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Abstract: In general, controller is designed with respect to one time scale. Time-state control form
divides a system into virtual time control part and state control part, and the system is linearized based on
two time scales; real and virtual time scales. This paper claims that handling of time scales for a control
system should be more flexible, and introduces a multi time-scale transformation as a generalization
of time scale transformation. As an example, a mechanical system is linearized under two virtual time
scales.
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1. INTRODUCTION

The use of state-dependent time scaling transformations was
first considered by Sampei and Furuta (1986). This technique
was applied to some methods, such as linearizing nonlinear
systems (Repondek (1998); Guay (1999); Saito et al. (2010);
Sekiguchi and Sampei (2013)), optimal control problem for
switched system (Loxton et al. (2009); Yu et al. (2012)), and
control strategies using time-state control form (Sampei (1994);
Satoko (2011)), etc. When we apply a time scale transformation
to a practical control system, we can also adopt a state function
as a virtual time scale. In this case, it should be taken into
account that a virtual time scale must be well-defined. The
control method via time-state control form focuses in this point.
This method separates a system into a time scale control part
and state control part with respect to a new time scale. The
main idea of time-state control form is to guarantee the mono-
tonically increase of virtual time scale using time scale control
part. In the other literature, researchers focus on adopting one
virtual time scale.

The purpose of this paper is to present a new technique using a
time scale transformation. As shown in a control strategy using
a time-state control form, there is no restriction to use only
one time scale. Moreover, we consider that there is no need
for separating a system into time and state control parts, that
is, we can separate a system into some parts, and time scale
transformations can be applied to each subsystem separately.
In the analytical point of view, we focused on the specific
form that is decoupled in the sense of state and input, which
is called multi time-scale form. In this paper, we define the
decoupling matrix on multiple time scales, and confirm that the
nonsigularity of this decoupling matrix is sufficient condition
for partial feedback linearization with multiple time scales. As
an application, we linearize a pendulum system with two inputs
via multi time-scale form.

2. PRELIMINARIES

In this paper, we consider a control-affine multi-input nonlinear
control system of the form,

ẋ : =
dx

dt
= f(x) +

m∑
i=1

gi(x)ui

= f(x) +G(x)u, (1)

where x ∈ M ⊂ Rn , u ∈ Rm, and f and g1, . . . , gm are
C∞ vector fields on M , u = [u1, . . . , um]T , and we assumed
that G(x) = [g1(x), . . . , gm(x)] has rank m for all x in M .
Hereinafter, we sometimes omit the coordinate representation
(x) for simplicity. Using vector fields f and g1, . . . , gm, we
define following distribution :

Gi+1 = span{adi
fG1}+ Ḡi (i = 1, 2, . . .), (2)

G1 = span {g1, . . . , gm}

where adi
fG1 is set of vector fields adifg for g ∈ G1, and

adifg = [f, adi−1
f gj ] and [f, g] is a Lie bracket of f and g. In this

paper, we refer to these distributions Gi as system distributions,
and Ḡi = invGi denotes involutive distribution, and we assume
that all distributions considered here have constant dimension.

The vector field f1 is said to be congruent to the vector field f2
modulo distribution G if there exists g ∈ G such that f1 = f2 +
g, and this congruence is denoted by f1 ≡ f2 mod G. If
f1 ∈ G, then we also say f1 ≡ 0 mod G.

In this paper, we adopt a definition of relative degree of a scalar
function as follows:
Definition 1. (Relative degree). A smooth scalar function h(x)
is said to have relative degree r with respect to (1) if and only
if h(x) satisfies following conditions:

LG1h = · · · = LGr−1h = 0,

LGrh ̸= 0,

where LGh = 0 represents Lgh = 0 for any g ∈ G.

Note that this definition of relative degree is the same with a
traditional relative degree for outputs.

