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Abstract: This work is devoted to a force control strategy of a class of standard mechanical systems in
the port-Hamiltonian framework. First, a coordinate transformation is applied to equivalently describe
the original port-Hamiltonian system in a port-Hamiltonian form which has a constant mass-inertia
matrix in the Hamiltonian. Then, we show how to derive an extended port-Hamiltonian system with
structure preservation which can be used for force control purposes. Furthermore, we prove that the
closed-loop system is asymptotically stable via a Lyapunov candidate function. Finally, experiments
results are provided to show the advantages of the force control strategy in presence of external forces.
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1. INTRODUCTION

Skilled manipulation is required when a mechanical system,
e.g. a robot, is in contact with the environment. In the robotics
field, the number of possible tasks to perform is increased when
the information about the dynamics of the contact with the
environment is available. The interaction robot-environment is
intentional in industrial applications such as grinding, polish-
ing, cutting, excavating and non-industrial such as domotics
and health care purposes Canudas et al. (1996); Gorinevsky
et al. (1997). Implementation of all these tasks requires force
feedback and force control. It becomes possible to feed back
force of the manipulator links by installing force sensors. The
force control in robot manipulators is thoroughly discussed in
Canudas et al. (1996); Gorinevsky et al. (1997); Murray et al.
(1994); Siciliano and Kathib (2008); Spong et al. (2006) in
the Euler-Lagrange framework. Contrary to the Euler-Lagrange
strategies, it is the aim of this paper to propose a dynamic
extension for a class of mechanical system and based on the
port-Hamiltonian formulation Duindam et al. (2009); Maschke
and van der Schaft (1992) for force feedback and force con-
trol purposes. Port-Hamiltonian systems include a large family
of physical nonlinear systems, and since the port-Hamiltonian
framework is an efficient way to describe the environment,
the physical systems, and the interactions between them, the
dynamics of nonlinear controllers have a more suitable inter-
pretation.

A class of standard mechanical systems with force feedback
and zero external forces is introduced previously in Munoz-
Arias et al. (2012). The preliminary results are based on an
extension on the system coordinates in order to include a
type of integral action over the force sensor measurements.
Furthermore, in Munoz-Arias et al. (2012) we have considered
mechanical systems with a constant mass inertia matrix, which
simplifies the change of coordinates. The present research is an
extension of the port-Hamiltonian framework to obtain force

control instead of position control in presence of external forces
in the input of the system.

The main result of this paper relies on a new strategy for
force control for a class of standard mechanical systems in
the port-Hamiltonian framework, thus exploiting the fact that
many new systems are equipped with force sensors. The main
strategy adopted here is first to apply the results of Viola et al.
(2007) via a coordinate transformations of Fujimoto and Sugie
(2001) to equivalently describe the original port-Hamiltonian
system in a port-Hamiltonian form which has a constant mass-
inertia matrix in the Hamiltonian. We then realize an extended
port-Hamiltonian system in order to include a type of force
feedback with structure preservation. Furthermore, we provide
a Lyapunov candidate function of the closed-loop system in
order to prove asymptotic stability in the desired constant force.
The main advantage of the port-Hamiltonian formulation with
force feedback modeling is that we obtain a robust force control
strategy with a clear physical interpretation.

The paper is organized as follows. In Section 2, we provide a
general background in the port-Hamiltonian framework, espe-
cially for a class of standard mechanical systems. We then intro-
duce in Section 3 the dynamics of the new state, and the change
of variables to obtain force feedback. In Section 3, we also show
how the change of variables yields a port-Hamiltonian frame-
work without losing its structure, and a new Hamiltonian that
qualifies as a Lyapunov function. Based on the extended port-
Hamiltonian system with force feedback, we obtain asymptotic
stability in a desired force via a force control law in presence of
external forces in Section 4. Finally, experiments are given in
Section 5 to motivate our results for force control, and Section
6 provides concluding remarks.
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2. PRELIMINARIES

We briefly recap the definition, properties and advantages of
modeling and control with the port-Hamiltonian formalism.
First, we give a brief summary about systems modeling with
actuation of additional external forces. Then, we applied the re-
sults of Viola et al. (2007) to equivalently describe the original
port-Hamiltonian system in a port-Hamiltonian form which has
a constant mass-inertia matrix via the coordinates transforma-
tions of Fujimoto and Sugie (2001).

