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Abstract: The objective of this work is to develop some design methods of interval observers
for a class of nonlinear continuous-time systems. It is assumed that the estimated system can
be represented as a superposition of the nominal subsystem (belonged to the class of uniformly
observable systems) and a Lipschitz nonlinear perturbation vanishing at the origin. Then it is
shown there exists an interval observer for the system that estimates the set of admissible values
for the state consistent with the output measurements. An example of the observer application
is given with computer simulation results.

1. INTRODUCTION

The state estimation problem of uncertain nonlinear sys-
tems is studied in this work. In particular we are interested
in the case when the model is nonlinear parameterized by a
vector of unknown parameters θ and the model equations
do not belong to a canonical form. Usually in such a case
it is necessary to apply a transformation of coordinates
representing the system in a canonical form with posterior
design of an observer Besançon [2007], Nijmeijer and
Fossen [1999]. The presence of unknown parameters may
seriously complicate the design of a required transforma-
tion of coordinates, since the transformation has to be
dependent on θ. In this case the initial problem of the state
estimation can be replaced with a relaxed one dealing with
approximation of the interval of admissible values of the
state vector.

In the sequel, only single output systems are considered.
Suppose that the unknown (may be time-varying) param-
eters θ belong to a compact set Θ ⊂ Rp, then the plant
dynamics under consideration is given by

ẋ= fθ(x) +Bθ(x)u, (1)

y = hθ(x), (2)

where x belongs to an open subset Ω of Rn and the initial
state value belongs to a compact set I0(x0) = [x0, x0];
y ∈ R and u ∈ Rm represent respectively the output and
the input. Bθ(x) is the input gain matrix whose column
vectors are bθi , i = 1, . . . ,m. The vector fields fθ and bθi ,
and the output function hθ are parameterized by θ ∈ Θ.
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Assumptions A1): For all x ∈ Ω ⊂ Rn and all θ ∈ Θ we
assume that

fθ(x) = f(x) + δf(x, θ), (3)

bθi (x) = bi(x, θ), (4)

hθ(x) = h(x) + δh(x, θ) (5)

for some known nominal functions f and h, where δf and
bi are assumed to be at least continuous and such that (for
all θ ∈ Θ)

f(0) = 0, δf(0, θ) = 0, (6)

bθi (0) = 0, δh(0, θ) = 0. (7)

Thus system (1)-(2) with (3)-(5) reads as:{
ẋ = f(x) +B(x, θ)u+ δf(x, θ),
y = h(x) + δh(x, θ).

(8)

Despite of the existence of many solutions for observer
design Besançon [2007], Nijmeijer and Fossen [1999], a
design of state estimators for (8) is rather complicated
since the system is intrinsically nonlinear and it has
uncertain terms in the state and the output equations. The
idea is to relax the estimation goal making an evaluation
of the interval of admissible values for the state applying
the theory of set-membership or interval estimation Gouzé
et al. [2000], Mazenc and Bernard [2010], Walter et al.
[1996]. Contrarily the conventional case, where a pointwise
value of the state is the objective for estimation, in the
interval estimation two bounds on the set of admissible
values are calculated and the width of the estimated
interval is dependent on the model uncertainty.

Recently the interval observers have been proposed for a
special class of nonlinear systems Räıssi et al. [2012], the
model (1)-(2) is a generalization of that case. Applying a
coordinate transformation to a canonical form computed
for the known nominal system, we are going to estimate

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

ThB1.4

Copyright © 2013 IFAC 451



the interval value of the state of the uncertain system (8)
improving the result from Räıssi et al. [2012]. Another
solution has been presented in Meslem and Ramdani
[2011], where a hybrid interval observer design is presented
for a class of continuous-time nonlinear systems. In the
present work we are going to avoid the complexity of
the hybrid systems framework developing a continuous-
time interval observer. For upper-triangular systems, an
iterative design procedure for robust interval observers is
proposed in Mazenc and Bernard [2012], which is started
from the assumption that for each subsystem a robust
interval observer has been designed. The result of this work
can be considered as a complementary method for such an
observer syntheses for a nonlinear system.

The outline of this paper is as follows. Some preliminary
results and notations are given in Section 2. The precise
problem formulation is presented in Section 3. The main
results are described in Section 4. An example of computer
simulation is given in Section 5.