2.1 Partial Feedback Linearization

Partial feedback linaerization is a method to transform a system
into a partially linearized system via coordinate and input
transformations, as follows:
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d

dt

[
ξ
η

]
=

[
Aξ

fη(ξ, η)

]
+

[
B

Gη(ξ, η)

]
v,

where ξ = [ξT1 , . . . , ξ
T
m]T , ξi = [ξi1, . . . , ξiri ]

T , and ri is a rel-
ative degree of ξi1. Hence the dimension of linear subsystem is
the sum of relative degree ri. The necessary and sufficient con-
dition for linearizing a system partially with h = {h1, . . . , hm}
is that the functions h have vector relative degree defined below.
Definition 2. (Vector relative degree). Functions {h1, . . . , hm}
are said to have vector relative degree [r1, . . . , rm] with respect
to a system (1) if ri is a relative degree of hi with respect to (1)
and the following matrix is nonsingular:

Ladr1−1

f
g1
h1 . . . Ladr1−1

f
gm

h1

...
. . .

...
Ladrm−1

f
g1
hm . . . Ladrm−1

f
gm

hm

 . (3)

This matrix is called decoupling matrix.

2.2 Time Scale Transformation

Consider a virtual time scale τ satisfying
dt

dτ
= s(x), τ(t0) = τ0, (4)

where s(x) is called a time scaling function and satisfies the
following condition

0 < s(x) < ∞. (5)
With the new time scale, the system (1) is represented as

x̌ :=
dx

dτ
= s(x)f(x) +

m∑
i=1

gi(x)ũi

=s(x)f(x) +G(x)ũ, (6)
where ũ = [ũ1, . . . , ũm], and ũi = s(x)ui. Let system
distribution with respect to new time scale be given as

G s
i+1 = span

{
adisfG1

}
+ Ḡ s

i , (i = 1, 2, . . .), (7)
where G s

1 = G1. To make following discussion clear, we adopt
the notation rdτ (h) to describe a relative degree of h with
respect to time scale τ .

In the rest of the paper, it is assumed that the virtual time scale
is well defined, that is, the derivative of a virtual time scale with
respect to a real time scale is positive and bounded. Moreover,
we assume the time scaling function is a class of C∞. The latter
assumption is required to retain the smoothness of vector fields,
and it is not essential for the time scale transformation.

At the end of this section, we define the relative degree with
respect to a time scale τ .
Definition 3. (Relative degree w.r.t τ ). A smooth function h(x)
is said to have relative degree r with respect to (1) and a virtual
time scale τ if and only if h(x) satisfies following conditions
on M :

LG s
1
h = · · · = LG s

r−1
h = 0,

LG s
r
h ̸= 0.

3. KEY IDEA

Consider coordinate and input transformations:
ξ = Φ(x),

u = α(x) + β(x)v,

where ξ is new state, v is new input, and β(x) is nonsingular
matrix. Consider multiple time scales satisfying

dt

dτi
= si(x), (i = 1, . . . , k).

Applying these transformations, system (1) becomes
dξ1
dτ1

= f̃1(ξ) + G̃1(ξ)v,

...
dξk
dτk

= f̃k(ξ) + G̃k(ξ)v,

where ξi = [ξi1, . . . , ξiri ]
T , ξ = [ξT1 , . . . , ξ

T
k ]

T ,
∑k

i=1 ri = n,
and f̃i, G̃i are projection of vector fields with respect to a time
scale τi to ξi, that is,

f̃i(ξ) = Pri
(
sif ◦ Φ−1(ξ)

)
∈ Rri ,

G̃i(ξ) = [g̃i1(ξ), . . . , g̃im(ξ)] ∈ Rri×m,

g̃ij(ξ) = Pri
(
sigj ◦ Φ−1(ξ)

)
∈ Rri ,

where Pri(·) denotes the projection map to ξi. Each subsystem
evolves on a different time scale. However these subsystems
have interactions via ξ and feedback input v, and the interac-
tions make it difficult to analyze a system.

