point on the path.

The main contribution of this paper is to propose a 2-
dimensional path-following controller that is capable of ma-
nipulating the speed of the marine craft when the craft is off
the path. In fact, the speed of the craft depends on the geo-
metric error and its derivative. It is also shown that the pro-
posed controller enhances robustness with respect to external
disturbances. A method is, moreover, introduced to make the
craft move on the path in the presence of constant external
disturbances by sacrificing the speed assignment task; indeed,
we propose a method to resolve the inherent drawback of those
path-following controllers that are based on the line-of-sight
guidance system.

2. PROBLEM STATEMENT

The paper deals with the path-following problem for 3-DOF
marine craft. Particularly, a controller is designed such that
a marine vehicle converges to and follows a desired path; it
imposes a set of geometric constraints on the position and
orientation of the vehicle. In addition, path following requires
that the speed of the vehicle tracks a desired nonzero speed
profile. As moving on the path is more important than moving
with the desired speed, the geometric task takes precedence
over the speed-assignment task. According to Skjetne et al.
(2004), these two tasks can be executed separately.

2.1 Model of 3-DOF Marine Craft

Consider the vehicle pose q = [pT,ψ]T where p = [x,y]T ∈ R2

is the earth-fixed position and ψ ∈ S is the yaw angle. Let
ν = [u,v,r]T ∈ R3 where u and v are the components of the
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speed expressed in the body-fixed reference frame, denoted
{b}, and r is the angular velocity around the z-axis of {b}. Let
J(ψ) = diag{R(ψ),1} be the rotation matrix from {b} to the
inertial reference frame. The matrix R(ψ) is given by

R(ψ) =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]
∈ SO(2) (1)

According to Fossen (2011), the dynamic equations of motion
are described by

q̇ = J(ψ)ν (2a)
Mbν̇ +Cb(ν)ν +Db(ν)ν = τb (2b)

in which Mb = MT
b > 0, Ṁb = 0, Cb = −CT

b , and Db > 0.
Homogeneous mass distribution and xz-plane symmetry are
presumed, and the surge is assumed to be decoupled from
the sway-yaw subsystem; thus, the system matrices take the
following structures

Mb =

[m11 0 0
0 m22 m23
0 m23 m33

]
, Db =

[ d11 0 0
0 d22 d23
0 d23 d33

]
(2c)

Cb =

[ 0 0 −(m22v+m23r)
0 0 m11u

(m22v+m23r) −m11u 0

]
(2d)

where damping is assumed to be linear. In (2b), τb, [τu,τv,τr]
T

represents the vector of generalized forces, expressed in {b},
which captures the forces and moments due to actuators as well
as due to external disturbances.

2.2 Guidance System

A guidance system is required to provide the desired heading
so that the vessel moves toward the path smoothly. In fact, the
guidance system maps the desired position onto the desired
heading angle. We employ the line-of-sight (LOS) guidance
system (Fossen, 2011, Ch.10). Consider a straight-line path
connecting the points pk and pk+1. The slope of the path
is denoted ψk. Also consider a path-fixed reference frame,
represented by {pk}, that originates at pk. Its x-axis has been
rotated by a positive angle ψk.

Let plos = [xlos,ylos]
T be the desired point on the path that the

vessel has to reach at each time instant. To find the point plos,
the lookahead-based steering method (Fossen, 2011) is utilized,
in which plos is a point on the path which is located a lookahead
distance ∆> 0 ahead of the direct projection of p onto the path.
See Fig. 1. The LOS vector is the vector from p to plos. The
LOS angle, denoted ψlos, is the angle that the LOS vector makes
with the x-axis of the inertial frame.

Let e(t) denote the cross-track error, and let s(t) be the along-
track error. Defining ε , [s,e]T, one can find

ε = R(ψk)
T (p− pk) (4)

The objective is to align the x-axis of {b} with the LOS vector.
Equivalently, the heading (yaw) angle has to track the LOS
angle, which is computed using:

ψlos = ψk +ψr (5)
where the relative angle (approach angle) ψr is found using:

ψr = arctan
(
− e

∆

)
(6)

This work focuses on straight-line paths. The result can be
extended to waypoint tracking where the path is described by a
set of points connected by straight-line segments; see (Fossen,
2011, Ch.10).
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Fig. 1. The geometric representation of the straight-line path-
following problem.

