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Abstract: We consider a generic non-linear consensus model and prove convergence results to
a common value together with prescribed rate of convergence. Instead of a Lyapunov approach
we consider a functional metric space and make a fixed point theory argument using contraction
mappings. We are restricted to the case of static networks.

1. INTRODUCTION

Collective dynamics of autonomous agents has become
over the past decade one of the most important and active
research areas. The analysis of networks and it’s dynam-
ics has been the center of attention for many communi-
ties such as the Control, the Applied Mathematics and
Physics or the Computer Science. Network dynamics of
autonomous agents who interact exchanging information
in order to achieve a common value in distributed way has
drawn such an interdisciplinary attention see for example
Blondel et al. [2005], Moreau [2004], Cucker and Smale
[2007], Matei et al. [2008], Papachristodoulou et al. [2010],
Munz et al. [2008], Olfati-Saber and Murray [2004], Motsch
and Tadmor [2011] and references therein. These networks
are known as agreement or consensus networks of agents.
The majority of work include linear systems with agents
each of which exchanges information about their state with
their “neighbours” so that they asymptotically converge
to the same value (consensus value). The classic model in
continuous time linear dynamics proposed in literature is

ẋi =
∑
j∼i

aij(xj − xi) (MDL)

where j ∼ i stands for agent j adjacent to i. The
communication weights aij > 0 model the strength of
the effect of j to i. This is a very well known and easily
analysable system especially when the communication
weights are positive constants. One can use fundamental
results from Algebraic Graph Theory to fully analyse it’s
stability (see for example Mesbahi and Egerstedt [2010]).
The main drawback of the system above is that it is
over-simplistic in two perspectives. The first is the time
invariant linearity of the communication scheme and the
second is the synchronous propagation of information
among communicating agents.

1.1 Related literature and contribution of this work

Although there are a lot of results in discrete time de-
layed consensus dynamics, the respective continuous time
models lack this privilege. The reason of the progress in

discrete time is mainly due to the seminal work of Blondel
et al. [2005] and the technique of state space augmentation.
This allows for the convergence analysis of the dynamics
including the rate of convergence. This technique although
prominent in discrete time dynamics, it is unclear how to
implement it in continuous time dynamics. To the best of
our knowledge the literature in delayed continuous time
consensus dynamics is relatively poor. Our interpretation
for this is that the Lyapunov methods for such systems
are rather difficult. The introduction of delay in the value
of xj in (MDL) (so that xj(t) is replaced by xj(t − τ))
imposes a great deal of asymmetry in the dynamics of
the system, making the design of a successful Lyapunov
candidate function too difficult.

In a number of papers, we acknowledge the difficulty of the
Lyapunov method and propose a diiferent approach; this
of Fixed Point Theory argument. In Somarakis and Baras
[2013b] we discuss a simple LTI consensus scheme with
multiple and distributed delays and and in Somarakis and
Baras [2013c] we do so with an LTV consensus scheme.
The approach is through contraction mappings. We apply
the Contraction Mapping Principle in a complete metric
space of solutions satisfying certain asymptotic properties
(consensus point and convergence rate) and obtain both
delay and symmetry-dependent results.

In this work we draw our attention to the work of Pa-
pachristodoulou et al. [2010] and their asymptotic results
of a non-linear consensus scheme with multiple delays
which reads

ẋi =
∑
j∼i

Aijfij(xj(t− τji)− xi(t))

The authors there made a passivity assumption for fij(x)
and proved delay-independent asymptotic stability of the
consensus space using the Invariance Principle with the
Lyapunov function V = maxi xi −mini xi. This is indeed
a non-linear version of the papers presented in Somarakis
and Baras [2013b,c]. However, the problem with this
approach is that it tells us nothing neither about the
consensus point nor about the rate of convergence to it.
The contribution of this work is an attempt to make
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some progress towards this challenge, by using Fixed Point
Theory methods. We carry on the assumptions made
in Papachristodoulou et al. [2010], amplify them rather
moderately and exploit to their convergence results to
create a Fixed Point Argument based on Contraction
Mappings. It is remarked that our work focuses exclusively
on static topologies only. In the discussion section we
will make some comments on how one would adapt the
techniques of this work, to switching networks.