2.1 port-Hamiltonian Systems

The port-Hamiltonian framework is based on the description
of systems in terms of energy variables, their interconnection
and dissipation structures, and power ports. Port-Hamiltonian
systems include a large family of physical nonlinear systems.
The transfer of energy between the physical system and the
environment is given through energy elements, dissipation el-
ements and power preserving ports Duindam et al. (2009);
Maschke and van der Schaft (1992).

A time-invariant port-Hamiltonian system, introduced by Maschke
and van der Schaft (1992), is described by

Σ =


ẋ = [J (x)−R(x)]

∂H
∂x

(x)+g(x)w

y = g(x)>
∂H
∂x

(x)

(1)

with x ∈ RN the states of the system, the skew-symmetric in-
terconnection matrix J (x) ∈ RN ×N , the symmetric, positive-
semidefinite damping matrix R(x) ∈RN ×N , and the Hamilto-
nian H (x)∈R. The matrix g(x)∈RN ×M weights the action of
the control inputs w ∈ RM on the system, and w, y ∈ RM with
M ≤N , form a power port pair. We now restrict the analysis
to the class of standard mechanical systems.

Consider a class of standard mechanical systems of n degrees of
freedom (DoF) as in (1), e.g., an n-DoF rigid robot manipulator.
Consider furthermore the addition of an external force vector.
The resulting system is then given by[

q̇
ṗ

]
=

[
0n×n In×n
−In×n −D(q, p)

]
∂H (q, p)

∂q
∂H (q, p)

∂ p


+

[
0n×n
G(q)

]
u+
[

0n×n
B(q)

]
fe

y = G(q)>
∂H (q, p)

∂ p

(2)

with the vector of generalized configuration coordinates q ∈
Rn, the vector of generalized momenta p ∈ Rn, the identity
matrix In×n, the damping matrix D(q, p) ∈ Rn×n, D(q, p) =
D(q, p)> ≥ 0, y∈Rn the output vector, u∈Rn the input vector,
fe ∈Rn the vector of external forces, N = 2n, matrix B∈Rn×n,
and the input matrix G(q) ∈ Rn×n everywhere invertible, i.e.,
the port-Hamiltonian system is fully actuated. The Hamiltonian
of the system is equal to the sum of kinetic and potential energy,

H (q, p) =
1
2

p>M−1 (q) p+V (q) (3)

where M (q) = M> (q) > 0 is the n× n inertia (generalized
mass) matrix and V (q) is the potential energy.

We consider the port-Hamiltonian system (2) as a class of
standard mechanical systems with external forces.

2.2 Nonconstant to constant mass-inertia matrix transformation

Consider a class of standard mechanical systems in the port-
Hamiltonian framework with a nonconstant mass-inertia ma-
trix M (q) as in (2). The aim of this section is to transform
the original system (2) into a port-Hamiltonian formulation
with a constant mass-inertia matrix via a generalized canonical
transformation of Fujimoto and Sugie (2001). This simplifies
the coordinate transformation in order to realize force feedback
in the port-Hamiltonian framework with structure preservation.
Furthermore, we use the results of this canonical transformation
for a force control strategy with an external force vector. The
proposed change of variables to deal with a nonconstant mass
inertia matrix is first proposed by Viola et al. (2007).

Consider a time-invariant system (2) with nonconstant M (q),
and a change of variables x̄ = Φ(x) = Φ(q, p) as

x̄ = Φ(x) =
(

q̄
p̄

)
=

(
q

T (q)−1 p

)
(4)

where T (q) is a lower triangular matrix such that

M (q) = T (q)T T (q) = T (q̄)T T (q̄) (5)
Consider now the Hamiltonian H (q, p) as in (3), using (4), we
realize H̄ (x̄) = H

(
Φ−1 (x̄)

)
as

H̄ (x̄) =
1
2

p̄> p̄+V (q̄) (6)

The new form of the interconnection and dissipation matrices
of the port-Hamiltonian system are realized via the change of
variables (4), the mass-inertia matrix decomposition (5), and
the new Hamiltonian (6), which is proposed by Viola et al.
(2007).