Hence, we focus on the partially decoupled form:
dξ1
dτ1

= f̃1(ξ1) + g̃1(ξ1)v1,

...
dξm
dτm

= f̃m(ξm) + g̃m(ξm)vm,

dξm+1

dτm+1
= f̃m+1(ξ) + g̃m+1(ξ)v, (8)

and this form is called multi time-scale form.

One of the easiest ways to transform a system into multi time-
scale form is partial feedback linearization. Next we define the
vector relative degree with multiple time scales to discuss a
partial feedback linearization for (8).
Definition 4. Functions h = {h1, . . . , hm} are said to have
time scaled vector relative degree [r1, . . . , rm] with respect
to a system (1) and virtual time scales τ = {τ1, . . . , τm} if ri is
a relative degree of hi with respect to a system (1) and virtual
time scale τi, and the following matrix is nonsingular:

Dτ :=


Ladr1−1

s1f
s1g1

h1 . . . Ladr1−1

s1f
s1gm

h1

...
. . .

...
Ladrm−1

smf
smg1

hm . . . Ladrm−1
smf

smgm
hm

 . (9)

Dτ is referred as time scaled decoupling matrix.
Lemma 1. Dτ is equal to the following matrix Ls1g1L

r1−1
s1f

h1 . . . Ls1gmLr1−1
s1f

h1

...
. . .

...
Lsmg1L

rm−1
smf hm . . . LsmgmLrm−1

smf hm

 . (10)

Proof. Let r be the relative degree of h with time scaling
function s. To prove the lemma, it is enough to show the
equation:

LsgiLr−1
sf h = Ladr−1

sf
sgi

h, (11)
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for i ∈ {1, . . . ,m}, and this equation is trivial because it is
closed in one virtual time scale. ◁

If functions h = {h1, . . . , hm} have time scaled vector relative
degree [r1, . . . , rm] with respect to τ = {τ1, . . . , τm}, then
there exist a coordinate transformation

ξ =
[
ξT1 , ξ

T
2 , . . . , ξ

T
m, ξTm+1

]T
,

ξi =


hi
dhi

dτi
...

dri−1hi

dτ
ri−1

i

 for i = 1, . . . ,m,

where ξm+1 is chosen to make Jacobian be nonsingular, and an
input transformation

u = α(x)+ (Dτ )
−1

v,

α(x) =


s1Lf

dr1−1h1

dτ
r1−1

1

s2Lf
dr2−1h2

dτ
r2−1

2

...
smLf

drm−1hm

dτrm−1
m

 ,

that transform a system (1) into following patially linear multi
time-scale form:

dξ1
dτ1

= Ar1ξ1 + br1v1,

...
dξm
dτm

= Armξm + brmvm,

dξm+1

dτm+1
= f̃m+1(ξ) + G̃m+1(ξ)v,

where we applied Lemma 1, and (Ai, bi) is controllable canon-
ical form for i-th dimensional system.

Each linear subsystem is decoupled, and the multi time-scale
form is realized. Zero dynamics is represented as follows:

dξm+1

dτm+1
= f̃m+1(0, . . . , 0, ξm+1).

By summarizing up to here, we get the following theorem.
Theorem 2. If functions {h1, . . . , hm} have time scaled vector
relative degree [r1, . . . , rm] with respect to virtual time scales
{τ1, . . . , τm}, then there exists coordinate and input transfro-
mations that transform a system (1) into following multi time-
scale form:

dξ1
dτ1

= Ar1ξ1 + br1v1,

...
dξm
dτm

= Armξm + brmvm,

dξm+1

dτm+1
= f̃m+1(ξ) + G̃m+1(ξ)v,

where ξi =

[
hi, . . . ,

dri−1hi

dτ
ri−1

i

]T
for i = 1, . . . ,m.

Remark 1. Dimension of the largest linearizable subsystem is
one of the great interests. Let dt, dτ0 and dτ denote the dimen-
sion of the largest linearizable subsystem via only feedback

Fig. 1. Simplified model of the inverted pendulum with hori-
zontal and vertical movement

transformation, single time-scale transformation, and multi
time-scale transformation respectively, then these dimensions
have following relationship:

dt ≤ dτ0 ≤ dτ .

