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Abstract: This paper presents two control approaches for a linear axiswith pneumatic muscles.
Its guided carriage is driven by a nonlinear drive system consisting of two pulley tackles with
pneumatic muscle actuators arranged at both sides. This innovative drive concept allows for an increased
workspace as well as higher carriage velocities as comparedto a direct actuation. Both proposed control
schemes have a cascaded structure, where the control designis based on backstepping techniques.
Hysteresis in the force characteristic of the pneumatic muscles is considered by an asymmetric shifted
Prandtl-Ishlinskii model, while remaining uncertaintiesare compensated using an adaptive backstepping
strategy. The main difference between both approaches is the usage of either the internal muscle
pressures or the muscle forces as controlled variables of the inner control loops. Both control approaches
have been implemented on a test-rig and show an excellent closed-loop performance.

Keywords: pneumatic muscles, backstepping control, hysteresis modelling, disturbance compensation,
mechatronics.

1. INTRODUCTION

Pneumatic muscles are innovative tensile actuators consisting
of a fibre-reinforced vulcanised rubber tubing with appropriate
connectors at both ends. The working principle is based on
a rhombical fibre structure that leads to a muscle contraction
in longitudinal direction when the pneumatic muscle is filled
with compressed air. This contraction can be used for actuation
purposes. Pneumatic muscles are low cost actuators and offer
several further advantages in comparison to classical pneumatic
cylinders: significantly less weight, no stick-slip effects, insen-
sitivity to dirty working environment, and a higher force-to-
weight ratio. A major advantage of pneumatic drives as com-
pared to electrical drives is their capability of providinglarge
maximum forces for a longer period of time. In this case electri-
cal drives are at risk of overheating and may result in increased
errors due to thermal expansion. For these reasons, different
researchers have investigated pneumatic muscles as actuators
for several applications, e.g. a planar elbow manipulator in Lilly
and Yang [2005], a two degree-of-freedomserial manipulator in
Van-Damme et al. [2007] or a parallel manipulator in Zhu et al.
[2008].
However, pneumatic muscles are also subject to some draw-
backs: They show a slower time response at force-generating
compared to electrical drives, and they are characterised by
dominant nonlinearities, namely the force characteristicand the
volume characteristic. As a consequence, these nonlinearities
have to be considered at control design. In this contribution
pneumatic muscles are employed to actuate a novel linear drive,
at which the muscle force is transmitted to the carriage by a
pulley tackle consisting of a wire rope and several deflection
pulleys, see Fig. 1. This pneumatic linear drive allows for max-
imum velocities of approximately 1.3 m/s in a workspace of
approximately 1 m. Hence, the velocities and the workspace
are enlarged by a factor of three in comparison to a linear
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Fig. 1. Experimental setup.

axis directly actuated by the pneumatic muscles as presented
in Krichel et al. [2010]. For the actuation of the carriage, four
pneumatic muscles are employed, whereas two muscles are
used for each tension direction, respectively. For controlof
the test rig a cascaded backstepping control is proposed. In
earlier work,cf. Aschemann and Schindele [2008], as well as
in the major part of published control applications using pneu-
matic muscles, the internal pressures of the muscles are used
as control inputs of the outer loop and are controlled in a fast
underlying control loop. Alternatively, there is the possibility
of controlling the muscle forces in an underlying control loop.
For this reason two control approaches for the linear axis with
pneumatic muscles are compared in this contribution. In one
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of these the muscle pressures are controlled in an underlying
control loop, as in earlier work, whereas in the other approach
the muscle forces represent the variables to be controlled in the
underlying loop. In the outer control loop the carriage position
and the mean muscle pressure or the mean muscle force repre-
sent the controlled variables.
The paper is structured as follows: First, a control-oriented
model of the pneumatically driven high-speed linear axis is
derived in sections 2, 3 and 4 as a basis for the control de-
sign. For this purpose, polynomial descriptions are utilised to
describe the nonlinear characteristics of the pneumatic muscle,
i.e., the muscle volume and the muscle force as functions of
both contraction length and internal muscle pressure. The hys-
teresis in the force characteristics of the muscles is modelled
by a modified Prandtl-Ishlinskii model. Second, two cascaded
control structures are designed for the linear axis, in section
5. The outer control loop achieves a precise tracking of the
carriage position and the mean muscle pressure or the mean
muscle force. The inner loop involves either a fast control of
the muscle pressures or a fast control of the muscle forces.
Remaining model uncertainties are estimated and compensated
by an adaptive control action. Finally, in section 6, the proposed
control strategies have been implemented and investigatedat
the test-rig of the Chair of Mechatronics, University of Rostock.
Thereby, desired trajectories for the carriage position can be
tracked with high accuracy.