Consider the system (2), and assume that G(q) is invertible.
Consider furthermore the change of variables Φ(q, p) as in (4),
the M (q) decomposition as in (5), and the Hamiltonian H̄ (x̄)
as in (6). The resulting forced port-Hamiltonian system is then
given by

[
˙̄q
˙̄p

]
=

[
0 T (q̄)−>

−T (q̄)−1 J̄2 (q̄, p̄)− D̄(q̄, p̄)

]
∂ H̄ (q̄, p̄)

∂ q̄
∂ H̄ (q̄, p̄)

∂ p̄


+

[
0

Ḡ(q̄)

]
u+
[

0
B̄(q̄)

]
fe

y = Ḡ(q̄)>
∂ H̄ (q̄, p̄)

∂ p̄

(7)

where the skew-symmetric matrix J̄2 (q̄, p̄) takes the form

J̄2 (q̄, p̄) =
∂ (T (q̄) p̄)

∂ q̄
T (q̄)−>−T (q̄)−1 ∂ (T (q̄) p̄)

∂ q̄

>
(8)

Furthermore, the positive matrix D̄(q̄, p̄), and the input matrices
Ḡ(q̄), and B̄(q̄), are described by

D̄(q̄) = T (q̄)−1 D
(
Φ
−1 (q̄, p̄)

)
T (q̄)−> (9)

Ḡ(q̄) = T (q̄)−1 G(q̄) (10)
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B̄(q̄) = T (q̄)−1 B(q̄) (11)
respectively. Via the transformation (4), we then obtain a class
of mechanical systems with a constant mass inertia matrix in
the Hamiltonian function as in (6), which equivalently describes
the original system (2) with nonconstant mass-inertia matrix.
We use the results for our force feedback framework in the next
section.

3. FORCE FEEDBACK VIA DYNAMIC EXTENSION

In this section, a dynamic extension and a coordinate transfor-
mation are introduced for the port-Hamiltonian system (7). The
dynamics of the new state and the coordinate transformation are
realized for force feedback purposes. The dynamics of the new
state depends on the sum of the internal and external forces of
the mechanical system. The internal forces are given by a set
of kinetic, potential, and energy dissipation elements. The ex-
ternal forces are exerted from the environment and are modeled
as generalized force vectors which are preliminarily presented
in the port-Hamiltonian framework (2). The force feedback is
included via a change of variable and a new Hamiltonian func-
tion. Furthermore, the dynamic extension is included through a
coordinate transformation in order to preserve the structure of
the transformed port-Hamiltonian system. The present work is
inspired by the results of Dirksz and Scherpen (2011, 2012).

We assume that the system (2) has force sensors that measure
the internal and external forces given by

f (q, p) =−∂H (q, p)
∂q

−D(q, p)
∂H (q, p)

∂ p
+B(q) fe (12)

with H (q, p) as in (3), and where f (q, p) ∈ Rn. We propose
now a new state ẑ as the dynamic extension of the port-
Hamiltonian framework. The extension is realized in order to
include the internal and external forces while preserving the
form of the interconnection and the dissipation matrices, i.e.,
to preserve the port-Hamiltonian structure. Consider (12), and
define the dynamics of the new state ẑ as a function of the forces
in the form of

˙̂z =−Y>T (q)−1 f (q, p) (13)
with a constant gain matrix Y over the internal and external
forces, where the symmetric part of Y is positive definite,
i.e., Y +Y> > 0, Y ∈ Rn×n, and T (q) given by the matrix
decomposition (5). Matrix Y is defined later on. Consider now
the system (7), we rewrite then the dynamics of ˙̂z as in (13) as
(for simplicity of notation, we leave out here the arguments of
T (q̄), D̄(q̄, p̄), J̄2 (q̄, p̄), and B̄(q̄))

˙̂z = Y>
(
−T−1 ∂ H̄ (q̄, p̄)

∂ q̄
− (D̄− J̄2)

∂ H̄ (q̄, p̄)
∂ p̄

+ B̄ fe

)
(14)

with H̄ (q̄, p̄) as in (6), J̄2 (q̄, p̄) as in (8), D̄(q̄, p̄) as in (9), and
B̄(q̄) as in (11). Given the force sensor readings (12), and the
dynamic extension (13), we have constant desired forces given
by

fd = Y>T (qz) żd (15)
where fd ∈ Rn, with żd ∈ Rn a constant that depends on the
desired forces (15), and the position vector qz ∈ Rn given by
the solution of the equation

−Y>T (qz)
−1
(

∂ H̄ (qz)

∂ q̄z
+ B̄(qz) fe

)
− żd = 0 (16)