2. PRELIMINARIES

2.1 Notations

• R denotes the set of real numbers and R+ = {x ∈ R :
x ≥ 0}.
• Lfh(x) = ∂

∂xh(x).f(x) denotes the Lie derivative of

h along the vector field f , and Lnfh = Lf (Ln−1
f h) is

the n-th Lie derivative of h along the vector field f .
• aRb, element-wise relation R (a and b are vectors

or matrices): for example a < b (vectors) means
∀i : ai < bi.

• for a matrix P = PT , the relation P � 0 means that
the matrix is negative semidefinite.

• for a matrix A ∈ Rn define A+ = max{0, A} and
A− = A+ −A.

• for a matrix (function) A the symbol Ai denotes its
ith column, for a vector (function) b the symbol bi
denotes its corresponding element.

• a matrix A ∈ Rn×n is called Metzler if all its elements
outside the main diagonal are nonnegative.

• a Lebesgue measurable function u : R+ → Rm
belongs to the space L∞ if ‖u(t)‖ < +∞ for almost
every t ∈ R+.

2.2 Backgrounds on cooperative/comparison systems

The notions of Comparison systems and Cooperative sys-
tems have appeared separately, but they concern the same
class of systems:

• Comparison systems: when dealing with a qualitative
property involving solutions of a complex system, it
is sometimes of interest to obtain a simpler system
whose solutions overvalue the solutions of the initial
system in some sense. For ODE, the contributions
of Müller [1926], Kamke [1932], Wazewski [1950]
are probably the most important in this field: they
give necessary and sufficient hypotheses ensuring that
the solution of ẋ = f(t, x), with initial state x0

at time t0 and function f satisfying the inequality
f(t, x) ≤ g(t, x) is overvalued by the solution of the
so-called “comparison system” ż = g(t, z), with initial

state z0 ≥ x0 at time t0, or, in other words, conditions
on function g that ensure x(t) ≤ z(t) for t ≥ t0.
These results were extended to many different classes
of dynamical systems (Bitsoris [1978], Dambrine
[1994], Dambrine et al. [1995], Dambrine and Richard
[1993, 1994], Grujic̀ et al. [1987], Laksmikantham
and Leela [1969], Matrosov [1971], Perruquetti et al.
[1995a,b], Tokumaru et al. [1975]).
• Cooperative systems: this class of systems includes

those involving in Rn preserving positive order rela-
tion on initial data and input signals Smith [1995], i.e.
if the initial conditions and properly rescaled inputs
are positive, then so is the corresponding solution.
According to the above explanations, if ż = g(t, z) is
a comparison system for ẋ = f(t, x), then the error
e(t) = z(t)− x(t) behavior is cooperative.

From these results one can deduce the following corollary:

Corollary 1. Assume that:

H1) A is a Metzler matrix,

H2) b(t) ∈ Rn+,∀t ≥ t0 ∈ R+,

H3) the exogenous signal b is sufficiently smooth such that
the system

dx(t)

dt
= Ax+ b(t), (9)

possesses, for every x(t0) ∈ Rn+, a unique solution x(t) for
all t ≥ t0.

Then, for any x(t0) ∈ Rn+, the inequality

x(t) ≥ 0

holds for every t ≥ t0.

In other word, under conditions of Corollary 1, Rn+ is
positively invariant w.r.t (9).

2.3 Canonical representation of a nonlinear system

From (8), one obtains the nominal drift-system by setting
u = 0, δf = 0, δh = 0 in (8):{

ẋ = f(x),
y = h(x).

(10)

For a nonlinear system, “observability” depends on the
considered state (local property) and control: this is
the main reason why many different concepts related to
observability exists Besançon [2007], Nijmeijer and Fossen
[1999]. One of these is independent of the input and is
called uniform observability.

Definition 2. The system (10) is said to be uniformly
observable on Ω iff (if and only if) the function:

Φ(10) : Rn → Rn

x 7→
(
h(x), Lfh(x), . . . , Ln−1

f h(x)
)T

(11)

defines a diffeomorphism from Ω onto Φ(10)(Ω).