2. MODELLING OF THE MECHANICAL SUBSYSTEM

The modelling of the pneumatically driven high-speed linear
axis involves the mechanical subsystem and the pneumatic
subsystem, which are coupled by the tension forces of the
pneumatic muscles. The control-oriented mechanical modelof
the high-speed linear axis consists of the carriage and two
pulley tackles, at which one pulley tackle transmits the tension
force of two pneumatic muscles to the carriage in each case.
As for modelling, the mechanical subsystem is divided into
the following elements: a lumped mass for the carriage (mass
mC), the two connection plates, which are also modelled as
lumped masses (massmMFi, i = {l,r}) and the six pulleys
(mass moment of inertiaJi j, i = {l,r}, j = {1,2,3}). As the
rope deflection is negligible, the motion of the linear axis
is completely described by the generalised coordinatezC(t),
which denotes the carriage position. The equation of motion
directly follows from Newton’s second law in the form of a
nonlinear second-order differential equation

mz̈C =
aM

k
[FMr (pMr,∆ℓMr)−FMl (pMl ,∆ℓMl)]−FU , (1)

with the reduced mass

m=mC+
mMFl

k2 +
mMFr

k2 +
3

∑
j=1

[

Jl j

k2

(
j
r

)2

+
Jr j

k2

(
j
r

)2
]

. (2)

The parameterk = 3 denotes the number of pulleys employed
for each pulley tackle. The parameteraM = 2 stands for the
two muscles used for the actuation in the left or right direction,
respectively, and which are characterised by a nonlinear force
characteristicFMi, i = {l,r} depending on the internal muscle
pressurepMi and the contraction length∆ℓMi. All remaining
model uncertainties are taken into account by the resulting
disturbance forceFU .

3. MODELLING OF THE MUSCLE FORCE

The force characteristicFMi of a pneumatic muscle states the
resulting tension force for given internal pressurepMi as well
as given contraction length∆ℓMi and represents the connection
of the mechanical and the pneumatic system part. As the
force characteristic of a pneumatic muscle shows a hysteresis
depending on the contraction length∆ℓMi, see Schindele and
Aschemann [2012] or Vo-Minh et al. [2011], for modelling,
the nonlinear muscle force is divided in two parts: the static
muscle forceFMi,st as well as the hysteresis partFMi,hys. Then,
the complete force characteristicFMi can be stated as

FMi = FMi,st +FMi,hys . (3)

The static force characteristic has been identified by measure-
ments, see Schindele [2013], and, then, approximated by the
following polynomial description

FMi,st(pMi,∆ℓMi) =

{
F̄Mi(pMi,∆ℓMi) if F̄Mi > 0
0 else

, (4a)

F̄Mi(pMi,∆ℓMi) =
3

∑
m=0

(am ∆ℓm
Mi)

︸ ︷︷ ︸

= f1i(∆ℓMi)

pMi −
4

∑
n=0

(bn ∆ℓn
Mi)

︸ ︷︷ ︸

= f2i(∆ℓMi)

. (4b)

Given the initial contraction lengthℓM0 of the pneumatic mus-
cles, the contraction length of the left and right pneumatic
muscle are determined by the following relations

∆ℓMl = ℓM0−
1
k

zC , ∆ℓMr = ℓM0+
1
k

zC . (5)