This relation is clear because single time scale transformation
is a special case of multi time-scale transformation. However,
the calculation of dτ remains an open problem.

There is a system that can be linearized by multi time-scale
transformation even if the system cannot be linearizable via
single time-scale transformation, and we show an example in
the next section.

4. MULTI TIME-SCALE LINEARIZATION : PENDULUM
SYSTEM WITH VERTICAL AND HORIZONTAL

FREEDOM

Consider a pendulum system mounted on a base that moves
in the vertical plane with two inputs. We consider only the
pendulum system with two inputs shown in Fig. 1, and it is
known that this system is linearizable using dynamic feedback
transformation, see Sekiguchi and Sampei (2010). In this paper,
we linearize this system without dynamics extension. First
derive the model of the inverted pendulum with horizontal
and vertical movement. Notations of generalized coordinate
and inputs in Fig. 1 are defined in Table 1. The definitions
of physical parameters are as follows. Let the mass of the
pendulum and base be mp and mb respectively, and let Jg
denote the moment of inertia with respect to the center of
gravity (COG) of the pendulum. Furthermore, let l be the
distance from the pivot to the center of gravity, and g denotes
the gravity acceleration. It is assumed that friction is very small
and can be neglected. By using these notations, equations of
motion are

M(q)q̈ + C(q, q̇) +G(q) = [ FH FV 0 ]
T (12)

where
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Table 1. Notation of variables

xH horizontal position of the base
xV vertical position of the base
θ angle between the vertical line and the pendulum
FH horizontal force input
FV vertical force input

q = [xH xV θ]
T
,

M(q) =

mb +mp 0 mpl cos θ
0 mb +mp −mpl sin θ

mpl cos θ −mpl sin θ mpl
2 + Jg

 ,

C(q, q̇) =

−mplθ̇
2 sin θ

−mplθ̇
2 cos θ
0

 , G(q) =

[
0

(mb +mp)g
−mpgl sin θ

]
.

Then the state space realization of the system is
ẋq = fq(xq) + [gH(xq), gV (xq)]F, (13)

fq =

 q̇

M−1(C +G)

 , [gH , gV ] =

 0 0

M−1

[
1 0
0 1
0 0

]  ,

F = [ FH FV ]
T
,

where
xq =

[
xH xV θ ẋH ẋV θ̇

]T
.

In order to calculate the relative degree structure introduced by
Sekiguchi et al. (2010), the some distributions are defined using
vector fields f, gH and gV as follows.

G1 = span {gH , gV } ,
G2 = span

{
adfqgH , adfqgV , Ḡ1

}
,

where Ḡ1 is involutive closure of the distribution G1. In this sys-
tem, Ḡ1 is equal to G1, and Ḡ2 spans full space. The dimension
of these distributions are

dimG1 = dim Ḡ1 = 2,

dimG2 = 4, dim Ḡ2 = 6.

Then the relative degree structure of this system is
(2, 2, 2, 2, 1, 1)−[2, 2]. The relative degree structure is invariant
under the feedback transformation, and
(2, 2, 2, 2, 1, 1)−[2, 2] indicates that this system is not feedback
linearizable and that there exist feedback transformation and
coordinate (ξ1, ξ2, η) such that the transformed system has two
linear subsystem as follows:

d

dt

 ξ1
ξ2
η

 =


[
0 1
0 0

]
ξ1[

0 1
0 0

]
ξ2

α(ξ1, ξ2, η)

+


[
0
1

]
u1[

0
1

]
u2

0

 , (14)

where u1, u2 are new inputs. Moreover, the relative degree
structure (2, 2, 2, 2, 1, 1)− [2, 2] means that some functions that
are independent from ξ1, ξ2 and have relative degree 2 can be
selected as the state of nonlinear subsystem. Indeed there is a
coordinate transformation that realizes (14) as follows:

h = (ẋH cos θ − ẋV sin θ)ρ+ θ̇, ρ = lm
J+l2m ,

x = [ x1 x2 x3 x4 x5 x6 ]
T
,

:= [ xH xV ẋH ẋV h θ ]
T
,

where h is selected from the functions with relative degree 2.
Using this coordinate, we get the following normal form:

ẋ = f(x) + g1(x)u1 + g2(x)u2, (15)
where

f = [ x3 x4 0 0 f5(x) f6(x) ]
T
, (16)

g1 = [ 0 0 1 0 0 0 ]
T
, (17)

g2 = [ 0 0 0 1 0 0 ]
T
, (18)

f5(x) =

((
ρ2(x2

3 − x2
4) cosx6 − ρx3x5 + gρ

)
sinx6

−2ρ2x3x4 sin
2 x6 − ρx4x5 cosx6 + ρ2x3x4

)
,

f6(x) = ρx4 sinx6 − ρx3 cosx6 + x5,

and input transformation is derived as follows:[
u1

u2

]
= −δ−1γ + δ−1

[
FH

FV

]
,

γ =
[

lmp sinx6(ẋ2
6 − ρ cosx6)

gmb +mp(g − lẋ2
6 cosx6)−mplgρ sin2 x6

]
,

δ =
[
mb +mpρ−mplρ cos2 x6 mplρ sinx6 cosx6

mplρ sinx6 cosx6 mb +mpρ−mplρ sin2 x6

]
.

To linearize the system via a multi time-scale form, let us
consider the following time scaling function:

s =
dt

dτ
=

h2

dh1

dt

, (19)

where h1 and h2 are scalar function, and their relative degrees
are r with respect to real time scale t. The relative degree of h1

with respect to a new time scale τ is calculated as follows:
dh1

dτ
=

dh1

dt

dt

dτ
= h2.

Hence, the relative degree has a relationship
rdτ (h1) = rdτ (h2) + 1.

Moreover, next lemma says that rdτ (h2) ≥ r because rdt(s) =
r − 1.
Lemma 3. If rdt(s) is r, then G s

i = Gi for i = 1, . . . , r.

Proof of this lemma is in Appendix.

Therefore, the relative degree of h1 with respect to a new time
scale is larger than the original one. This type of time scaling
function has been applied to two-link robot known as Acrobot
by Saito et al. (2010), and the stabilization was achieved via
linearization with time scale transformation.

This time-scale design method is applied to the target pendulum
system. The pendulum system has 4 independent functions
whose relative degrees are 2. Choose x1 and x5, and define the
time scaling function

s1 =
dt

dτ1
=

x1

dx5

dt

.

After applying this time scale transformation, x5 has relative
degree 3. The relative degree structure of transformed system is
calculated as (3, 2, 2, 2, 1, 1)− [3, 2], and hence the time scaled
system is still not feedback linearizable. The relative degree of
x becomes {2, 1, 2, 1, 3, 2} on the new time scale τ1. Therefore,
we can choose functions x5, x1, and s1ẋ3 as a coordinate of 3-
dimensional linear subsystem.

In the same manner, we get another set of functions {x6, x2,
s2x4} as a coordinate of linear subsystem with respect to a
virtual time scale:

s2 =
dt

dτ2
=

x2

dx6

dt

.
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Dτ = −
x2
1
(sin(x5)x4+x6)

ρ2(− cos(x5)x3+sin(x5)x4+x6)3

sin(x5)x2
1
x3

ρ2(− cos(x5)x3+sin(x5)x4+x6)3

x2
2
x4(sin(2x5)x3+cos(2x5)x4−sin(x5)x6)

ρ2
(
cos(2x5)x3x4+

sin(x5)(g−ρx3x6)
ρ

−cos(x5)

(
sin(x5)

(
x2
4
−x2

3

)
+x4x6

))
3

sin(x5)x2
2

(
g
ρ
+cos(x5)

(
x2
3
+x2

4

)
−x3x6

)
ρ2
(
− cos(2x5)x3x4+sin(x5)

(
x3x6− g

ρ

)
+cos(x5)

(
sin(x5)

(
x2
4
−x2

3

)
+x4x6

))
3


(20)

The relative degree of x with respect to the new time scale τ2 is
{2, 1, 2, 1, 2, 3}, and it is also not feedback linearizable.