1.2 Organization of the paper

The paper is organized as follows: In the Section (2) we
introduce the necessary notation and framework of the
theories and techniques that will come in hand, in Section
(3) we introduce the model as initial value problem and
state the assumptions on which our analysis and results
rely. In section (4) we conduct the rigorous analysis and
conclude with the main result. We close with Section
(5) where several important remarks for this and future
work are outlined. Due to space limitations a few proofs
were omitted or sketched as well as several minor (to our
understanding) algebraic steps. For detailed results the
reader is kindly referred to Somarakis and Baras [2013a].

2. NOTATION AND DEFINITIONS

2.1 Preliminaries

RN is the N dimensional Euclidean space (and N is the
number of agents) with the p = 1 Euclidean norm || · || .
By 1 we understand the N -dimensional vector of all ones.
The subspace of RN with the property

∆ := {z ∈ RN : 1c, c ∈ R} (1)

is called consensus subspace and will play a key role in
our analysis. The orthogonal to ∆ is denoted by ∆c. By
L1

[a,b] we denote the space of functions that are integrable

in [a, b] and Cm(A) is the space of functions taking values
in A which have a continuous derivative up to order m.
(B, | · |) is the bracket standing for the Banach space of
vector valued continuous, bounded, functions and | · | is
the appropriate supremum norm. An important class of
functions in this work is defined below:

Definition 1. We call rate function, any function h with
the following properties

(1) h(t) : [0,∞)→ [1,∞)
(2) 1/h(t) ∈ L1

[1,∞)

2.2 Algebraic Graph Theory

A weighted graph G = (V,E,W ) consists of a set of
vertices V = {i}|Ni=1 and a set of edges E ⊂ {(i, j) :
i, j ∈ V, i 6= j} each member of which is attributed with
a positive weight aij ∈ W . If aij = aji the graph is called
symmetric and if for each i there is a path of positive
weights that leads to j we call G a connected graph. The
neighbourhood of a vertex i is denoted by Ni and includes
the set of vertices j such that aij > 0, in such case we write
j ∼ i. The degree of i is denoted by di =

∑
j∈Ni

aij . The
matrix representation of G that comes at hand in consensus
schemes is the weighted Laplacian is due to the (weighted)

Laplacian L = D − A where D = Diag[
∑
j∈Ni

aij ] and

A = [aij ] are the degree and incident matrix respectively
(for a rigorous introduction to the subject we refer the
interested reader is referred to Godsil and Royle [2001]).
In case of symmetric directed graphs, L is a positive semi-
definite, symmetric matrix with eigenvalue spectrum

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN = ||L||
and the orthonormal eigenvector of λ1 is 1 1

N .

2.3 Function spaces and Fixed Point Theory

Our approach to the stability problem of our non-linear
consensus model is through contraction mappings and
fixed point theory. We effectively make use of the most
fundamental result of this theory, known as the Contrac-
tion Mapping Principle. Due to space limitations we omit
the terminology of linear and metric spaces and we simply
state the result:

Theorem 2. Let (S, ρ) be a complete metric space and let
P : S→ S. If there is a constant α < 1 such that for each
pair y1, y2 ∈ S we have

ρ(Py1, Py2) ≤ αρ(y1, y2) (2)

then there exists a unique y ∈M with Py = y

The proof of this theorem can be found in any advanced
analysis or ODE textbook (see Royden [1989] or Markley
[2004]).

3. THE MODEL

We consider a population of N < ∞ autonomous agents
exchanging information on each others state. The state of
agent i ∈ V is denoted by xi and it is a C1 function of time.
The model to be considered in this work is the initial value
problem

ẋi =
∑
j∈Ni

fij(x
τ
j − xi) , t > 0

xi(t) = φi(t) , t ∈ [−τ, 0]

(IVP)

where xτj = xj(t−τ) is the information of the state of j at
time t−τ which agent i receives at time t, and φi are given
functions which play the role of initial data. We restrict
our analysis to the case of uniform delay τ for every agent.
In the discussion section we will consider the extension to
multiple delays.

3.1 Hypotheses

Hypothesis 3. The graph with weights fij , between the
nodes i, j ∈ V contains a spanning tree.