The muscle hysteresis is modelled by an asymmetric shifted
Prandtl-Ishlinskii (ASPI) model as proposed in Li et al. [2012].
The Prandtl-Ishlinskii model is a widely used mathematical
model for description of hysteresis and represents a subsetof
Preisach models, cf. Mayergoyz [1986]. Whereas the classical
Prandtl-Ishlinskii model is not able to describe asymmetric
hysteresis curves, the ASPI model addresses this problem. The
Prandtl-Ishlinskii model is stated in the discrete-time domain
and describes hysteresis using a superposition of elementary
play-operators, see Kuhnen [2003]. With the sampling timeT ,
the outputy j(k) of one play-operator at the timetk = kT is a
function of the carriage position as inputzC(k)

y j(k) = max{zC(k)− r j,min{zC(k)+ r j,y j(k−1)}} , (6)

with the initial condition

y j(0) = max{zC(0)− r j,min{zC(0)+ r j,y j0}} . (7)

Here, the initial statey j0 and the thresholdr j are introduced
as parameters for characterisation of the corresponding play-
operator j, j = {1, ..,N}. For the ASPI model an additional
shift operator, similar to the play-operator is introduced

Ψl(k) = max{cl zC(k),min{zC(k),yl(k−1)}} , (8)

Ψl(0) = max{cl zC(0),min{zC(0),yl0}} , (9)

with the positive constantcl > 0. For a finite numberN of
play-operators and a finite numberM of shift operators the
ASPI model calculates the hysteresis force as the weighted
summation of the individual operators

FM,hys(k) =
N

∑
j=1

w j y j(k)+
M

∑
l=1

vl Ψl + g(zC(k)) . (10)

Here, g(zC(k)) is a Lipschitz continuous function. Although
the accuracy of the hysteresis model can be improved with
an increasing number of play operators and shift operators,
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the number of parameters that have to be identified becomes
larger as well. Hence, a system-specific trade-off between the
model accuracy and the number of parameters to be identified is
necessary. Here,N = 4 play operators andM = 3 shift operators
have been chosen.

4. DYNAMICS OF THE PNEUMATIC ACTUATORS

The dynamics of the internal muscle pressure follows directly
from a mass balance for the compressed air in the muscle. As
the internal muscle pressure is limited by a maximum value of
pMi,max = 7 bar, the ideal gas equation represents an accurate
description of the thermodynamic behaviour of the air in the
left or right muscle, respectively. The thermodynamic process
is modelled as a polytropic change of state withn = 1.26
as identified polytropic exponent. The resulting state equation
for the internal muscle pressure in the musclei is given by
(cf. Schindele [2013] for further details)

ṗMi =
n

VMi + n ∂VMi
∂ pMi

pMi

[

RL TMi ṁMi −
∂VMi

∂∆ℓMi

d∆ℓMi

dzC
żC pMi

]

= kui (∆ℓMi, pMi)ṁMi − kpi
(
∆ℓMi,∆ℓ̇Mi, pMi

)
pMi ,

(11)
whereRL represents the gas constant of air. The internal tem-
peratureTMi can be approximated with good accuracy by the
constant temperature of the ambiance. The volume characteris-
tic of the pneumatic muscle can be accurately approximated by
the polynomial function

VMi (∆ℓMi, pMi) =
3

∑
k=0

(

ak ∆ℓk
Mi

)

pMi +
3

∑
l=0

bl ∆ℓl
Mi , (12)

where the coefficientsak andbl have been identified by mea-
surements, cf. Schindele [2013].

5. CASCADED CONTROL DESIGN

For control design of the high-speed linear axis, a cascaded
control structure has been chosen. Either the internal mus-
cle pressurespMi, i = {l,r}, or the muscle forcesFMi, i =
{l,r} are controlled in a fast underlying control loop, whereas
the carriage positionzC as well as the mean muscle pres-
sure pM = 0.5 (pMl + pMr) or the mean muscle forceFM =
0.5 (FMl +FMr) represent the controlled variables of the outer
loop. The control design for both the outer control loop and
the inner control loop are realised by backstepping techniques,
cf. Krstić et al. [1995]. The detailed design procedure is ex-
plained in Schindele [2013]. The backstepping approach also
allows for an estimation of unknown parameters after an ex-
tension, and it is called adaptive backstepping then. Here,the
adaptive backstepping approach is used to estimate the remain-
ing disturbance forceFU . For control design, the differential
flatness property of the system under consideration has been
exploited, cf. Fliess et al. [1995] or Aschemann and Schin-
dele [2008]. In this manner, the nonlinearities of the controlled
system can be compensated by the inverse dynamics and only
the trajectory error system has to be stabilised by backstepping
techniques.