2.3 Problem Formulation

The primary objective is to converge to the path and follow it.
Convergence to the path, which is referred to as the geometric
task, is formulated as

lim
t→∞

e(t) = 0 (7a)

The marine craft should converge to the path smoothly; so, the
heading angle has to track a desired angle; that is:

lim
t→∞

(ψ−ψd) = 0 (7b)

We choose the desired heading angle as ψd = ψlos. The sec-
ondary objective is to regulate the speed to a desired value; it is
stated as:

lim
t→∞

(u−ud) = 0, lim
t→∞

v = 0 (7c)

By the secondary objective, we mean that the dynamic task of
speed assignment has less importance than the geometric task,
and it can be sacrificed so as to have the main objective satisfied.

Path-following Problem. Consider a 3-DOF fully-actuated
marine craft described by (2). Given a path and a desired speed
ud, the problem is to find a stabilizing controller such that the
objective (7) is achieved. J

The standard solution for the path-following problem is to
design a speed controller decoupled from a heading autopilot;
see e.g. (Fredriksen and Pettersen, 2006; Fossen et al., 2003).
However, in this paper, we intend to find a controller such that
the speed depends on the cross-track error and its derivative.
Problem 1. Solve the Path-following Problem where u has to
track u∗d(ud,e) that has to be specified appropriately such that
u∗d→ ud as time tends to ∞. J

3. CONTROL DESIGN METHOD

The control law is designed in two steps. In the first step, the
accelerations that are required for an exponential convergence
to the path are derived. The second step is devoted to find the
accelerations that satisfy (7b) and (7c). Finally, the control laws
are derived based on the method of least squares, which is
utilized to find the best approximate for the achieved acceler-
ations.

3.1 Accelerations to Make Cross-track Error zero

We aim to make the cross-track error e(t) converge to zero as
time tends to infinity. Let ρ1(ψ), ρ2(ψ), and ρ3 be as
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ρ1(ψ)T = [cos(ψ), −sin(ψ), 0]
ρ2(ψ)T = [sin(ψ), cos(ψ), 0]
ρ

T
3 = [0, 0, 1]

⇒ J(ψ) =

 ρ1(ψ)T

ρ2(ψ)T

ρ
T
3


According to (4),

ė = ρ2(γ)
T

ν , ë = ρ2(γ)
T

ν̇ + ρ̇2(γ)
T

ν (8)

in which γ = ψ−ψk. The objective is recast to make X = [e, ė]T
globally asymptotically/exponentially stable (GAS/GES) at the
origin. The dynamics of X is given by:

Ẋ = AX +Bue where A =

[
0 1
0 0

]
, B =

[
0
1

]
(9)

The virtual control input ue is utilized to stabilize e at the
origin. As the pair (A,B) is controllable, there exists a vector
Ke = [ke1, ke2]

T such that the state-feedback control law

ue =−KT
e X (10)

renders the equilibrium point (X = 0) GES. In fact, there exits
Pe = PT

e > 0 and Ve = XTPeX such that V̇e < 0 for X 6= 0.
Closing the loop with (10) and considering (8), it follows that

ρ2(γ)
T

ν̇−σe = 0 where σe =−ρ̇2(γ)
T

ν− ke2ė− ke1e (11)
Eq. (11) yields the desired accelerations that make the vehicle
converge to the path with an exponential rate. It places no
constraints on the rate of rotation (i.e. ṙ).