We will consider the following set of assumptions. For any
j ∈ Ni we assume that:

Hypothesis 4. f ∈ C1(R) with xfij(x) > 0 , ∀x 6= 0, and

limx→0
fij(x)
x = aij

Hypothesis 5. The limiting values aij constitute a set of
graph weights which correspond to a simply connected
topological graph.
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Hypothesis 6. For any x(t) ∈ C1(R) such that: both |x|
and |ẋ| are uniformly bounded and x(t) → 0 there exists
a rate function hf (t) with the property

sup
t≥0

hf (t)

∣∣∣∣fij(x(t))

x(t)
− aij

∣∣∣∣ <∞ (3)

The essence behind this set of assumptions is clear. As-
sumption (3) ensures the necessary minimum connectivity
conditions for convergence. Assumption (4) takes fij ’s
to be passive with a linear part which dominates near
the origin. Assumption (6) describes the rate at which
the functions reveal their linearity, while Assumption (5)
repeats the connectivity status with the simplification that

both
fij(x)
x and

fji(x)
x have the same (positive by Assump-

tion (4)) value at the origin.

In the discussion section we will see how some of the
assumptions above can (or cannot) be weakened within
the theoretical framework of this paper.

3.2 Preliminary Results

We end this section by drawing two very useful results
from Papachristodoulou et al. [2010]. The first one has to
do with the boundedness of solutions and the second with
their asymptotic behaviour.

Lemma 7. For the solutions of (IVP) it holds that
maxi |xi| ≤ c where c = maxi |φi|

That simple, yet useful, lemma states that all solutions are
bounded (hence exist for all times) by the initial data.

Theorem 8. The consensus space ∆ is asymptotically sta-
ble.

3.3 Strategy

Let us now briefly outline the approach to the problem.
From the known results stated above we know that any
appropriate solution x(t) of (IVP) converges to ∆. For
such fixed x(t) = (x1(t), . . . , xN (t)) we implement an exact
linearisation by taking:

dij(t) :=
fij(xj(t− τ)− xi(t))
xj(t− τ)− xi(t)

so that (IVP) can be written as

ẋi(t) =
∑
j∈Ni

dij(t)(xj − xi)−
∑
j∈Ni

dij(t)
d

dt

∫ t

t−τ
xj(s)ds

=
∑
j∈Ni

aij(xj − xi) +
∑
j∈Ni

[dij(t)− aij ](xj − xi)

−
∑
j∈Ni

dij(t)
d

dt

∫ t

t−τ
xj(s)ds

(4)

Finally we review some fundamental results of LTI con-
sensus dynamics theory (Mesbahi and Egerstedt [2010]):
The solution of ẏ = −Ly is y = e−Lty(0) and it converges
to 1 1

N

∑
i yi(0) exponentially fast with rate λ2. The next

bound will come at hand∣∣∣∣∣∣∣∣e−L(t−s) − 11T
1

N

∣∣∣∣∣∣∣∣ ≤ √Ne−λ2(t−s) (5)

4. CONVERGENCE ANALYSIS & RESULT

In this section we will build our fixed point argument in
view of Theorem (2) and state our result as a theorem, at
the end.

4.1 Preliminaries

Denote by L the weighted Laplacian matrix of the graph
G∞ with weights aij , and by F (t) the matrix with elements
dij(t)− aij . Equation (4) in vector form is written as

ẋ = −Lx− F (t)x−D(t)
d

dt

∫ t

t−τ
x(s)ds (6)

where D(t) is the adjacency matrix of Gt Using variation
of constants we write:

x(t) =e−Ltφ0 −
∫ t

0

e−L(t−s)F (s)x(s)ds

−
∫ t

0

e−L(t−s)D(s)
d

ds

∫ s

s−τ
x(w)dwds

=

∫ t

0

(
e−L(t−s) −

1

N
11T
)(

φ(s)δ(s)− F (s)x(s)−

−D(s)
d

ds

∫ s

s−τ
x(w)dw

)
ds

+ 1
1

N

∫ t

0

1T
(
φ(s)δ(s)− F (s)x(s)−

−D(s)
d

ds

∫ s

s−τ
x(w)dw

)
ds

=: F∆c (x(t)) + F∆(x(t))

(7)

where δ(t) is the the delta function and the last step
decomposes the dynamics projecting the flow onto the
consensus subspace and it’s complement.

