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Abstract: Semiconcave control Lyapunov functions for globally asymptotic stabilizing control-
lable systems are available. However, a semiconcave control Lyapunov function for nonholonomic
systems has not been proposed yet. For a two-wheeled mobile robot, we construct a homogeneous
semiconcave control Lyapunov function and a control law with the function. The advantages of
the proposed method are confirmed by computer simulation.

1. INTRODUCTION

Stabilization of a nonholonomic system is difficult because
the system cannot be stabilized by any static continuous
feedback controller. Moreover, there are no smooth control
Lyapunov functions available.

For every globally asymptotically stabilizable system,
there always exist semiconcave control Lyapunov functions
(CLFs)[1]. However, a semiconcave CLF for nonholonomic
systems has not been proposed even for a Brockett inte-
grator.

The present paper proposes a semiconcave CLF for a
Brockett integrator. Then, we show that the proposed CLF
is a homogeneous function with dilation. Moreover, we
propose a controller based on the proposed CLF such that
the exponential stability is guaranteed.

The chained system is equivalent to the Brockett integra-
tor under a coordinate transformation. We also show a
semiconcave CLF for the chained system.

Finally, we apply the proposed CLF and controller for
a stabilization problem of a two-wheeled mobile robot.
The advantages of the proposed method are confirmed by
computer simulation.

This paper is organized as follows. We summarized def-
initions and basic properties that are used in Section 2.
We state the problem discussed in the paper and the main
results in Section 3. We demonstrate the effectiveness of
the proposed method by computer simulation in Section
4. Section 5 shows the conclusion of this paper.

2. PRELIMINARY

We introduce basic definitions of mathematical terms and
their fundamental properties. Throughout the paper, we
⋆ This work was supported by JSPS Grant-in-Aid for Scientific
Research(B) (23360185)

use a signum function defined as follows:

sgnx =

{
1, x > 0
0, x = 0

−1, x < 0
. (1)

We denote a scalar product by ⟨·, ·⟩.

2.1 Control System

We consider the following input-affine nonlinear control
system

ẋ = f(x) + g(x)u, (2)

where x ∈ Rn is a state and u ∈ Rm is an input.

Particularly, the following input symmetrically affine sys-
tem is the center of interest of the paper:

ẋ = g(x)u. (3)

gi(x) denotes the ith column vector of g(x).

Definition 1. (Carathéodory Solution). [7] Consider the
following differential equation:

ẋ = f(x). (4)

A function x(t) is called a Carathéodory solution of (4) on
the interval I ⊂ [0,+∞) if it is absolutely continuous on
every compact subinterval of I and satisfies

ẋ = f(x(t)) a.e. t ∈ I. (5)

2.2 Homogeneous System[3]

Definition 2. (Dilation) Let ε > 0. The mapping ∆r
εx =

[εr1x1, ..., ε
rnxn], ∀x ∈ Rn\ {0} is said to be a dilation on

Rn, where r = [r1, r2, ..., rn] is a constant vector satisfying
0 < ri < ∞(i = 1, ..., n). Note that we often refer to r as
a dilation exponent.

Definition 3. (Homogeneous Function) A function V :
Rn → R is said to be homogeneous of degree k ∈ R with
respect to the dilation ∆r

εx if V (∆r
εx) = εkV (x).
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Definition 4. (Homogeneous System) System ẋ = f(x) +
g(x)u is said to be homogeneous of degree τ ∈ R
with respect to the dilations ∆r

εx and ∆s
εu if f(∆r

εx) +
g(∆r

εx)∆
s
εu = ετ∆r

ε {f(x) + g(x)u}.
Definition 5. (Homogeneous Norm): The function ∥x∥{r,p}
=

(∑n
i=1 |xi|p/ri

)1/p
(x ∈ Rn) is said to be a homogeneous

p-norm.

Note that the homogeneous norm is a homogeneous func-
tion of degree 1 with respect to dilation exponent r for all
p > 0.

Lemma 1. We suppose that the system (4) is homogeneous
of degree τ and always has a Carathéodory solution for
every initial condition, and the origin is asymptotically
stable. Then, the following statements are true:

(S1) If τ > 0, there exists a positive constant d > 0 such
that for any solution x(t) and all t ≥ 0

∥x(t)∥{r,p} ≤ d
(
1 + ∥x(0)∥τ{r,p}t

)−1/τ

∥x(0)∥{r,p}.
(6)

(S2) If τ = 0, there exist positive constants d1, d2 > 0 such
that for any solution x(t) and all t ≥ 0

∥x(t)∥{r,p} ≤ d1e
−d2t∥x(0)∥{r,p}. (7)

(S3) If τ < 0, the origin is finite-time stable.