3.2 Accelerations to Achieve Heading and Speed Objectives

Define z0 , ψ−ψd. Then, ż0 = ψ̇− ψ̇d = ρT
3 ν− ψ̇d. Consider

V1 =
1
2 z2

0 and differentiate it in time:

V̇1 = z0ż0 = z0(ρ
T
3 ν− ψ̇d) (12)

To regulate z0 to zero, the system velocities ν are chosen as
virtual control inputs; we define ν , z+α where the new state
variables z and the vector of stabilizing functions α are as

z = [ z1, z2, z3 ]
T
, α = [ α1, α2, α3 ]

T

Therefore, (12) can be written as
V̇1 = z0(ρ

T
3 z+α3− ψ̇d) (13)

Choosing α3 = ψ̇d− k0z0 yields

V̇1 =−k0z2
0 + zT

ρ3z0, k0 > 0 (14)
Now, the goal is to stabilize z at the origin. Choose α2 = 0
and α1 = ud. It implies that if z→ 0, u and v will converge
to α1 and α2, respectively. The dynamics of z are given by
ż = ν̇ − α̇ . Consider V2 = V1 +

1
2 zTz and differentiate V2 along

the trajectory of the system (z0,z):

V̇2 =−k0z2
0 + zT(ρ3z0 + ν̇− α̇) (15)

Let σ z = α̇−ρ3z0−Kz where K , diag{k1,k2,k3}> 0. There-
fore, if the constraint

ν̇−σ z = 0 (16)
holds, it turns out that

V̇2 =−k0z2
0− zTK z< 0, ∀z0 6= 0,∀z 6= 0 (17)

3.3 Accelerations to Achieve All Objectives

In view of (11) and (16), one may write:
H(γ)ν̇ = b(γ,φ) (18)

in which φ , [e, ė,z0,zT]T, and

H(γ) =

[
I3

ρ2(γ)
T

]
, b(γ,φ) =

[
σ z
σe

]
(19)

where Ii is the i× i identity matrix. Define
Hb(γ), H(γ)TH(γ) = I3 +ρ2(γ)ρ2(γ)

T (20)

which is non-singular ∀γ . Therefore, H−1
b (γ) exists and

H−1
b (γ) = I3−

1
2

ρ2(γ)ρ2(γ)
T (21)

To find ν̇ , both sides of (18) are pre-multiplied by H̄(γ) =

H−1
b (γ)H(γ)T. It gives rise to:

ν̇ = H̄(γ)b(γ,φ) (22)
One may perceive H̄ as the Moore-Penrose psuedoinverse of
H. Substituting (22) in the equations of motion (2b) gives the
control forces that are required to make the marine craft have
the acquired acceleration (22). The control laws are given by

τ
p
b = MbH̄(γ)b(γ,φ)+Cb(ν)ν +Db(ν)ν (23)

The solution for ν̇ exists if and only if b ∈ im H, which is not
valid in general. Equation (22) yields the best approximate for
ν̇ such that the function ‖H(γ)ν̇−b(γ,φ)‖2 is minimized. One
should notice that taking the Lyapunov function V = Ve +V2
is therefore meaningless, and it cannot be used to establish
the stability of the closed-loop system. Hence, it is crucial to
investigate the stability of the closed-loop system under the
derived control law.

4. MAIN RESULT

In this section, we study the stability of the closed-loop system.
To facilitate analysis, we make a change in the control law (23).
Clearly, ρ̇2(γ)

T = γ̇ρ1(γ)
T. On the other hand, according to

(4), ρ1(γ)
Tν = ṡ(t) which is the speed of the craft along the

path. We replace ρ1(γ)
Tν with ud, which is reasonable since

the vehicle is supposed to move along the path with the desired
speed. Accordingly, (11) is altered to (is replaced with)

σ
∗
e =−γ̇ud− ke2ė− ke1e (24)

Then, we define b∗ = [σT
z ,σ

∗
e ]

T and use b∗ instead of b in (18).
It gives rise to the following control law

τ
∗
b = MbH̄(γ)b∗(γ,φ)+Cb(ν)ν +Db(ν)ν (25)

Theorem 1 provides a solution for Problem 1.
Theorem 1. Let ud and ∆ be positive constants. Apply the
control law (25) to the system (2). The origin (e,z0,z) = 0 is
globally asymptotically stable if

T1.1 k0,k3,ke1 > 0 and ke2 > ud/∆;
T1.2 k1 = k2 = k such that k > 3udk2

e2/(4ke1∆).