Given (7), we have a new state called ẑ as in (14), and a function
of a type of integral action over the desired forces, i.e., zd , with

zd two times differentiable. Define then the adapted momenta
as

p̂ = p̄−A(ẑ− zd) (17)
with a constant diagonal matrix A > 0, A ∈Rn×n. We feed back
the force by application of the input

u = Ḡ(q̄)−1 A
( ˙̂z− ˙̂zd

)
+ v (18)

in the system (7), and a new input v, which then realizes a
new port-Hamiltonian system under the condition that Ḡ(q̄), as
in (10), is invertible. Consider finally a resulting Hamiltonian
Hz (x̂) with q̄ = q̂ = q given by

Hz (x̂) =
1
2

p̂> p̂+
1
2
(ẑ− zd)

>K−1
z (ẑ− zd)+V (q̂) (19)

with a tuning parameter Kz = K>z > 0, and x̂ = (q̂, p̂, ẑ).

The new form of the interconnection and dissipation matrices
of the port-Hamiltonian system are realized via the adapted
momentum (17), the dynamic extension (14), and the new input
(18), i.e.,
Proposition 1. Consider the system (2). Consider furthermore
the change of variables Φ(q, p) as in (4), the M (q) decomposi-
tion as in (5), and the Hamiltonian H̄ (x̄) as in (6) that realizes
the system (7). Finally, consider the dynamics of the new state ẑ,
the change of coordinate p̂, with q̄= q̂= q, and the control input
u as in (14), (17), and (18), respectively. The resulting extended
forced port-Hamiltonian system is then given by (for simplicity
of notation, we leave out here the arguments of D̃(q̂, p̂))

 ˙̂q
˙̂p
˙̂z

=

 0n×n T (q̂)−> T (q̂)−>Y
−T (q̂)−1 −D̃ −D̃Y
−Y>T (q̂)−1 −Y>D̃ −Y>D̃Y




∂Hz (x̂)
∂ q̂

∂Hz (x̂)
∂ p̂

∂Hz (x̂)
∂ ẑ



+

 0n×n
Ḡ(q̂)
0n×n

v+

 0n×n
B̄(q̂)

Y>B̄(q̂)

 fe

(20)
with D̃(q̂, p̂) = −J̄2 (q̂, p̂) + D̄(q̂, p̂), Y = AKz, and with a
new Hamiltonian function (19). The passive output of the
transformed system (20) is

ŷ = Ḡ(q̂)>
∂Hz (x̂)

∂ p̂
= Ḡ(q̂)> p̂ (21)

where x̂ = (q̂, p̂, ẑ)>, and it follows that the new skew-
symmetric interconnection matrix Ĵ (x̂), and the new symmet-
ric, positive-semidefinite damping matrix R̂(x̂) of the port-
Hamiltonian system (20) are

Ĵ (x̂) =

 0n×n T (q̂)−> T (q̂)−>Y
−T (q̂)−1 0n×n 0n×n

−Y>T (q̂)−1 0n×n 0n×n

 (22)

R̂(x̂) =

 0n×n 0n×n 0n×n
0n×n D̃(q̂, p̂) D̃(q̂, p̂)Y
0n×n Y>D̃(q̂, p̂) Y>D̃(q̂, p̂)Y

 (23)

Proof. When we use the new Hamiltonian Hz (x̂) as in (19),
the adapted momentum p̂ as in (17), the new state ẑ as in (14),
the new input u as in (18), along with the port-Hamiltonian
system (7), we obtain straightforwardly the form of the matrices
(22) and (23) with the output (21). We can verify that the new
dissipation matrix (23) is symmetric, positive-semidefinite via
the Schur complement.
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We have realized an extended port-Hamiltonian system with
force feedback and structure preservation. The extended system
for a nonconstant inertia mass matrix is obtained via a general-
ized canonical transformation. The next section takes advantage
of the extended system (20) in order to obtain force control in
the presence of an external force vector.

4. FORCE CONTROL

Based on the forced mechanical systems in the port-Hamiltonian
framework (7), we now want to attain asymptotic stability in
a desired force vector fd as in (15). We realize an extended
port-Hamiltonian system (20) via output feedback of the forces.
Then, we assume that the lower and upper bounds of matrices
T (q̂), D̃(q̂, p̂), and Ḡ(q̂) satisfy,

t1I ≤ T (q̂)≤ t2I (24)

d1I ≤ D̃(q̂, p̂)≤ d2I (25)