For homogeneous functions, the following lemma holds:

Lemma 2. Consider a homogeneous function V : Rn → R
of degree k > 0 with respect to dilation exponent r. Then
if V is positive definite, V is a proper function.

Proof 1. Note that a set
{
x| ∥x∥{r,2} = 1

}
is compact, and

a constant V1 defined as follows is well defined:

V1 = min
x∈{x| ∥x∥{r,2}=1}

V (x). (8)

Because V is positive definite, V1 > 0. For every x ∈ Rn,
there exists x0 ∈

{
x| ∥x∥{r,2} = 1

}
and ε > 0 such that

x = ∆r
εx0. Note that the homogeneous norm is a homoge-

neous function of degree 1; ∥x∥{r,2} = ∥∆r
εx0∥{r,2} = ε.

Let L be a positive constant and consider x ∈ Rn such
that V (x) ≤ L. Then, the following inequality holds:

V (x) = V (∆r
εx0) = εkV (x0) ≥ εkV1. (9)

Therefore,

∥x∥{r,2} ≤
(
V (x)

V1

)1/k

≤
(

L

V1

)1/k

(10)

for every x ∈ {x|V (x) ≤ L}.
Consequently, the set {x ∈ Rn|V (x) ≤ L} is bounded for
every L > 0.

Note that V is a continuous function. V −1 ([0, L]) is a
closed set. Thus, {x ∈ Rn|V (x) ≤ L} is a bounded closed
set. Therefore, V is a proper function.

2.3 Semiconcave Function[4]

Definition 6. (Locally Semiconcave Function) A function
V : X → R is said to be locally semiconcave with linear
modulus if it is continuous and there exists C ≥ 0 such
that V (x) + V (y) − 2V ((x + y)/2) ≤ C∥x − y∥2 for all
x, y ∈ X, where X is an arbitrary convex compact subset

of Rn. The constant C above is called a semiconcavity
constant for V in X.

Theorem 1. [4] Let V : X → R be a locally semiconcave
function. Then V can be locally written as the minimum
of functions of class C1. More precisely, for any X ⊂ Rn

compact, there exist a compact set Θ ⊂ R2n and a
continuous function F : Θ×X → R such that F (θ, ·) is C1

for any θ ∈ Θ, the gradients DxF (θ, ·) are equicontinuous,
and

V (x) = min
θ∈Θ

F (θ, x),∀x ∈ X. (11)

Corollary 1. If V : X → R, with X open convex, is such
that V = V1 + V2, where V1 ∈ C1(X) and V2 is a locally
semiconcave function, V is also a locally semiconcave
function.

Proof 2. As V2 is semiconcave, for every compact set X ⊂
Rn V2 can be written as

V2(x) = min
θ∈Θ

F (θ, x), ∀x ∈ X, (12)

where Θ ⊂ R2n is an appropriate compact set. Hence,

V (x) = min
θ∈Θ

[V1(x) + F (θ, x)] , ∀x ∈ X. (13)

Therefore, V is a locally semiconcave function by Propo-
sition 3.4.1 in [4].

According to Theorem 1, the derivative of F plays an
important role in semiconcave function analysis. Hence,
we define the disassembled differential defined as follows:

Definition 7. (Disassembled Differential). Suppose that
V : X → R is a locally semiconcave function. Then, the
following set-valued map D̄V : X → 2TxX is said to be a
disassembled differential of V :

D̄V (x) =
{
dV̄θ(x)

∣∣ θ ∈ {θ ∈ Θ|V (x) = V̄θ(x)}
}
. (14)

2.4 Locally Semiconcave Control Lyapunov Function

[6]

Definition 8. (Locally Semiconcave Control Lyapunov
Function (CLF)) A locally semiconcave control Lyapunov
function for system (2) is a locally semiconcave function
V : X → R such that the following properties hold.

(A1) V is proper; that is, the set {x ∈ X|V (x) ≤ L} is
compact for every L > 0.

(A2) V is positive definite; that is , V (0) = 0, and
V (x) > 0 for all x ∈ X\ {0}.