Proof. The proof of the theorem relies on the theory of non-
linear composite systems (Jankovic et al., 1996). We find the
closed-loop equations. In view of (21), one can write

H̄ = (HTH)
−1

HT =
[

I3− 1
2 ρ2ρ

T
2 ,

1
2 ρ2

]
(26)

where we have dropped the argument γ . From ν̇ = H̄(γ)b∗(γ,φ),
it follows that

ν̇ = (I3− 1
2 ρ2ρ

T
2 )(α̇−ρ3z0−K z)− 1

2 ρ2(γ̇ud + ke2ė+ ke1e)
One may find γ̇ = z3 + ψ̇d − k0z0. Recalling ψd = ψlos, it is
straightforward to show that ψ̇d = ψ̇r; thus, we obtain

ψ̇d =−
∆

e2 +∆2 ė (27)

Also, notice that

ρ2ρ
T
2 =

 sin2(γ) sin(γ)cos(γ) 0
sin(γ)cos(γ) cos2(γ) 0

0 0 0


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Since α̇1 = α̇2 = 0, we obtain ρ2ρT
2 α̇ = 0. Moreover, one may

find that ρ2ρT
2 σ z and ρ2σe do not influence ż3. Find ρ̄ i(ψ) for

i = 1,2 such that

ρ i(ψ) = [ρ̄ i(ψ)T,0]T for i = 1,2 (28)

Define z̄, [z1,z2]
T. The closed-loop equations are:

Σ2 :
{

ż0 =−k0z0 + z3

ż3 =−z0− k3z3

(29a)
(29b)

˙̄z =−(I2−
1
2

ρ̄2(γ)ρ̄2(γ)
T)K̄z̄− 1

2
ρ̄2(ke2ė+ ke1e)

+
1
2

ρ̄2ud
∆ė

e2 +∆2 −
1
2

ρ̄2(z3− k0z0)ud (30)

It is required to include ė since (30) depends on it. According
to (8), ė = usin(γ)+ vcos(γ). Note that γ = ψ−ψk = z0 +ψr.
Thus, one can write

sin(z0 +ψr) = sin(ψr)+gsin(e,z0)z0 (31a)
cos(z0 +ψr) = cos(ψr)+gcos(e,z0)z0 (31b)

Functions gsin(e,z0) and gcos(e,z0), given in Appendix A, are
globally bounded. According to the guidance system, we have

sin(ψr) =
−e√

e2 +∆2
, cos(ψr) =

∆√
e2 +∆2

(32)

Define ζ , [z0,z3]
T and ξ , [e,z1,z2]

T. Now, we are ready to
express the dynamics of the cross-track error and recast (30):

ė =− ud + z1√
e2 +∆2

e+
z2∆√

e2 +∆2
+ge(ξ ,ζ )ζ (33a)

˙̄z =−K̄z̄(ψr)z̄− 1
2 ρ̄2(ψr)ke1e

+ 1
2 ρ̄2(ψr)Ω1(

ud + z1√
e2 +∆2

e− z2∆√
e2 +∆2

)+gz̄(ξ ,ζ )ζ (33b)

where gz̄(ξ ,ζ ) and ge(ξ ,ζ ) are given in Appendix A, and

K̄z̄(ψr) = (I2−
1
2

ρ̄2(ψr)ρ̄
T
2 (ψr))K̄ (34)

Ω1 = ke2−
∆

e2 +∆2 ud (35)

in which K̄ = diag{k1,k2}. Hence, the closed-loop system,
comprising (29) and (33), is a nonlinear composite system,
which can be written as

ξ̇ = f (ξ )+g(ξ ,ζ ) (36a)

ζ̇ = A2 ζ (36b)
where f (ξ ), g(ξ ,ζ ) and A2 are found from (33) and (29). In
other words, the system described by (33) is regarded as a
nonlinear system cascaded with the linear system described by
(29) through the interconnection term

g(ξ ,ζ ) =
[

ge(ξ ,ζ )
gz̄(ξ ,ζ )

]
ζ (37)

To prove the global asymptotic stability of (ξ ,ζ ) = 0, we
invoke (Seibert and Suarez, 1990, Corollary 4.3) and (Jankovic
et al., 1996, Lemma 1).