From this definition, it follows that, on Ω, in the global
coordinates defined by ζ = Φ(10)(x), the system (10) can
be rewritten as: {

ζ̇ = Ãζ + b̃ϕ(ζ),
y = x1 = ζ1,

(12)

where
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Ã=


0 1 0

. . .
. . .
. . . 1

0 0

 , (13)

b̃= (0, . . . , 0, 1)
T
, (14)

ϕ(ζ) =Lnfh(x). (15)

The uniform observability is associated to the observability
normal-form theorem given by Gauthier et al. [1992] and
recalled hereafter.

Theorem 3. Assume that ϕ : Ω → R in the equation (12)
can be extended to Rn by a globally-Lipschitz analytic
function, then the system{

ẋ = f(x) +B(x)u,
y = h(x),

(16)

is uniformly observable for any input iff it is diffeomorphic
to a system of the form:

ζ̇1 = ζ2 +

m∑
j=1

g1,j(ζ1)uj ,

ζ̇2 = ζ3 +

m∑
j=1

g2,j(ζ1, ζ2)uj ,

...

ζ̇n−1 = ζn +

m∑
j=1

gn−1,j(ζ1 . . . ζn−1)uj ,

ζ̇n = ϕ(ζ) +

m∑
j=1

gn,j(ζ)uj ,

y = ζ1 = C̃ζ,

(17)

where C̃ = (1 0 . . . 0).

If we assume that ϕ and gi,j verify ϕ(0) = 0, gi,j(0, . . . , 0) =
0 for i = 1, . . . , n, j = 1, . . . ,m, then one can design a high
gain observer (see Gauthier et al. [1992]). The forthcoming
analysis is based on these results.

3. PROBLEM FORMULATION

The objective of this work is to design an interval observer
for the system (1) under Assumption A1), i.e. for the
system (8). We will not even assume that (8) is observable,
but to use the results of the previous section, i.e. we will
impose observability for the nominal system (10) only.

Assumptions A2): The nominal system (10) is uniformly
observable.

Thus (8) may be not uniformly observable, however using
a transformation of coordinates obtained for the nominal
observable (under Assumption A2)) system (10), the sys-
tem (8) can be transformed into the following one:

{
ζ̇ = Ãζ + F̃ (ζ, θ) + G̃(ζ, θ)u,

y = C̃ζ + H̃(ζ, θ),

where G̃(ζ, θ) has a triangular structure as g in (17) and

F̃ (ζ, θ) =
(
F̃1(x, θ), . . . , F̃n(x, θ)

)T
x=Φ−1

(10)
(ζ)
,

F̃i(x, θ) =Lδf(x,θ)L
i−1
f(x)h(x), i = 1 . . . n,

H̃(ζ, θ) = δh(x, θ)|x=Φ−1
(10)

(ζ) .

To proceed we need the following assumption.

Assumptions A3): There exist a matrix L̃ and an invertible

matrix P such that the matrix Ã − L̃C̃ is similar to a
Metzler matrix A − LC, where A = PÃP−1, L = PL̃,
C = C̃P−1.

The conditions of such a transformation matrix P ex-
istence can be found in Räıssi et al. [2012], they are
related with solution of a Sylvester equation. Since the
pair (Ã, C̃) is observable, always there is a gain L̃ such
that Assumption A3) is satisfied Räıssi et al. [2012].
Introducing the new coordinates z = Pζ we arrive at the
desired representation of our system (1):{

ż = Az + F (z, θ) +G(z, θ)u,
y = Cz +H(z, θ),

where the matrices A, C are given in Assumption A3), and

H(z, θ) = H̃(P−1z, θ), F (z, θ) = PF̃ (P−1z, θ), G(z, θ) =

PG̃(P−1z, θ).

Remark 4. Since the origin of (8) is assumed to be an
equilibrium (see (6) and (7)) and Φ(10) is a diffeomorphism,
we have

Gi,j(0, θ) = 0, F (0, θ) = 0.

Let us remind that, since the initial condition x0 for (1) is
only known within a certain interval I(x0) = [x0, x0], then
using the diffeomorphism Φ(10)(x), the initial condition
z0 = PΦ(10)(x0) is also known within a certain interval
I(z0) = [z0, z0]. Thus our original problem turns out to
built two dynamical systems with the input (u, y) and the
outputs z(t) and z(t) such that for all t ≥ 0 we have:

z(t) ≤ z(t) ≤ z(t).