(A3) For arbitrary R2 > R1 > 0, there exist a compact
set Ū ⊂ U , a positive real constant Q and a
discontinuous mapping p : X → TxX such that
p(x) ∈ D̄V (x), and

min⟨p(x), f(x, u)⟩ < −Q, ∀x ∈ {x|R1 ≤ V (x) ≤ R2}.
(15)

3. HOMOGENEOUS CONTROL LYAPUNOV
FUNCTION FOR BROCKETT INTEGRATOR

3.1 Brockett integrator[2]

The present paper considers asymptotic stabilization prob-
lem of the Brockett integrator defined as follows:

Copyright © 2013 IFAC 93



ẋ =

[
ẋ1

ẋ2

ẋ3

]
=

[
u1

u2

x2u1 − x1u2

]

=

[
1
0
x2

]
u1 +

[
0
1

−x1

]
u2

= g1(x)u1 + g2(x)u2, (16)

where x = [x1, x2, x3]
T ∈ X = R3 is a state and u =

[u1, u2]
T ∈ U = R2 is an input. According to the definition

of the homogeneous system, we can confirm that (16) is
homogeneous of degree k = 0 with respect to the dilation
exponent r = [1, 1, 2] and s = [1, 1].

Note that the Brockett integrator is a canonical system of
the nonholonomic systems; there does not exist any contin-
uous static feedback controller for asymptotic stabilization
at the origin.

On the contrary, every stabilizable system including a
nonholonomic system attains a semiconcave CLF; how-
ever, a semiconcave CLF for nonholnomic systems was not
proposed, even for the Brockett integrator.

In the following main theorem of the paper, we propose a
semiconcave homogeneous CLF for a Brockett integrator:

Theorem 2. Consider system (16). Then, the following
function is a locally semiconcave homogeneous CLF of
degree τ = 4 with respect to dilation exponent r = [1, 1, 2]:

V (x) = x4
1 + x4

2 +
|x3|3(√

x2
1 + x2

2 +
√

|x3|
)2 . (17)

We prove the theorem in the following subsection.

3.2 Proof of Theorem 2

To prove Theorem 2, we use two lemmas.

Lemma 3. The function V defined by (17) is a homoge-
neous function of degree k = 4 with respect to the dilation
exponent r = [1, 1, 2].

Proof 3. Let the dilation exponent r be [1, 1, 2], and we can
obtain V (∆r

εx) = ε4V (x). Therefore, V is a homogeneous
function of degree k = 4 with respect to r.

Note that (17) is homogeneous with respect to the same
dilation exponent as the Brockett integrator (16).

Lemma 4. Function (17) is a locally semiconcave function.

Proof 4. In function (17), the first and the second terms
are clearly C2 functions. According to Corollary 1, func-
tion (17) is locally semiconcave if the last term is locally
semiconcave.

The last term in (17) can be written as follows:

|x3|3(√
x2
1 + x2

2 +
√
|x3|

)2

= min
θ∈[0,2π]

 |x3|3(
x1 cos θ + x2 sin θ +

√
|x3|

)2

 . (18)

Let F (θ, x) = |x3|3/
(
x1 cos θ + x2 sin θ +

√
|x3|

)2

. If

F (θ, x) are C2 for all θ ∈ [0, 2π], (17) is locally semiconcave
according to Theorem 1.

Indeed F is differentiable in the neighborhood of [x1, x2] =
[0, 0]. The first derivative of F with respect to x can be
calculated as follows.

∂F

∂x1
=

−2|x3|3 cos θ(
x1 cos θ + x2 sin θ +

√
|x3|

)3 ,

∂F

∂x2
=

−2|x3|3 sin θ(
x1 cos θ + x2 sin θ +

√
|x3|

)3 ,

∂F

∂x3
=

(
3x1 cos θ + 3x2 sin θ + 2

√
|x3|

)
x2
3 sgnx3(

x1 cos θ + x2 sin θ +
√

|x3|
)3 .

(19)

Note that all of the derivatives are continuously differen-
tiable. Similar to the first derivative, the second derivative
F is also continuous. Accordingly, the function F is C2 for
all θ ∈ [0, 2π].

From the foregoing discussion, it is seen that the function
V is a locally semiconcave function.

By using the preceding two lemmas, we can prove Theorem
2.

Proof 5. (Proof of Theorem 2). It is obvious that the func-
tion V is positive definite. Then by Lemmas 2 and 3, the
function V is proper.