The perturbing system Σ2 described by (29) is globally ex-
ponentially stable if k0,k3 > 0. This is established by choos-
ing a positive definite, radially unbounded Lyapunov function
W2 = z2

0 + z2
3.

Lemma 1 formally expresses the circumstances under which
the origin of (33) when ζ = 0 (i.e. the origin of the system
ξ̇ = f (ξ )) is established to be globally asymptotically stable.

Lemma 1. Under conditions T1.1 and T1.2, the origin of the
unperturbed system (33) (i.e. when ζ = 0) is globally asymp-
totically stable. It is established using a quadratic Lyapunov
function.

Proof. See Appendix B.

Thus, from (Seibert and Suarez, 1990, Corollary 4.3), it is
observed that the origin of the closed-loop system (36) is GAS
if all the solutions are bounded. To prove boundedness of all the
solutions, we show that the conditions of (Jankovic et al., 1996,
Lemma 1) hold.

The interconnection term g(ξ ,ζ ), given by (37), vanishes at
ζ = 0 and is globally Lipschitz in ξ for any fixed ζ . It follows
from Property 1 in Appendix A that g(ξ ,ζ ) has linear growth
in ξ . According to Lemma 1, a radially unbounded polynomial
Lyapunov function is used to prove GAS of the unperturbed
system (33). Hence, all the solutions are globally bounded
according to (Jankovic et al., 1996, Lemma 1) and (ξ ,ζ ) = 0
is GAS according to (Seibert and Suarez, 1990, Corollary 4.3).
The proof is now complete. �

According to Assumptions T1.1 and T1.2, the controller gains
ke1, ke2, k0, k1, k2 and k3 can be found for any choice of the
desired speed ud > 0 and the lookahead distance ∆> 0.

4.1 Properties of Proposed Controller

Now that we have established that the proposed control law
accomplishes the objectives, we elucidate the properties of the
controller.

a. Manipulation of Speed The proposed controller (25) mod-
ifies the speed of the marine craft when the cross-track error, e,
is nonzero. To see how it happens, using (26), one may show
that the control law can be decomposed into two distinct parts:

τ
∗
b = τn + τe (38)

where
τn = Mbσ z +(Cb(ν)+Db(ν))ν

τe =
1
2

Mbρ2(γ)
(
−ρ2(γ)

T
σ z +σ

∗
e
)

The control law τn is the control law that one obtains if (11)
is not considered. Much of work on path following of marine
craft introduces such controllers; for example, (Fredriksen and
Pettersen, 2006; Fossen et al., 2003) which can be adapted
easily for fully actuated vehicles. The control force τn intends
to regulate z0 and z.

However, in the proposed path-following controller, τe makes a
difference. The term σ∗e is nonzero when e and ė are nonzero.
On the other hand, due to the structure of ρ2(γ), τe only affects
the dynamics of the linear velocities, and does not influence the
heading dynamics. Hence, the proposed controller modifies the
speed of the craft in case the geometric error is nonzero, and
the speed assignment objective is sacrificed so as to fulfil the
path-following (geometric) task.

b. Robustness to Ocean Currents The proposed method
makes the geometric task robust with respect to external dis-
turbances to some extent because the controller changes the
vehicle’s speed when e 6= 0. More important, it is possible to
obtain zero cross-track error in the presence of constant dis-
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turbances by means of augmentation of integral action to the
control system. Augment

ėI = ud
e√

e2 +∆2
(39)

to the system described by (8). In (11), replace σe with σe,I
which is given by

σe,I = γ̇ud + ke2ė+ ke1e+ ke0eI (40)
in which, with an argument similar to the previous sec-
tion, ρ̇2(γ)

Tν has been replaced with γ̇ud. Then, form b∗I =
[σT

z ,σe,I]
T and use it to derive the control law
τ
∗
b,I = MbH̄(γ)b∗I (γ,φ)+Cb(ν)ν +Db(ν)ν (41)

Theorem 2 states the result formally.
Theorem 2. Let ud and ∆ be positive constants. Apply the
control law (41) to system (2). Global asymptotic stability
(GAS) of (eI,e,z0,z) = 0 is guaranteed if

T2.1 k0,k3 > 0, ke1 > ke0 > 0 and ke2 > ud/∆;
T2.2 k1 = k2 = k such that k > 3udk2

e2/(4∆(ke1− ke0)).