g1I ≤ Ḡ(q̂)≤ g2I (26)
with t1, t2, d1, d2, g1, and g2 positive constants. Based on the
conditions (24), (25), and (26), we define a force control law of
the system (7), i.e.,
Theorem 2. Consider a forced port-Hamiltonian system (7),
and the assumptions (24), (25), and (26). Let ẑ be the dynamics
of the new state as in (14) with nonzero external forces fe, and
a passive output ŷ as in (21). Then, the control input

u = Ḡ(q̂)−1
(

T (q̂)−1 ∂ H̄ (x̂)
∂ q̂

+A
( ˙̂z− żd

))
−Cŷ (27)

with C > 0, s.t., c1I ≤ C ≤ c2I, and c1, c2, positive constants,
asymptotically stabilizes the system (20) with zero steady-state
error at x̂ = x∗ = (qz,0,zd), zd as the type of integral action
over the desired force, qz as in (16), where Y = AKz, s.t., κ1I ≤
Kz ≤ κ2I, and γ1I ≤ Y ≤ γ2I, with κ1, κ2, γ1, and γ2, positive
constants, and H̄ as in (6). The closed-loop system becomes
(for simplicity of notation, we leave out here the arguments of
D̃(q̂, p̂), and Ḡ(q̂))

 ˙̂q
˙̂p
˙̂z

=

 0 T (q̂)−> T (q̂)−>Y
−T (q̂)−1 −D̃− ḠCḠ> −D̃Y
−Y>T (q̂)−1 −Y>D̃ −Y>D̃Y




∂ Ĥ (x̂)
∂ q̂

∂ Ĥ (x̂)
∂ p̂

∂ Ĥ (x̂)
∂ ẑ


(28)

with D̃(q̂, p̂) =−J̄2 (q̂, p̂)+ D̄(q̂, p̂), a Hamiltonian

Ĥ (x̂) =
1
2

p̂> p̂+
1
2
(ẑ− zd)

>K−1
z (ẑ− zd) (29)

a skew-symmetric interconnection matrix Ĵ (x̂) as in (22), and a
symmetric, positive-semidefinite damping matrix R̃(x̂) as

R̃(x̂) =

 0n×n 0n×n 0n×n

0n×n D̃(q̂, p̂)+ Ḡ(q̂)CḠ(q̂)> D̃(q̂, p̂)Y
0n×n Y>D̃(q̂, p̂) Y>D̃(q̂, p̂)Y

 (30)

.

Proof. If we apply the control law (27) to the system dynamics
(7) with an adapted dynamic extension (14), and a change
of variables (17), the closed-loop system becomes (28) with
Hamiltonian (29), a damping matrix R̃(x̂) as in (30), and
via Schur complement we can verify that (30) is symmetric,
positive-semidefinite.

Denote by λ (S ) = s1, and λ (S ) = s2, the upper, and lower
bounds of the norm of a positive semidefinite matrix S, i.e.,
s1I ≤S ≤ s2I. Consider then a candidate Lyapunov function

H (x̂) = Ĥ (x̂)+ ε p̂> (ẑ− zd) (31)
with a constant ε > 0. Notice that the function (31) can be
written in a matrix form as

H (x̂) =
1
2

[
(ẑ− zd)

p̂

]> [
K−1

z ε

ε I

][
(ẑ− zd)

p̂

]
(32)

Then, the function (32) satisfies

H (x̂)≥ 1
2

[
‖(ẑ− zd)‖
‖p̂‖

]> [
λ
(
K−1

z
)

ε

ε I

]
︸ ︷︷ ︸

P1

[
‖(ẑ− zd)‖
‖ p̂‖

]
(33)

and from the definition of Kz, matrix P1 is positive definite if
λ
(
K−1

z
)
− ε2 > 0, i.e., √

1
κ1

> ε (34)

Now, we want to prove that Ḣ (x̂)≤ 0, along the trajectories of
(7). First, we write Ḣ (x̂) as

Ḣ (x̂) =
∂H (x̂)

∂ q̂

>
˙̂q+

∂H (x̂)
∂ p̂

>
˙̂p+

∂H (x̂)
∂ ẑ

>
˙̂z (35)

Since
∂ Ĥ (x̂)

∂ q̂
= 0,

∂ Ĥ (x̂)
∂ p̂

= p̂, and Kz
∂ Ĥ (x̂)

∂ ẑ
= (ẑ− zd), and

based on the closed-loop dynamics (28), we replace ˙̂q, ˙̂p, and ˙̂z,
in (35), i.e.,

Ḣ (x̂) =

−
(

∂ Ĥ (x̂)
∂ p̂

+Y
∂ Ĥ (x̂)