4. MAIN RESULTS

4.1 Bounding functions

Since Θ is a compact set and by continuity of F (z, θ), H(z, θ)
and G(x, θ) (the functions δf(x, θ), bi(x, θ) and δh(x, θ)
were assumed to be continuous and Φ given by (11) is a
diffeomorphism), the elementwise minimum and maximum
of F (z, θ), H(z, θ) and G(z, θ)u (for a given u) in the
domain θ ∈ Θ, z ≤ z ≤ z exist. In order to built the
observers, we need a more precise knowledge on these max
and min functions. For this we need the following lemma.

Lemma 5. Let A ∈ Rn×n, then by the definition A = A+−
A− and for any [z, z] ⊂ Rn and z ∈ Rn we have

[z ≤ z ≤ z] =⇒ A+z −A−z ≤ Az ≤ A+z −A−z.
Lemma 6. Let A ≤ A ≤ A for some A,A,A ∈ Rn×n and
x ≤ x ≤ x for x, x, x ∈ Rn, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax (18)

≤ A+
x+ −A+x− −A−x+ +A−x−.
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All proofs are skipped due to the space limitation.

To apply these lemmas we have to introduce the following
standard assumption in the estimation theory on bound-
edness of the state x and the input u values.

Assumptions A4): x(t) ∈ X and u(t) ∈ U for all t ≥ 0,
where X ⊂ Ω and U ⊂ Rm are two given compacts.

Under this assumption there exists a compact set Z ⊂ Rn
such that z(t) ∈ Z for all t ≥ 0.

Lemma 7. There exist two functions F , F : R2n → Rn
such that the following inequalities hold for all θ ∈ Θ and
z ≤ z ≤ z:

F (z, z) ≤ F (z, θ) ≤ F (z, z), (19)

and for a given submultiplicative norm ‖ · ‖
‖F (z, z)− F (z, θ)‖ ≤ lF ‖z − z‖+ lF ‖z − z‖+ lF ,

‖F (z, z)− F (z, θ)‖ ≤ lF ‖z − z‖+ lF ‖z − z‖+ lF ,

for some positive constants lF , lF , lF , lF , lF , lF .

Remark 8. Thus the difference of functions F , F and F has
a linear growth with respect to the interval width estimates
z − z and z − z.

Note that the values of constants lF , lF , lF , lF , lF , lF and

functions F , Fare the worst case upper bounds. The goal of
the lemma is to show that they exist and to provide some
approximate outer estimates for them. For a particular
application more accurate values may be computed.

Using Lemma 7, a similar result can be established for H,
i.e. there exist two functions H,H : R2n → Rn such that
the following inequalities holds for all θ ∈ Θ and z ≤ z ≤ z:

H(z, z) ≤ H(z, θ) ≤ H(z, z), (20)

and for a given submultiplicative norm ‖ · ‖
‖H(z, z)−H(z, θ)‖ ≤ lH‖z − z‖+ lH‖z − z‖+ lH ,

‖H(z, z)−H(z, θ)‖ ≤ lH‖z − z‖+ lH‖z − z‖+ lH ,

for some positive constants lH , lH , lH , lH , lH , lH .

Similar relations for the term G can be also derived using
Lemma 7, i.e. there exist two functions G,G : R2n+m →
Rn such that the following inequalities holds for all u ∈ U ,
θ ∈ Θ and z ≤ z ≤ z:

Gi(z, z, ui) ≤ uiBi(z, θ)z ≤ Gi(z, z, ui) (21)

for all 0 ≤ i ≤ m, and for a given submultiplicative norm
‖ · ‖
‖Gi(z, z, ui)−Gi(z, θ)ui‖

|ui|
≤ (lG‖z − z‖+ lG‖z − z‖+ lG),

‖Gi(z, z, ui)−Gi(z, θ)ui‖
|ui|

≤ (lG‖z − z‖+ lG‖z − z‖+ lG),

for some positive constants lG, lG, lG, lG, lG, lG.