Proof. See Peymani (2013).

5. SIMULATION RESULTS

A ship’s model is chosen according to (2) where

Mb =

[ 2376.4 0 0
0 3949.9 2891.8
0 2891.8 3349.8

]
,Db =

[ 354 0 0
0 346.8 −435.8
0 686.1 1427.2

]
The initial conditions are chosen as q(0) = [10, −250, π/4]T

and ν(0) = [1, 0, 0]T. The objective is to converge to and
follow a straight-line path which is parallel to the y-axis of {i},
40 meters to the north. It is assumed that there exists a current
flow whose speed expressed in {i} is Uc = [+.75, 0, 0]T(m/s).
The relative velocity νr = ν − J(ψ)TUc is considered in the
simulation model, which is different from the control model.
We choose ud = 2 (m/s) and ∆ = 20 (m). Thus, ke2 > 0.1;
we choose ke1 = 2 and ke2 = 1. If integrator is considered,
ke0 = 0.5. Then, T2.2 implies that k > 3; we choose k = 10.
Also, k0 = 3 and k3 = 1. It is observed that the conditions of the
theorems are not restrictive for practical situations.

We make a comparison between a controller with integral ac-
tion (labeled with ‘LS with integral action’) and a controller
without considering integral action (labeled with ‘LS without
integral action’) to discern the disturbance rejection proper-
ties of the control systems. We also run simulations with the
method presented in (Fossen et al., 2003) (labeled with ‘Stan-
dard method’) but we adapted the method for fully actuated
vessels. The result is shown in Figs. 2 and 3.

As expected, the least-squares approach with augmentation
of integral action results in zero steady-state cross-track error
while the other errors are nonzero. It is also realized that
the least-square approach leads to faster convergence with
respect to the standard method. As explained before, the explicit
incorporation of the geometric error in the design of the speed
loop will lead to more robust response to external disturbances
as the steady-state cross-track error is smaller than that of the
standard method.
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Appendix A. REQUIRED RELATIONS

Denote q1 = sin(z0)
z0

and q2 = cos(z0)−1
z0

, which are well-defined
functions and globally bounded. Considering (31), we have

gsin(ψr,z0) = q1 cos(ψr)+q2 sin(ψr)

gcos(ψr,z0) =−q1 sin(ψr)+q2 cos(ψr)

In this regard, one may find

ρ̄2(γ) = ρ̄2(ψr)+Rg(ψr,z0)ζ

in which Rg = [ρ̄2g(ψr,z0), 0] where

ρ̄2g(ψr,z0) =

[
gsin(ψr,z0)
gcos(ψr,z0)

]
Accordingly, in (33a), one may find

ge(ξ ,ζ ) = [(ud + z1)gsin(ξ ,ζ )+ z2gcos(ξ ,ζ ), 0]

The function gz̄(ξ ,ζ ) in (33b) is equal to

gz̄(ξ ,ζ ) =
1
2 ρ̄2(γ)([k0ud, −ud]−Ω1ge(ξ ,ζ ))− 1

2 G∗z̄ (ξ ,ζ )

− 1
2Rg(ke1e+Ω1(ud + z1)sin(ψr)+Ω1z2 cos(ψr)))

where G∗z̄ (ξ ,ζ ) = [Gz0(ξ ,ζ )K̄z̄, 0] in which

Gz0(ξ ,ζ )z0 = ρ̄2(γ)ρ̄
T
2 (γ)− ρ̄2(ψr)ρ̄

T
2 (ψr)

is a 2×2 matrix. Let gz̄,i j be element (i, j) of Gz0(ξ ,ζ ). Then,
one may find

gz̄,11 = z0g2
sin(ψr,z0)+2gsin(ψr,z0)sin(ψr)

gz̄,22 = z0g2
cos(ψr,z0)+2gcos(ψr,z0)cos(ψr)

gz̄,12 = gz̄,21 = gsin(2ψr,2z0)

The following property is easily established.
Property 1. ge(ξ ,ζ ) and gz̄(ξ ,ζ ) grow linearly in ξ ; i.e.