∂ ẑ

)>
D̃(q̂, p̂)

(
∂ Ĥ (x̂)

∂ p̂
+Y

∂ Ĥ (x̂)
∂ ẑ

)

−ε

(
Y

∂ Ĥ (x̂)
∂ p̂

+Kz
∂ Ĥ (x̂)

∂ ẑ

)>
D̃(q̂, p̂)

(
∂ Ĥ (x̂)

∂ p̂
+Y

∂ Ĥ (x̂)
∂ ẑ

)

−
(

∂ Ĥ (x̂)
∂ p̂

+ εKz
∂ Ĥ (x̂)

∂ ẑ

)>
Ḡ(q̂)CḠ(q̂)>

∂ Ĥ (x̂)
∂ p̂

(36)
and furthermore, from (36), we obtain

Ḣ (x̂) =

−ε


∂ Ĥ (x̂)

∂ p̂
∂ Ĥ (x̂)

∂ ẑ


> S̃ (q̂, p̂)

1
ε

S̃ (q̂, p̂)>

1
ε

S̃ (q̂, p̂) KzS̃ (q̂, p̂)>




∂ Ĥ (x̂)
∂ p̂

∂ Ĥ (x̂)
∂ ẑ



−ε


∂ Ĥ (x̂)

∂ p̂
∂ Ĥ (x̂)

∂ ẑ


> 1

ε
G̃(q̂, p̂) S̃ (q̂, p̂)Y

KzG̃(q̂, p̂)
1
ε

S̃ (q̂, p̂)Y




∂ Ĥ (x̂)
∂ p̂

∂ Ĥ (x̂)
∂ ẑ


(37)

where S̃ (q̂, p̂), and G̃(q̂, p̂) are

S̃ (q̂, p̂) = Y>D̃(q̂, p̂) (38)

G̃(q̂, p̂) = D̃(q̂, p̂)+ Ḡ(q̂)CḠ(q̂)> (39)
respectively. We now write (37) in terms of the vectors p̂, and
(ẑ− zd), as
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Ḣ (x̂) =

−ε

[
p̂

(ẑ− zd)

]> S̃ (q̂, p̂)
1
ε

S̃ (q̂, p̂)>K−1
z

1
ε

K−1
z S̃ (q̂, p̂) S̃ (q̂, p̂)>K−1

z

[ p̂
(ẑ− zd)

]

−ε

[
p̂

(ẑ− zd)

]> 1
ε

G̃(q̂, p̂) S̃ (q̂, p̂)Y K−1
z

G̃(q̂, p̂)
1
ε

K−1
z S̃ (q̂, p̂)Y K−1

z

[ p̂
(ẑ− zd)

]
(40)

The dynamics of Ḣ (x̂) as in (37) satisfy (for simplicity of
notation, we leave out here the arguments of S̃ (q̂, p̂), and
G̃(q̂, p̂))

Ḣ (x̂)≤

−ε

[
‖p̂‖
‖ẑ− zd‖

]> λ
(
S̃
) 1

ε
λ

(
S̃>K−1

z

)
1
ε

λ
(
K−1

z S̃
)

λ

(
S̃>K−1

z

)


︸ ︷︷ ︸
Q1

[
‖ p̂‖
‖ẑ− zd‖

]

−ε

[
‖p̂‖
‖ẑ− zd‖

]> 1
ε

λ
(
G̃
)

λ
(
S̃Y K−1

z
)

λ
(
G̃
) 1

ε
λ
(
K−1

z S̃Y K−1
z
)


︸ ︷︷ ︸
Q2

[
‖ p̂‖
‖ẑ− zd‖

]

(41)
and Q1, and Q2 are matrices with the diagonal elements de-
pending on the lower bounds and the off-diagonal elements on
the upper bounds, which give conditions for ε such that (41) is
negative definite. This results in

λ
(
S̃
)

λ
(
S̃>K−1

z
)

λ
(
K−1

z S̃
)

λ
(
S̃>K−1

z
) > ε

2 (42)

λ
(
G̃
)

λ
(
S̃Y K−1

z
)

λ
(
G̃
)

λ
(
K−1

z S̃Y K−1
z
) > ε

2 (43)

and replacing S̃ (q̂, p̂) as in (38), and G̃(q̂, p̂) as in (39), in (42),
and (47), we obtain

λ
(
Y>D̃(q̂, p̂)