4.2 The space of functions

Consider the following space of vector valued functions

Mφ,h = {y ∈ C0([−τ,∞),RN ) : y = φ|[ − τ, 0],

∃!ky ∈ R : sup
t≥−τ

h(t)||y(t)− 1ky|| <∞} (8)

In order to implement Theorem (2), we need to create a
metric space which, in addition, has to be complete. For
y1,y2 ∈M we take

ρh(y1,y2) = sup
t≥−τ

h(t)
∣∣∣∣[y1(t)− 1ky1

]
−
[
y2(t)− 1ky2

]∣∣∣∣
this is a weighted metric which measure the difference of
two elements’ projection on ∆c . It should be pointed out
that for given φ, ρh is a well defined metric on M.

The Metric Space

Proposition 9. The metric space (M, ρh) is complete.

Proof. [Sketch] The proof follows the definition of com-
plete metric space, i.e. for each Cauchy sequence in M to
have a limit in M. The technique is fairly standard and
will be omitted (For full proof see Somarakis and Baras
[2013a]).

Let’s make some comments on why M would be an
appropriate candidate space to look for solutions of (IVP).
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From the preliminary results we know that all solutions of
(IVP) are bounded by the initial data. The smoothness of
fij guarantees that ẋi should be bounded too and thus
the first two properties of M follow. The convergence
to a point in ∆ is also guaranteed by the preliminary
results. There are two extra features in M: The first is
the convergence rate which is controlled by h(t) and the
second one is that it is asked for the consensus point to
be essentially governed by the orbit {x(t), t ≥ −τ}. The
reason for these supplements is that on the one hand it
is exactly the convergence rate the purpose of this work
and on the other hand the exact linearisation technique
transformed our initial non-linear autonomous system, to
a linear non-autonomous one. Then the consensus point
should include information from both the varying weights
and the “initial states at every moment” (i.e. the whole
orbit). Note however that we are free to choose (and
will do so) consensus points kx which satisfy a particular
condition.

The operator Having defined our space of functions
(M, ρ) inside which we aim to find a solution of (IVP),
we consider now the operator with which we will work.
This is defined for x ∈M and t ≥ −τ

(Px)(t) =

{
φ(t) − τ < t < 0

F∆c(x(t)) + F∆(x(t)), t > 0
(9)

where F are as defined in (7).

The next result describes the sufficient conditions under
which Theorem (2) can be applied, effectively proving our
result (Theorem (12)).

Proposition 10. The operator P has the following proper-
ties:

(1) P is continuous in t
(2) P : M× [τ,∞)→M if

sup
t
h(t)e−λ2t <∞ , sup

t
h(t)

∫ ∞
t

ds

h(s)
<∞

(10)

(3) Denote by LD := supt ||LD(t)|| , Ḋ = supt ||11
T

N Ḋ(t)||
F = supt hf (t)||F (t)||, F1 = supt hf (t)||11

T

N F (t)||.
The operator P is a contraction in M if there exists
α ∈ [0, 1) such that

sup
t

N∑
i=2

h(t)e−λit

∫ t

0

eλis

hf (s)

∫ s

s−τ

dw

h(w)
ds(F + LD)+

+ sup
t
h(t)

∫ ∞
t

1

hf (s)

∫ s

s−τ

dw

h(w)
ds(F1 + Ḋ) ≤ α

(11)

Before proving Proposition (10) we need the following
lemma:

Lemma 11. If x ∈M and

τ
1T
(
D(∞)−D(0)

)
1

N + τ1TD(0)1
< α (12)

for some α ∈ [0, 1) then there exists a unique solution k of
the equation

k =
1T

N

∫ ∞
0

(
φ(s)δ(s)− F (s)x(s)−

−D(s)
d

ds

∫ s

s−τ
(x(w)− 1k)dw

)
ds

=
1T

N
D(0)

∫ 0

−τ
(φ(w)− 1k)dw + 1T

∑
i
φi(0)

N

+

∫ ∞
0

1T

N
F (s)x(s)ds

+
1T

N

∫ ∞
0

Ḋ(s)

∫ s

s−τ
(x(w)− 1k)dw

)
ds

(13)

Proof. [sketch] Given x ∈ M one can easily prove that
the operator

Qx(k) =
1T
∫∞

0
Ḋ(s)

∫ s
s−τ (x(w)− 1k)dwds

N + τ1TD(0)1

defined on (R, | · |) is a contraction under condition (12)
so that Q(k) = k for some unique k. The operator Q is
equivalent to (13) on M (integration by parts).