5.1 Control implementation with underlying pressure control

For control implementation with underlying pressure control
the flat outputs of the outer control loop are the carriage position
y1 = zC and the mean muscle pressurey2 = pM. Subsequent

differentiations of the first flat output until the input variables
appear lead to

y1 = zC , ẏ1 = żC ,

ÿ1 =
aM

k m

[
f1r pMr − f2r +FMr,hys

− f1l pMl + f2l −FMl,hys
]
−

FU

m
(13)

whereas the second flat output depends directly on the internal
muscle pressures as input variables

y2 = pM =
1
2
(pMl + pMr) . (14)

By solving (13) and (14) for the internal muscle pressures, the
inverse dynamics results in

u =

[
pMl
pMr

]

=
1

f1l + f1r

·

[

f2l − f2r −
k m
aM

υ1+2pM f1r −FMl,hys +FMr,hys

f2r − f2l +
k m
aM

υ1+2pM f1l +FMl,hys −FMr,hys

]

.

(15)

As control inputυ1 = z̈C + FU
m the carriage acceleration cor-

rected by the disturbance termFU
m is chosen. Then, the back-

stepping control law as well as the differential equation for the
disturbance estimation result in

υ1 = z̈Cd + g1(e1,e2)+ c3e2+ c4e3
2+

F̂U

m
, (16)

˙̂FU =
e2 γ
m

, (17)

with
e1 = zCd − zC ,

e2 = c1 e1+ c2e3
1+ ė1 , (18)

g1 = e1
(
1− c2

1

)
+ e2

(
c1+3c2e2

1

)
−4c1c2 e3

1−3c2
2e5

1 .

Here,c1, c2, c3, c4 andγ are positive control design parameters.
By considering these equations, it can be shown that the time
derivative of the control Lyapunov function

V1(e1,e2) =
1
2

e2
1+

1
2

e2
2+

1
2γ

(
FU − F̂U

)2
(19)

is negative semidefinite, see Schindele [2013]. However, the in-
variance principle of LaSalle, cf. LaSalle and Lefschetz [1961],
can be employed to prove global asymptotic stability, cf. Krstić
et al. [1995].
The input variablespMi, i= {l,r}, of the outer loop serve as de-
sired values of the controlled variables of the inner control loop,
cf. Fig. 2. For the underlying control of the muscle pressures
the first time derivatives of the desired muscle pressures are
required additionally. Here, these variables are calculated from
desired values exploiting the differential flatness of the system.
For this purpose, the third time derivative of the first output
variable y1 = zC and the first time derivative of the second
output variabley2 = pM are considered

...
y 1 =

aM

k m

[
ḞMr

(
pMr, ṗMr,∆ℓMr,∆ℓ̇Mr

)

−ḞMl
(

pMl , ṗMl ,∆ℓMl ,∆ℓ̇Ml
)]

−
1
m

ḞU , (20)

ẏ2 =
1
2
(ṗMl + ṗMr) . (21)

Solving (20) and (21) for the variables ˙pMi, the time derivatives
of the desired muscle pressures can be stated as functions of
desired values
[

ṗMld
ṗMrd

]

=

[
ṗMld

(
zCd , żCd ,

...
z Cd , pMld , pMrd , ṗMd , ḞU

)

ṗMrd
(
zCd , żCd ,

...
z Cd , pMld , pMrd , ṗMd , ḞU

)

]

. (22)
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]
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]
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]
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T
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[
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Fig. 2. Block diagram of the cascaded control structure: themuscle pressures are controlled in a fast underlying control loop,
whereas the carriage position as well as the mean muscle pressure are controlled in an outer loop.