Note that (17) is differentiable except that [x1, x2] = [0, 0].
Lie derivatives of the functions are obtained as (20), (21),
(22), and (23) in the next page. We design a discontinuous
function p as follows:

p(x) =


∂V

∂x
([x1, x2] ̸= [0, 0])

∂F

∂x
(0, x) ([x1, x2] = [0, 0])

. (24)

Then, ⟨p(x), g1(x)⟩ ̸= 0 and ⟨p(x), g2(x)⟩ ̸= 0 for all x.
Therefore, there exists u ∈ U such that ⟨p(x), f(x, u)⟩ <
0, ∀x. According to Lemmas 3 and 4 and Definition 8, V
is a locally semiconcave CLF.

Figure 1 illustrates the function V on x2 = 0, Figure 2 the
function V on x3 = 2.0, and Figure 3 the function V on
x3 = 1.0. By these figures, we can find discontinuity in V
on [x1, x2] = [0, 0].

3.3 Controller Design

In this paper, we choose the following controller for the
Brockett integrator (16).

u1 = − |⟨p(x), g1(x)⟩|1/3 sgn⟨p(x), g1(x)⟩,
u2 = − |⟨p(x), g2(x)⟩|1/3 sgn⟨p(x), g2(x)⟩. (25)

Then, the following lemma holds:

Lemma 5. Consider system (16) and controller (25). Then
there exists a Carathéodory solution for every x ∈ Rn.

By Lemma 5, we can apply a standard discussion to prove
the asymptotic stability as follows.
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Lg1V (x) =
∂V

∂x2
+

∂V

∂x3
x2

=4x3
1 −

2x1|x3|3(√
x2
1 + x2

2 +
√
|x3|

)3 √
x2
1 + x2

2

+
x2

(
3
√

x2
1 + x2

2 + 2
√
|x3|

)
x2
3 sgnx3(√

x2
1 + x2

2 +
√
|x3|

)3 , (20)

Lg2V (x) =
∂V

∂x2
− ∂V

∂x3
x1

=4x3
2 −

2x2|x3|3(√
x2
1 + x2

2 +
√
|x3|

)3 √
x2
1 + x2

2

−
x1

(
3
√

x2
1 + x2

2 + 2
√
|x3|

)
x2
3 sgnx3(√

x2
1 + x2

2 +
√
|x3|

)3 . (21)

Lg1F (θ, x) =− 2|x3|3 sin θ(
x1 cos θ + x2 sin θ +

√
|x3|

)3 +
x2

(
3x1 cos θ + 3x2 sin θ + 2

√
|x3|

)
x2
3 sgnx3(

x1 cos θ + x2 sin θ +
√
|x3|

)3 , (22)

Lg2F (θ, x) =− 2|x3|3 cos θ(
x1 cos θ + x2 sin θ +

√
|x3|

)3 −
x1

(
3x1 cos θ + 3x2 sin θ + 2

√
|x3|

)
x2
3 sgnx3(

x1 cos θ + x2 sin θ +
√
|x3|

)3 . (23)

-1

0

1
-1

0

1

0

0.5

1

1.5

x1

x3

V

Fig. 1. CLF for a Brockett integrator on x2 = 0

Theorem 3. Consider system (16) and controller (25).
Then the origin is exponentially stable.

Proof 6.

V̇ = − |⟨p(x), g1(x)⟩|4/3 − |⟨p(x), g2(x)⟩|4/3 < 0. (26)

Moreover, there does not exist a sequence such that

− |⟨p(xi), g1(xi)⟩|4/3 − |⟨p(xi), g2(xi)⟩|4/3 → 0 if xi → xn

except xn = 0. Hence, the origin is globally asymptotically
stable.

Furthermore, the closed-loop system is homogeneous of de-
gree 0 with respect to dilation exponent [1, 1, 2]. Therefore,
the origin is exponentially stable.

3.4 Chained system

A chained system defined as follows is another canonical
form of nonholonomic control systems:

-1

0

1 -1

0

1

1

2

3

4

x1

x2

V

Fig. 2. CLF for a Brockett integrator on x3 = 2.0
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0

1 -1

0

1

0

1

2

3

x1

x2

V

Fig. 3. CLF for a Brockett integrator on x3 = 1.0
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-1

0

1
-1

0

1

0

2

4

x̃1

x̃3

Ṽ

Fig. 4. CLF for a chained system on x̃2 = 0

˙̃x =

 ˙̃x1
˙̃x2
˙̃x3

 =

[
u1

u2

x̃2u1

]
. (27)

The chained system (27) is equivalent to the Brockett inte-
grator (16) under the following coordinate transformation
:

x̃ =

[
x̃1

x̃2

x̃3

]
=

[
x1

x2

(x3 + x1x2)/2

]
. (28)

According to (17) and (28), a semiconcave CLF for a
chained system is obtained as follows:

Ṽ (x̃) = x̃4
1 + x̃4

2 +
|2x̃3 − x̃1x̃2|3(√

x̃2
1 + x̃2

2 +
√
|2x̃3 − x̃1x̃2|

)2 . (29)

Figure 4 illustrates the function Ṽ on x2 = 0.