)
λ
(
D̃(q̂, p̂)Y K−1

z
)

λ
(
K−1

z Y>D̃(q̂, p̂)
)

λ
(
D̃(q̂, p̂)Y K−1

z
) > ε

2 (44)

λ

(
D̃(q̂, p̂)+ Ḡ(q̂)CḠ(q̂)>

)
λ
(
Y>D̃(q̂, p̂)Y K−1

z
)

λ

(
D̃(q̂, p̂)+ Ḡ(q̂)CḠ(q̂)>

)
λ
(
Y>D̃(q̂, p̂)Y K−1

z
) > ε

2

(45)
respectively. The evaluation of the inequality (44), and (45),
results in the conditions

γ2d2κ1

γ1d1
√

κ2
> ε (46)

γ1

γ2

√(
d1 + c1g2

1
)

d1κ2(
d2 + c2g2

2

)
d2κ1

> ε (47)

respectively. Furthermore, via the conditions (46), and (47),
the time derivative of (31) along the trajectories of (28) is
negative definite for a sufficiently small ε . Since, H (x̂) ≥ 0,
and Ḣ (x̂)≤ 0, Lyapunov stability theory along with La Salle’s
Invariance Principle, implies asymptotic stability of system (7)
in x̂ = (q̂, p̂, ẑ) = (qz,0,zd).

Fig. 1. Drawing of the Gripper of the PERA

Remark 3. It is clear the implementation of the control law (27)
for a constant mass-inertia matrix. For a nonconstant mass-
inertia matrix the control law is not clear how to do this because
the external forces fe are not known. A way to deal with this is
to deduce the external forces from the sensor readings, i.e., the
readings not be fed back as in the constant mass inertia case but
fe can be canceled when fe are known.

We have realized a control law in order to obtain force control
with force feedback. We now know that from the proposed
integrator dynamics (14), we obtain structure preservation in
the extended port-Hamiltonian system (20) which are useful
for force control via force feedback. Furthermore, we have
given a stability analysis of a standard mechanical system (7)
via the control law (27). In Section 5, we finally motivate
the present port-Hamiltonian approach with an example of
a class of standard mechanical systems with constant mass-
inertia matrix.

5. EXAMPLE

5.1 End-effector system

To gain more insight into the role of the forced port-Hamiltonian
system (7), and the force control via force feedback, we con-
sider a class of standard mechanical systems with a constant
mass-inertia matrix. The system is given by the gripper (end-
effector) of the Philips Experimental Robot Arm (PERA), Rijs
et al. (2010). A drawing of the gripper is shown in Figure 1. The
gripper consists of a shaft (red rectangle) actuated by the motor
of the gripper which is attached to the fingers via cables (yellow
lines). When the shaft moves left the gripper closes, and when
it moves right the gripper opens. The two green lines depict the
two springs actuating over the tips of the gripper. Furthermore,
the gripper is controlled via scripts developed in Matlab R© with
a sampling time of 10ms.

The model of the gripper in the port-Hamiltonian framework
consists of a mass mg, interconnected by a nonlinear spring
of stiffness Kg, a rest-length cg, and a linear damping dg >

0. The states of the system are x = (q, p)>, where q is the
displacement between the two tips of the gripper, and p is the
generalized momenta of the system. The displacement of the
two tips is directly proportional to the encoder of the motor.
Finally, Coulomb friction forces, and the gravitational forces
are neglected in the working space of the tips of the gripper.

The Hamiltonian of the system is

H (q, p) =
1
2

m−1
g p2 +

1
2

kg (q− cg)
2 (48)

and the system is then described in the port-Hamiltonian frame-
work as
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Fig. 2. Force control of the tips of the gripper of the PERA via
the control law (27). Initial conditions (q(0) , p(0))> =

(3,0)>.[
q̇
ṗ

]
=

[
0 1
−1 d

][
Kg (q− cg)

m−1
g p

]
+

[
0
G

]
u+
[

0
fe

]
(49)

with an input matrix G = 1 (fully actuated), and an external
force fe ∈ R. The nonlinear spring of the gripper is defined as

Kg =

{
kg1 q−qz ≥ 0
kg2 q−qz < 0

with positive constants kgi , and i = 1,2, and a resulting qz as
in (16). We implement the new input (18) and the change of
variable (17) in the port-Hamiltonian system (49), and then we
obtain an extended port-Hamiltonian system ˙̂q

˙̂p
˙̂z

=

 0 1 X
−1 −dg −dgX
−X> −X>dg −XT dgX

 kg (q̂− c)
m−1

g p̂
K−1

z ẑ



+

[ 0
v
0

]
+

 0
1
−XT

 fe

(50)

where ˙̂q = q̇, and X = m−1AKz, with a new Hamiltonian func-
tion Hz (x̂) = Hz (q̂, p̂, ẑ) as in (19), and a new output ŷ as in
(21).