This lemma characterizes the condition of consensus points
needed to analyse (IVP) using Fixed Point Theory and we
are now ready to begin with the proof of Proposition (10).

Proof. [of Prop. (10)] By definition P is both continuous
in t and equal to φ in [−τ, 0]. To show that P maps
M onto M for t > 0 we evidently need to prove that
supt h(t)|(Px)(t)− 1kPx| <∞ for some unique kPx ∈ R.

For x ∈M, as t→∞:

F∆c(x(t))→ 0

This is due to the fact e−Lt − 1
N 11T is L1

[0,∞) (by

Hypothesis 4, with rate λ2) and φ(t)δ(t) − F (t)x(t) −
D(s) dds

∫ t
t−τ x(w)dw as a function of time tends to zero

in the t-limit. (F (t) → 0 and d
dt

∫ t
t−τ x(w)dw → 0 as

x ∈ M). Then F∆c(t) is a convolution of an L1 func-
tion with a function that goes to zero. So we are left
with the dynamics on ∆ which is essentially the integral∫ t

0
1TD(s) dds

∫ s
s−τ x(w)dwds which converges to ∆ since

the integrand is the product of an L1 function with a
function that vanishes. So let 1kPx denote the limit of
(Px)(t). Lemma (11) tells that under assumption (13)
kPx = kx, since kx satisfies (13). This is a crucial point to
prove rate of convergence of (Px)(t). Indeed for t > 0

||(Px)(t)− 1kPx|| = ||(Px)(t)− 1kx||
≤ ||F∆c(x(t))||+

+

∣∣∣∣∣∣∣∣1 1

N

∫ ∞
t

1TD(s)
d

ds

∫ s

s−τ
x(w)dwds

∣∣∣∣∣∣∣∣
the first term is bounded on condition that

sup
t
h(t)e−λ2t <∞

the rate of the second term is handled as follows: Note that
for i ∼ j
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∫ ∞
t

dij(s)(xj(s)− xj(s− τ))ds =

=

∫ ∞
t

(dij(s)− aij)(xj(s))− xj(s− τ))ds+

+

∫ ∞
t

aij(xj(s))− xj(s− τ))ds

the first term is bounded if supt h(t)
∫∞
t

ds
hf (s)h(s) <∞ and

the second term if supt h(t)
∫∞
t

ds
h(s) <∞. Both conditions

merge to the latter one and we all in all require that

sup
t
h(t)

∫ ∞
t

ds

h(s)
<∞

The last step is to show that P is a contraction. (This it
obviously true in [−τ, 0]). Take t > 0, and x1,x2 ∈ M.
From Hypotheses (4), (6) one can easily observe that for

any fixed solution, D(t) → D(∞) and Ḋ(t) is a bounded
function of time which vanishes as t→∞.

For simplicity in the notation take: x12(t) := [x1(s) −
1kx1

] − [x2(s) − 1kx2
]. Recall the first form of (7) and

the second form of (13). Then∣∣∣∣[(Px1)(t)− 1kPx1

]
−
[
(Px2)(t)− 1kPx2

]∣∣∣∣ ≤
≤
∫ t

0

∣∣∣∣∣∣e−L(t−s) −
11T

N

∣∣∣∣∣∣ · ||F (s)|| · ||x12(s)||ds+

+

∫ ∞
t

∣∣∣∣∣∣11T
N

F (s)

∣∣∣∣∣∣ · ||x12(s)||ds

+

∫ t

0

∣∣∣∣∣∣e−L(t−s) −
11T

N

∣∣∣∣∣∣||LD(s)||
∫ s

s−τ
||x12(w)||dwds

+

∫ ∞
t

||
11T

N
Ḋ(s)||

∫ s

s−τ
||x12(w)||dwds

= T1 + T2 + T3 + T4

The therms Ti are bounded as follows (recall the bold letter
definitions):

T1 ≤ F
√
Ne−λ2t

∫ t

0

eλ2s

hf (s)h(s)
dsρh(x1,x2)

T2 ≤ F1

∫ ∞
t

ds

hf (s)h(s)
ρh(x1,x2)

T3 ≤ LD
√
Ne−λ2t

∫ t

0

eλ2s

hf (s)

∫ s

s−τ

dw

h(w)
dsρh(x1,x2)

T4 ≤ Ḋ

∫ ∞
t

1

hf (s)

∫ s

s−τ

dw

h(w)
dsρh(x1,x2)

(14)

In view of the definition of metric:

ρh(Px1, Px2) = sup
t

h(t)
∣∣∣∣[(Px1)(t)−1kPx1

]
−
[
(Px2)(t)−1kPx2

]∣∣∣∣
the operator P is a contraction under condition (11).