The function Ṽ on the chained system holds the same
properties as one of the Brockett integrators; homogeneity,
semiconcavity, and CLF are held.

4. APPLICATION TO TWO-WHEELED MOBILE
ROBOT

4.1 Controller Design

In this section, we apply the proposed method to position
control of a two-wheeled mobile robot. We consider a
two-wheeled mobile robot as illustrated in Figure 5. We
assume that each wheel on the robot can move with
the desired velocity without slipping. [x̂1, x̂2] ∈ R2 is
the Cartesian coordinate of the center of the robot, and
x̂3 ∈ (−π

2 ,
π
2 ) is the angle between the heading direction

and x̂1-axis. û1 is the velocity of the right wheel, and û2

that of the left wheel. Thus, the state vector of the robot
x̂ = [x̂1, x̂2, x̂3]

T ∈ X̂ = R2 × (−π
2 ,

π
2 ), the input vector

û = [û1, û2]
T ∈ Û = R2. In addition, v, ω and W denote

the linear velocity of the robot, the angular velocity, and

Fig. 5. Model of a two-wheeled robot

the distance between the right and the left wheels of the
robot, respectively. Then, the following relations hold.

v = (û1 + û2)/2, ω = (û1 − û2)/W. (30)

The control system of a two-wheeled robot model with v
and ω is obtained as follows:

˙̂x =

 ˙̂x1
˙̂x2
˙̂x3

 =

[
v cos x̂3

v sin x̂3

ω

]
. (31)

By equation (30), this system (31) is equivalent to

˙̂x =

[
cos x̂3/2 cos x̂3/2
sin x̂3/2 sin x̂3/2
1/W −1/W

][
û1

û2

]
. (32)

System (31) is transformed into a chained system by the
following coordinate and input transformations:

x̃ =

[
x̃1

x̃2

x̃3

]
=

[
x̂1

tan x̂3

x̂2

]
, (33)

u =

[
u1

u2

]
=

[
(û1 + û2) cos x̂3/2
(û1 − û2) sec

2 x̂3/W

]
. (34)

In the previous section, a Brockett integrator is trans-
formed into a chained system. As a result, coordinate
transformation (33) and input transformation (34), system
(32) is transformed into a Brockett integrator with the
following coordinate and input transformation:

x =

[
x1

x2

x3

]
=

[
x̂1

tan x̂3

2x̂2 − x̂1 tan x̂3

]
, (35)

u =

[
u1

u2

]
=

[
(û1 + û2) cos x̂3/2
(û1 + û2) sec x̂3

]
. (36)

We apply the proposed controller (25) to the Brocket
integrator. Then, the original input û of the two-wheeled
mobile robot is obtained as follows:

û =

[
û1

û2

]
=

[
secx3u1 +W cos2 x3u2/2
secx3u1 −W cos2 x3u2/2

]
. (37)

4.2 Computer Simulation

We show the result of computer simulation in this sub-
section. The initial value is set at x = [−1.5, 1.0, π/3]T

[m,m,rad]. Figure 6 shows the time histories of the state
variables and Figure 7 those of the inputs. They confirm
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Fig. 6. State of the system with a controller.
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Fig. 7. Input of the system with a controller.

that the state converges to the origin. Although the control
law itself is discontinuous, we can find the inputs change
smoothly. If initial value x3 /∈ (−π/2, π/2), x3 → π. This
is due to the function tangent of transformation (35).

Figure 8 depicts the trajectory in the [x1, x2] ∈ R2.
The proposed trajectory is nonsmooth and not the best
physical solution. Although the best solution is a future
task, note that the state and the inputs smoothly change.

5. CONCLUSION

The design of a control law for a nonholonomic system
was successful. The control law uses a semiconcave control
Lyapunov function. We applied this it to a two-wheeled
mobile robot. The advantages of the proposed methods
are confirmed by computer simulation.
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