4.2 Interval observer construction

We are now ready to give the interval observer equations.
Let z, z be the estimates of the transformed state z, whose
dynamics constitute the interval observer and it is designed
as follows:

ż =Az +G(z, z, u) + F (z, z)

+L(y − Cz) + L+H(z, z)− L−H(z, z), (22)

ż =Az +G(z, z, u) + F (z, z)

+L(y − Cz) + L+H(z, z)− L−H(z, z),

where the observer gain L = (l1, . . . , ln)T has to be
designed. Defining the upper error e = z−z and the lower
error e = z − z their dynamics reads as:

de

dt
= (A− LC)e+ ∆(z, z, z, θ, u, L),

de

dt
= (A− LC)e+ ∆(z, z, z, θ, u, L), (23)

where ∆(z, z, z, θ, u, L) is the sum of the following terms:

∆G(z, z, z, θ, u) =G(z, z, u)−G(z, θ)u,

∆F (z, z, z, θ) = F (z, z)− F (z, θ),

∆LH(z, z, z, θ, L) =L+H(z, z)− L−H(z, z)

−LH(z, θ),

and ∆(z, z, z, θ, u, L) is the sum of

∆G(z, z, z, θ, u) =G(z, θ)u−G(z, z, u),

∆F (z, z, z, θ) = F (z, θ)− F (z, z),

∆LH(z, z, z, θ, L) =LH(z, θ)− L+H(z, z)

+L−H(z, z)z).

Corollary 9. For all z ∈ Z, u ∈ U and θ ∈ Θ there
exist positive constants l∆, l∆, l∆, l∆, l∆, l∆ such that for

a chosen submultiplicative norm ‖ · ‖

‖∆(·, L)‖ ≤ [l∆‖z − z‖+ l∆‖z − z‖+ l∆](1 + ‖L‖),
‖∆(·, L)‖ ≤ [l∆‖z − z‖+ l∆‖z − z‖+ l∆](1 + ‖L‖).

Lemma 10. Assume that assumptions A1)–A4) are sat-
isfied, then for any u ∈ L∞ and any (e(t0), e(t0)) ≥ 0
(componentwise), the inequality

(e(t), e(t)) ≥ 0,

holds for every t ≥ t0.

Note that (e(t), e(t)) ≥ 0 implies

z(t) ≤ z(t) ≤ z(t). (24)

Combination of the last lemma result with a proof of
boundedness of the interval observer solutions conclude
the consideration.

Theorem 11. Let assumptions A1)–A4) be satisfied and
the following matrix inequality be true

DTS + SD + SO−1S + α‖O‖I +Q � 0, (25)

where D = A−LC and α = 3(1+‖L‖)2 max{l2∆ + l
2

∆, l
2
∆

+

l2∆}, for a positive definite and symmetric matrices S,Q,O

and the constants l∆, l∆, l∆, l∆ coming from Corollary

9. Then the variables z(t), z(t) are bounded and (24) is
satisfied for all t > 0 if it is valid for t = 0.

Note that if the relation (24) is satisfied and the variables
z, z are bounded, then by standard arguments Jaulin
et al. [2001] we can compute x(t) = Ψ(z(t), z(t)) and
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x(t) = Ψ(z(t), z(t)) (where Ψ,Ψ depend on Φ(10) and P )
such that

x(t) ≤ x(t) ≤ x(t)
for all t ≥ 0, i.e. we obtain the interval estimation for the
original nonlinear system (8).

If the output y equals to h(x) and there is no uncertainty
H(x, θ), then clearly the above theorem has more simple
conditions, which can be formulated in terms of LMIs for
a constructive way of the gain L calculation.

Corollary 12. Let assumptions A1)–A4) be satisfied, y =
h(x) in (8) and the following LMI be true for a positive
definite and symmetric matrices S,Q,O and N ∈ Rn[
−O S
S ATS + SA− CTNT −NC + α‖O‖I +Q

]
� 0

(26)

where α = 3 max{l2∆ + l
2

∆, l
2
∆

+ l2∆} with the constants

l∆, l∆, l∆, l∆ coming from Corollary 9. Then for L = S−1N

the variables z(t), z(t) are bounded and (24) is satisfied for
all t ≥ 0.

Thus we designed an interval observer for the uncertain
nonlinear system (1)-(2) using the transformation of co-
ordinates calculated for the nominal system (10). The
original system may be non-uniformly observable, but if
it is possible to extract from (1)-(2) a nominal observable
system (10), then the proposed approach establishes the
interval observer and the corresponding transformation of
coordinates providing the interval state estimation for (1)-
(2). Let us demonstrate the advantages of this approach
on an example of a nonlinear non-observable system.