To sum up:

Theorem 12. Consider the initial value problem (IVP).
Under Hypotheses (3) (4), (5),(6) and conditions (12),(10),
(11) the solutions of the system converge to the consensus
subspace with rate 1/h(t).

4.3 Exponential Convergence

The authors acknowledge that the conditions (12),(10),
(11) are either hard to be verified or very restrictive. In
case a little more is known about the rate hf is exponential

say hf (t) = eγt then there is no reason why one should
not consider h(t) = eβt as well (for β, γ > 0). Then we
can state without proof the corresponding condition as a
corollary:

Corollary 13. The convergence conditions (10) and (11)
reads
λ2 > γ + β

√
N
eβτ − 1

β

(F + LD)

λ2 − γ − β
+

eβτ − 1

β(β + γ)
(F1 + Ḋ) ≤ α

(15)

for some α ∈ [0, 1).

5. DISCUSSION

We conclude this paper with some important remarks,
extensions and challenges for future work. The key role
to this work is the assumptions and how restrictive they
are. Fixed Point Theory does not require one to look for
a global energy function that takes care of the asymmetry
of the dynamical system. The price one pays is much
more work in the analysis and clearly more conservative
assumptions.

5.1 Assumptions and Symmetry

These assumptions however reflect exactly this lack of both
symmetry and linearity to our model. More specifically,
one can readily observe the constants LD, Ḋ,F,F1 and
understand their role in the strengthening of the assump-
tions. The more assymetric is the system the harder the
analysis becomes but, more importantly, the larger this
constants get. It should also be noted that these results are
far from global, all the constants mentioned above heavily
rely or c (the magnitude of the initial conditions).

On the other hand, the advantage of this approach is
that it reveals a great deal of the system’s aspects and
hence gives the designer the ability to implement elaborate
control techniques. For example one can ask for rate
bounds given the necessary delay and vice versa. Another
example could be, given initial condition, how should
the rate function of the non-linear part, behave so that
consensus is achieved with preassigned rate and delay.
Let’s now talk a bit more about the sources of assymetry
that were taken care by the Hypotheses:

Assymetric Limiting Weights We assumed in Hypoth-
esis (5) that the asymptotic linear dynamics are on a
symmetric graph. This can be dropped by assuming a
directed graph which should contain a spanning tree. Then
the L seizes to be symmetric with real spectrum. The first
eigenvalue is still zero and the second has positive real part.
Also the consensus matrix in the symmetric case 1

N 11T is

replaced by 1cT where c is the left eigenvector of L. The
main difficulty occurs in proving the contraction property.
There the bound (5) does not hold and one needs to deal
with generalized eigenspaces.

Multiple Delays It was our intention to stay within
a uniform delay assumption, so as to have a rigorous
and tractable analysis within the proceedings’ page num-
ber limitations. One, however, may consider either agent
based delays τ i or even connection based τ ij (see So-
marakis and Baras [2013b]). This will worsen all the bold
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constants as one needs to consider sums of the form∑N
i=1

∑
j∈Ni

Aji
∫ t
t−τ i

j
x(s)ds where Aji is a sparse matrix

with only one positive element(at the (i, j) position).

5.2 Fully non-linear functions

The fact that fij are taken to be passive does not mean,
of course, that they ought to have a linear part. It must be
noted that if there is no linear part, contraction mappings
cannot be used. One needs to use other Fixed Point The-
orems, such as the Schauder-Tichonoff Theorem, which
is based on compactness, rather than completeness. The
price to pay for this is that such theorem is much harder
to implement, whereas it does not guarantee uniqueness.

5.3 Switching Networks

We did not include the case of switching network topology
and we leave it for future work. Such an approach should
include a family of metric spaces, each one attributed to
a state of the switching signal. The sufficient assumption
for convergence is the idea of recurrent connectivity [Pa-
pachristodoulou et al., 2010] and we would furthermore
require certain smoothness conditions on the switching
signal so that the operators are well defined and continuous
in each one of the metric spaces.
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