In the next section we show, via an experiment with the system
(49), the results of Section 4, in order to obtain a desired force.

5.2 Experimental results

For experiment purposes, we have grasped a squash ball which
represents a nonzero external force vector. We then have a
rest length cr = 0 (gripper open), an inertia matrix M = m =
0.2, stiffness coefficients kg1 = 0.5 and kg1 = 0.3, a damping
coefficient d = 0.5; constants A = 1, Kp = 1, and C = 5 ; an
initial position q(0) = 3cm, and a desired force of fd = 3.5N.
Based on these parameters, we can see how the conditions (46),
and (47) are given for a small ε . We now apply the control law
(27) on the extended port-Hamiltonian system (50). Figure 2
shows the experiment results. We obtain the desired force fd
from a initial position q(0) at t = t1 ≥ 1.5s with a zero steady-
state error.

6. CONCLUDING REMARKS

This paper is devoted to the development of a new strategy
of force control via force feedback in the port-Hamiltonian
framework. Our main motivation is given by the proposition

of an alternative to the classical methods of force feedback and
force control in the Euler-Lagrange formalism. We have shown
that, given a force sensor output, we can realize force feedback
for a class of mechanical systems in the port-Hamiltonian
framework with structure preservation. A type of integral action
over the force sensor output and a coordinate transformation
are the main strategies to realize a force feedback. We also
have given a force control law that consist of force and output
feedback in presence of external forces. The closed-loop system
is then asymptotically stable in a constant desired force. Future
work includes developments for a nonzero, and nonconstant,
desired forces.

REFERENCES

Canudas, C., Siciliano, B., and Bastin, G. (1996). Theory of
Robot Control. Springer, London.

Dirksz, D. and Scherpen, J. (2011). Port-hamiltonian and
power-based integral type control of a manipulator system.
In Proc. IFAC Symposium on Nonlinear Control System,
13450–13455.

Dirksz, D. and Scherpen, J. (2012). Power-based control:
Canonical coordinate transformations, integral and adaptive
control. Automatica, 48(6), 1046–1056.

Duindam, V., Macchelli, A., Stramigioli, S., and Bruyninckx,
H. (2009). Modeling and Control of Complex Physical
Systems: The Port-Hamiltonian Approach. Springer, Berlin.

Fujimoto, K. and Sugie, T. (2001). Canonical transformation
and stabilization of generalized hamiltonian systems. Sys-
tems and Control Letters, 42(3), 217–227.

Gorinevsky, D., Formalsky, A., and Scheiner, A. (1997). Force
Control of Robotics Systems. CRC, Moscow.

Maschke, B. and van der Schaft, A. (1992). Port-controlled
hamiltonian systems: modeling origins and system-theoretic
properties. In IFAC Symp. on Non. Contr. Syst., 282–288.

Munoz-Arias, M., Scherpen, J., and Dirksz, D. (2012). A class
of standard mechanical systems with force feedback in the
port-hamiltonian framework. In Proc. IFAC Workshop on
Lagrangian and Hamiltonian Methods for Nonlinear Con-
trol, 90–95.

Murray, R., Zexiang, L., and Sastry, S. (1994). Mathematical
Introduction to Robot Manipulation. CRC, USA.

Rijs, R., Beekmans, R., Izmit, S., and Bemelmans, D. (2010).
Philips Experimental Robot Arm: User Instructor Manual.
Koninklijke Philips Electronics N.V., NL.

Siciliano, B. and Kathib, O. (2008). Springer Handbook of
Robotics. Springer, Berlin.

Spong, M., Hutchinson, S., and Vidjasagar, M. (2006). Robot
modeling and control. Wiley, USA.

Viola, G., Ortega, R., van der Schaft, A., Acosta, J.A., and As-
tolfi, A. (2007). Total energy shaping control of mechanical
systems simplifying the matching equations via coordinate
changes. IEEE Trans. on Auto. Control, 52(6), 1093–1099.

Copyright © 2013 IFAC 382