The control law of the underlying control loop, which rep-
resents a fast control of the corresponding internal muscle
pressurepMi, is designed similarly to that of the outer control
loop. Considering (11), the inverse dynamics for the pneumatic
subsystem can be stated as

ṁMi =
1

kui (∆ℓMi, pMi)
[υMi + kpi

(
∆ℓMi,∆ℓ̇Mi, pMi

)
pMi] , (23)

with the internal muscle pressurepMi as flat output. The first
time derivative of the flat outputυMi = ṗMi can be chosen as
stabilising control input. Then, the following stabilising control
law for the pressure control

υMi = ṗMid + ai (pMid − pMi) , (24)

where the positive control design parameterai > 0 guarantees
a negative definite time derivative of the control Lyapunov
function

V2 =
1
2
(pMid − pMi)

2
. (25)

The complete control structure is depicted in Fig. 2. Here, the
nonlinear valve characteristics (VC) of the left and the right
proportional valve is compensated by its approximated inverse
characteristics (IVC), which provides the valve voltageUVi.

5.2 Control implementation with underlying force control

In contrast to the underlying pressure control, also the muscle
forces can be controlled in a underlying loop. The control
structure remains almost the same. In an outer control loop the
carriage position and the mean muscle force are the controlled
variables, whereas the muscle forces are controlled in fast
underlying control loops and used as control inputs of the outer
loop. In this case, the outer loop shows a linear behaviour.
The carriage positiony1 = zC is chosen as the first of two flat
outputs. Then, the second time derivative depends on the left
and the right muscle force as input variables

y1 = zC , ẏ1 = żC ,

ÿ1 = z̈C =
aM

k m
[FMr −FMl]−

FU

m
. (26)

The mean muscle force as second flat output directly depends
on the input variables

y2 = FM =
1
2
(FMl +FMr) . (27)

Considering (26) and (27) the inverse dynamics results in

u =

[
FMl
FMr

]

=
1

2aM




2aM FM − k m

(

z̈C + FU
m

)

2aM FM + k m
(

z̈C + FU
m

)



 . (28)

As the trajectory error system is the same as in the case of
an underlying pressure control, the control law as well as
the differential equation for estimating the disturbancesare
calculated by (16) and (17). The time derivatives of the desired
input variablesḞMid can be computed as follows

...
y 1 =

...
z C =

aM

k m

[
ḞMr − ḞMl

]
−

1
m

ḞU , (29)

ẏ2 = Ḟm =
1
2

(
ḞMl + ḞMr

)
. (30)

Solving (29) and (30) forḞMl and ḞMr and evaluating the
solution with desired variables leads to

[
ḞMld
ḞMrd

]

=
1

2aM




2aM Ḟmd − k m

(...
z Cd +

ḞU
m

)

2aM Ḟmd + k m
(...

z Cd +
ḞU
m

)



 . (31)

For the underlying force control the muscle forceyi = FMi is
chosen as flat output. Considering (4) yields

ẏi = ḞMi = f1i ṗMi + ḟ1i pMi − ḟ2i . (32)

In combination with (11) the inverse dynamics can be stated as

ṁMi =
f1i kpi pMi − ḟ1i pMi + ḟ2i +υi

f1i kui
. (33)

Employingυi = ḞMi as control input, the following control law
can be used to stabilise the error dynamics asymptotically

υi = ḞMid + ai (FMid −FMi) , (34)

with ai > 0. This control law leads to a negative definite time
derivative of the control Ljapunov function

Vi =
1
2 (FMid −FMi)

2
. (35)

Copyright © 2013 IFAC 776



Ad. Backst.
Control

Outer Loop

Control
of Muscle

Forces
IVC VC

H
ig

h
-S

p
ee

d
L

in
ea

r
A

xi
s

w
ith

p
n

eu
m

at
ic

M
u

sc
le

sCalculation of
Muscle Pressures

Hysteresis-
Model

Real
Differentiation

Time-
derivative of

Desired Forces

wz =

[
zCd
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Fig. 3. Block diagram of the cascaded control structure: themuscle forces are controlled in a fast underlying control loop, whereas
the carriage position as well as the mean muscle force are controlled in an outer loop.

The corresponding control structure is depicted in Fig. 3. The
measured forces are the overall forces, already including the
hysteresis. Hence, a additional hysteresis compensation action
is not needed. However, the inverse valve characteristics de-
pends on the internal muscle pressure, which is not measured
in this case, but calculated from the muscle forces as follows

pMi =
FMi,ges + f2i −FMi,hys

f1i
. (36)

Thus, hysteresis modelling makes sense also in the case of
muscle force control.