‖gx(ξ ,ζ )‖ ≤ σx1(‖ζ‖)+σx2(‖ζ‖)‖ξ‖, x = e, z̄

where σx1,σx2 : [0,∞)→ [0,∞) are continuous. �

Appendix B. PROOF OF LEMMA 1

According to T1.1, Ω1, given by (35), is always a positive
value; i.e. ke2 >Ω1 ≥Ω∗1 > 0,∀e.

Property 2. Considering a nonzero vector x = [x,y]T, the next
inequality holds

xT(I2−
1
2

ρ̄2(ψr)ρ̄
T
2 (ψr))x≥

1
2

xTx �

Rewrite ρ̄2(ψr) in view of (32). For the sake of clarity, define

Γ,
1√

e2 +∆2
and Π, Γ2. Then, (33b) is recast as:

˙̄z =−K̄z̄(ψr)z̄−
[
−e
∆

](
ke1Γe

2
− Ω1Π

2
((ud + z1)e−∆z2)

)
Let k1 = k2 = k. Choose V1 =

1
2

z̄TK̄z̄ where K̄ = kI2 > 0.
Differentiation yields

V̇1 =−K̄K̄z̄(ψr)z̄+
k
2
(ke1Γ−Ω1Πud)(e2z1− ez2∆)

− kΩ1

2

(
e2z2

1
e2 +∆2 −

2ez1z2∆

e2 +∆2 +
∆2z2

2
e2 +∆2

)
(B.1)

Choose V2 =
1
4

kke1e2 where ke1 > 0 and take derivative along
the solution of (33a):

V̇2 =−
kke1Γ

2
ude2− k

2
ke1Γ

(
e2z1− ez2∆

)
(B.2)

Select V = V1 +V2 as a positive definite, radially unbounded
Lyapunov function candidate, and take derivative with respect
to time. In light of the fact that the second line of (B.1) is non-
positive, V̇ is bounded by:

V̇ ≤−1
2

k2z̄Tz̄− kke1Γud

2
e2 +

kΩ1Πud

2
(e2|z1|+ |e||z2|∆)

As 0< ∆Γ≤ 1 for all e, the next inequalities hold
−Γ≤−∆Π ⇒ ∆Π≤ Γ (B.3)

Therefore, we obtain a bound on V̇ as

V̇ ≤−1
2

k2z̄Tz̄− kke1∆Πud

2
e2

+
kΩ1Πud

2
e2|z1|+

kΩ1Γud

2
|e||z2| (B.4)

One can write it as

V̇ ≤−1
2

k2z̄Tz̄− kke1∆Π

3×2
ude2− kke1∆Π

3×2
ude2

+
kΩ1Πud

2
e2|z1|−

kke1∆Π

3×2
ude2 +

kΩ1Γud

2
|e||z2|

=−1
2

k2z̄Tz̄− kke1∆Π

3×2
ude2− kud

2
Πe2(

ke1∆

3
−Ω1|z1|)

− kud

2
(

ke1∆e2Γ2

3
−Ω1|z2||e|Γ)

and complete the squares. As Πe2 =
e2

e2 +∆2 < 1, we obtain

V̇ ≤−kke1ud∆

3×2
e2

e2 +∆2 −
k
2
(k− 3udΩ2

1
4ke1∆

)(z2
1 + z2

2)

Under assumption T1.2, V̇ < 0 for nonzero z1,z2 and e, which
proves the unforced system (33) is GAS at zero.
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