5. EXAMPLE

Consider the following example of the nonlinear system
(1)-(2):

ẋ1 = x2 + a1 sin(θ1x1x2),

ẋ2 =−a4x2 − a2 sin(θ2x1) + b(y)u,

y = x1 + θ3x1x2,

where a1 = 0.5, a2 = 0.125, a3 = 2 and a4 = 1
are given known parameters, the unknown parameters
admit the condition |θi| ≤ θ̄ for i = 1, 2, 3 with θ̄ =
0.5. For simulation we will use θ1 = −0.1, θ2 = −0.2,
θ3 = 0.3[1+0.25 sin(5t)+0.125 cos(8t)] (it is time-varying,
representing additional disturbance/noise) and u(t) =
sin(t). We assume that |x1(0)| ≤ 0.1, |x2(0)| ≤ 0.1 and
that solutions stay bounded and |x1(t)| ≤ x̄1 = 0.5,
|x2(t)| ≤ x̄2 = 0.1 Therefore, Assumption A4) is satisfied.
Choose the nominal system

f1(x) = x2, f2(x) = −a4x2, h(x) = x1,

then

δf1(x, θ) = a1 sin(θ1x1x2), δf2(x, θ) = −a2 sin(θ2x1),

δh(x, θ) = θ3x1x2.

It is straightforward to check that the nominal system f for
the original output h(x, θ) is not observable, however, the
nominal system (f, h) as a linear system in the canonical
form is observable. Thus, assumptions A1) and A2) are
verified. Assumption A3) is satisfied for the matrix

L = [1 0]T .
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Fig. 1. The results of interval estimation for the coordi-
nates x1 and x2

Let us compute the bounding functions for δf and δh.
Define two functions

Product(x, x) =

[
min{x1x2, x1x2, x1x2, x1x2}
max{x1x2, x1x2, x1x2, x1x2}

]
,[

sin(x, x)
sin(x, x)

]
=

[
sin(x)
sin(x)

]
corresponding to the interval of the product x1x2 for
x = [x1 x2]T with x ≤ x ≤ x and the interval of
the function sin(x) for a scalar x with x ≤ x ≤ x (for
|x| ≤ π/2). Then

δf
1
(x, x) = a1sin

{
%(θ̄, x, x)

}
,

δf1(x, x) = a1sin
{
%(θ̄, x, x)

}
,

δf
2
(x, x) =−a2sin

{
Product

([
−θ̄
θ̄

]
,

[
x̄1

x̄1

])}
,

δf2(x, x) =−a2sin

{
Product

([
−θ̄
θ̄

]
,

[
x̄1

x̄1

])}
,[

δh1(x, x)
δh1(x, x)

]
= %(θ̄, x, x),

where

%(θ̄, x, x) = Product

([
−θ̄
θ̄

]
,Product(x, x)

)
.

Take

l∆ = l∆ = l∆ = l∆ = [a2 + (a1 + 1)x̄2]θ̄,

then α = 3(1+‖L‖)2 max{l2∆+l
2

∆, l
2
∆

+l2∆} = 0.227. For the
chosen parameters, the matrix inequality from Theorem 11
is satisfied for:

S =

[
0.5 −0.4
−0.4 1

]
, O = I, Q = 0.01I,

thus all conditions of Theorem 11 have been verified. The
results of the interval estimation are given in Fig. 1.
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6. CONCLUSION

The problem of state estimation is studied for an uncertain
nonlinear system not in a canonical form. The uncertainty
is presented by a vector of unknown time-varying parame-
ters, the system equations depend on this vector in a non-
linear fashion. It is assumed that the values of this vector of
unknown parameters belong to some known compact set.
The idea of the proposed approach is to extract a known
nominal observable subsystem from the plant equations,
next a transformation of coordinates developed for the
nominal system is applied to the original one. The interval
observer is designed for the system transformed to a canon-
ical form. It is shown that the residual nonlinear terms
dependent on the vector of unknown parameters have
linear upper and lower functional bounds, that simplifies
the interval observer design and stability/cooperativity
analysis.
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M. Müller, “Über das fundamental theorem in der theorie
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