6. EXPERIMENTAL RESULTS

Tracking performance w.r.t. the carriage positionzC for the con-
figurations with underlying pressure or force control have been
investigated by experiments at the test-rig of the high-speed
linear axis. It is equipped with four pneumatic muscles DMSP-
20-1083N from FESTO AG. The internal pressures of the mus-
cles are measured by piezo-resistive pressure sensors, theforces
generated by the pneumatic muscles are measured by strain
gauges in a full bridge arrangement and the carriage position
is determined by a linear incremental encoder with an accuracy
of 10 µm. The control algorithm has been implemented on a
dSpace real-time system with a sampling time ofT = 1 ms.
The desired trajectories for the carriage position and its corre-
sponding time derivatives are obtained from a trajectory plan-
ning module that provides synchronous time optimal trajecto-
ries. Here, the desiredz-position varies in an interval between
−0.3 m and 0.35 m, see upper part of Fig. 4. The maximum
velocities are about 1.3 m/s. Thus, nearly the maximal available
workspace as well as the maximum achievable velocities are
exploited. Fig. 4 also shows the tracking error of the carriage
positionez = zCd − zC. As can be seen, both control approaches
lead to a very good closed-loop performance with maximum
control errors during the movements of about 1.5 mm for un-
derlying pressure control and about 2 mm for underlying force
control. The steady-state errors are smaller than 0.2 mm for
both approaches. To demonstrate the efficiency of the hysteresis
compensation strategy as well as the disturbance compensation
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−0.4

−0.2

0

0.2

0.4

t in s

z
d
in

m

 

 

Desired carriage position
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Fig. 4. Desired carriage position (upper part) and corresponding
tracking error using adaptive backstepping control with
either underlying pressure control (middle part) or under-
lying force control (lower part).

by adaptive backstepping techniques the tracking errorez is
compared in Fig. 5 and Fig. 6 for the following three cases: a)
Backstepping control with disturbance estimation by adaptive
backstepping and hysteresis compensation by the ASPI model,
b) Backstepping control with hysteresis compensation by the
ASPI model – only for the approach with underlying pressure
control – and c) pure Backstepping control. As can be seen, the
control performance is significantly improved by introducing
the hysteresis compensation action based on the ASPI model,
and remaining uncertainties are accurately compensated bythe
adaptive estimation strategy. The corresponding values ofthe
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Fig. 6. Upper part: Tracking error for a) Ad. Backstepping, b)
Backstepping. Lower part: Estimated disturbance force.
Cascaded control with underlying force control.

root mean square erroreRMS =
√

1
N ∑N

i=1 (zCd(i)− zC(i))
2 are

stated in Table 1. In the lower parts of Fig. 5 and Fig. 6 the esti-
mated disturbance forcêFU is depicted with and, alternatively,
without hysteresis compensation. This demonstrates that abig
part of the uncertainties appearing at this test-rig is produced
by the hysteresis force of the pneumatic muscles. This explains
the superior control behaviour for pure backstepping control
in the case of underlying force control compared to the pure
backstepping control in the case of underlying pressure control.

a) b) c)
Pressure control 0.37 mm 1.3 mm 4.6 mm

Force control 0.59 mm – 1.2 mm

Table 1. Root mean square errors for a) Adaptive
Backstepping and ASPI-M, b) Backstepping with

ASPI-M, c) Backstepping.

7. CONCLUSION

In this paper, two cascaded trajectory control approaches are
presented for a new linear axis driven by pneumatic muscles.
The first approach involves a fast underlying control of the

muscle pressures and an accurate control of the carriage posi-
tion and the mean muscle force in an outer loop. In the second
approach the muscle forces are controlled in a fast underlying
control loop, whereas the carriage position and the mean muscle
pressure are the controlled variables of the outer loop. Forthe
approach with underlying pressure control the hysteresis in the
force characteristic of the pneumatic muscles, which represents
the main part of the uncertainties, is compensated by using
an asymmetric shifted Prandtl-Ishlinskii model. In contrast, a
compensation of the hysteresis is not mandatory in the case
of underlying force control; the achieved improvement using
hysteresis compensation is only small. Remaining uncertainties
are estimated by an adaptive backstepping control. Both control
approaches lead to an excellent closed-loop performance with
maximum position errors of approximately 2 mm.
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