Next, we separate the system into two subsystems defined by

ξ1 = [x5, x1, s1x3]
T ,

ξ2 = [x6, x2, s2x4]
T ,

where x5 and x6 have relative degree 3 with respect to τ1 and
τ2 respectively.

In order to linearize the system in the sense of multiple time
scales, the functions {x5, x6} must have time scaled vector
relative degree [3,3] with respect to virtual time scales τ =
[τ1, τ2], that is, the time scaled decoupling matrix Dτ defined
in (9) must be nonsingular. Dτ is described in (20). Therefore,
the system is transformed into multi time-scale form only if the
time scaled decoupling matrix (20) is nonsingular. Moreover,
the system is linearizable in that case.

5. CONCLUDING REMARKS

In this paper, we proposed the usage of multiple time scales
as a tool for analyzing and control a multi-input system. Multi
time-scale form was defined as a system representation under
the multiple time scales that was decoupled about coordinates
and input. Moreover, we also discussed the partial feedback
linearization under the multiple time scales. We defined de-
coupling matrix for multiple time scales and checked that the
nonsingularity of decoupling matrix is required to transform a
system into multi time-scale partial feedback linear form.

Through a specific example, we presented that the system
is linearizable under the multiple time scales even though
the system is not orbitally feedback linearizable. However,
designed time scales and decoupling matrix have a lot of
singular points, for example, Dτ is singular when x3 = x4 =
x6 = 0. Hence, the presented linear form cannot be applied to
stabilize the system.

For multi-input systems, the orbital feedback linearizability
with one virtual time scale was solved in Guay (2001). How-
ever, the conditions for orbital feedback linearization with mul-
tiple time scales remain to be solved. Moreover, in order to ap-
ply multi time-scale transformation to practical systems, more
investigations are required to establish checkable linearizability
conditions and design method of virtual time scales as well as
linearization problem via a single time scale transformation.
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APPENDIX

First, to prove Lemma 3, we prepare a following lemma.
Lemma 4. Lie brackets of time scaled system (6) with time
scaling function s can be written as

adisfgk =

i∑
j=0

ξ(i,j)adj
fgk + ξi(k,f)f, (21)

where functions ξ(i,j) and ξi(k,f) are determined by x, s and Lie
derivatives of s as follows:
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ξ(i+1,0) = sLfξ

(i,0)

ξ(i+1,j) = sξ(i,j−1) + sLfξ
(i,j)

ξ(i+1,i+1) = sξ(i,i) = si+1

ξi+1
(k,f) = sLfξ

i
(k,f) − ξi(k,f)Lfs−

∑i
j=0 ξ

(i,j)Ladj
f
gk
s

(22)

where 1 ≤ j ≤ i, and ξ0(k,f) = 0, and ξ(0,0) = 1.

Proof. The proof is the same with Lemma 7 in Sampei and
Furuta (1986). ◁

Now, we prove Lemma 3
Proof of Lemma 3 rdt(s) = r means that

LGs = LadfGs = · · · = Ladr−2
f

Gs = 0

for all x ∈ U. (23)
By substituting (23) into (22), we get

ξi(k,f) = 0 for i = 0, . . . , r − 1 and (24)

ξr(k,f) = −
r−1∑
j=0

ξ(r−1,j)Ladj
f
gk
s

= −sr−1
(
Ladr−1

f
gk
s
)
. (25)

Moreover,

adi
sfgk =

i∑
j=0

ξ(i,j)adjfgk, for i = 0, . . . , r − 1, (26)

where ξ(i,i) = si is not zero. Therefore, G s
i = Gi for i =

1, . . . , r. ◁
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