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Abstract: Given a predesigned linear state feedback law for a linear plant ensuring (global)
exponential stability of the linear closed loop, together with a certain level of performance, we
address the problem of recovering (local or global) exponential stability and performance in
the presence of plant input saturation and of a communication channel between the controller
output and the saturated plant input. To this aim, we adopt Lyapunov-based techniques which
combine generalized sector conditions to deal with the saturation nonlinearity, and event-
triggered techniques to deal with the communication channel. The arising analysis yields an
event-triggered algorithm to update the saturated plant-input based on conditions involving the
closed-loop state. The proposed Lyapunov formulation leads to numerically tractable conditions
that guarantee local (or global) exponential stability of the origin of the sampled-data system
with an estimate of the domain of attraction.
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1. INTRODUCTION

In recent years, the study of sampled-data systems has
provided several techniques of dealing with linear or non-
linear systems (see, for example, Nešić and Teel [2004],
Fiter et al. [2012] Seuret [2012] and references therein).
Among them, an interesting method so-called Event-Based
Control suggests to adapt the sampling sequence to some
events related to the state of the system (see for ex-
ample Hespanha et al. [2007], Zampieri [2008], Tabuada
[2007]). In this situation, the controlled system works in
continuous-time whereas the controller provides a discrete-
time input during a sampling period. Hence, the prob-
lem of the design of an event-triggered algorithm can be
first rewritten as the stability study of a system with a
mixed continuous/discrete dynamics (also called hybrid
system), as considered e.g. in Donkers and Heemels [2010],
Lehmann et al. [2012] or in Goebel et al. [2009, 2012],
Prieur et al. [2007, 2010] in a different context.
Another important feature when dealing with the stabil-
ity/performance analysis of control design problems re-
sides in the presence of limitations of the actuator. It
is now well known that the presence of saturation may
cause loss in performance, even unstable behavior (see, for
example, Tarbouriech et al. [2011] and references therein).
At the knowledge of the authors, few results deal with
event-based control and saturated system as in Kiener
et al. [2013]. In the current paper, extending the results
developed in Seuret and Prieur [2011], we use the hybrid
framework and the Lyapunov theory to define the update
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policy to deal with event-triggered control algorithms for
linear systems subject to plant input saturation. Hence,
given a predesigned linear state feedback law for a linear
plant ensuring (global) exponential stability of the linear
closed loop together with a performance criterion as LQ
cost, we address the problem of recovering (local or global)
exponential stability and performance in the presence of
plant input saturation and of a communication channel be-
tween the controller output and the saturated plant input.
To this aim, we adopt Lyapunov-based techniques which
combine generalized sector conditions to deal with the
saturation nonlinearity and event-triggered techniques to
deal with the communication channel. The arising analysis
yields three architectures, namely 1) periodic sampling,
2) event-triggered sampling, 3) self-triggered sampling to
update the saturated plant input based on conditions
involving the state of the closed-loop system. The pro-
posed Lyapunov formulation leads to numerically tractable
conditions that guarantee local (or global) exponential
stability of the origin of the sampled-data system with an
estimate of the domain of attraction and LQ performance.
The paper is organized as follows. Section 2 describes the
problem and presents the hybrid frameworks on which is
based our technique. Section 3 is dedicated to the main re-
sults, addressing the three techniques 1) periodic sampling,
2) event-triggered sampling and 3) self-triggered sampling.
Section 4 proposes an illustrative example allowing to
point out the trade-off between the size of the region
of attraction of the origin, the desired LQ performance
index and the number of updates to be performed. Finally,
Section 5 ends the paper with concluding remarks. Note
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that, for space limitations, the proofs of the theorems are
omitted.

Notation. Throughout the article, the sets N, R+, Rn,
Rn×n and Sn denote respectively the sets of positive
integers, positive scalars, n-dimensional vectors, n × n
matrices and symmetric matrices of Rn×n. The notation |·|
stands for the Euclidean norm. Given a compact set A, the
notation |x|A = min{|x−y|, y ∈ A]} indicates the distance
of the vector x to the set A. The superscript ‘T ’ stands for
matrix transposition. A function µ is said to be of class K∞
if it is continuous, zero at zero, increasing and unbounded.
The symbols I and 0 represent the identity and the zero
matrices of appropriate dimensions. For a given strictly
positive integer m, define the set Sm = {1, . . . ,m}. For
any j ∈ Sm, define the set Sjm of all possible sequences of
j distinct elements of Sm.

2. PROBLEM STATEMENT AND SAMPLED-DATA
ARCHITECTURES

In this section we present our problem statement and we
explain how the feedback system operated via sampled-
and-hold or more sophisticated event-triggered sampling
can be seen as a hybrid dynamical system using the
notation of Goebel et al. [2009, 2012].

2.1 System data

Consider a linear plant with a saturated input

ẋ = Ax+Bs,
s = sat(u),

(1)

where x ∈ Rn and u ∈ Rm stand respectively for the state
variable and the input vector. The matrices A ∈ Rn×n and
B ∈ Rn×m are constant and given and such that the pair
(A,B) is controllable.
We suppose that the function sat(·) in (1) is a decentralized

saturation with saturation bounds u0 = [ u01 ··· u0m ]
T

,
namely s = sat(u) corresponds to enforcing si =
max(−u0i,min(u0i, ui)), where si and ui denote the i-th
components of s and u, respectively, for all i = 1, . . . ,m.
We will also use the decentralized deadzone function
dz(u) = u− sat(u) in the rest of the paper.

2.2 State feedback design and optimality criterion

In this paper we address the problem of event-triggered
implementation of a static state-feedback stabilizing law
for plant (1), given by the following equation

u = Kx, (2)

where the gain K ∈ Rm×n should be designed to ensure
local asymptotic stability of the zero equilibrium of the
arising closed-loop system (1), (2), with a guaranteed
region of attraction that will be characterized by requiring
that it contains the ball B(α) := {x ∈ Rn : |x| ≤
α} where α ∈ R is a design parameter. Moreover, we
require some optimality guarantee in the sense that for any
initial condition x(0) ∈ B(α), the corresponding (unique)
solution to the closed-loop system (1), (2) is required to
satisfy an LQ type of bound. More specifically, we provide
an upper bound for the worst case cost:

J(α) = max
x(0)∈B(α)

∫ ∞
0

[xT (t)Qx(t) + sT (t)Rs(t)]dt (3)

where Q ∈ Rn×n and R ∈ Rm×m are symmetric positive
definite matrices. Based on the above setting, we consider
the following problem in this paper.

Problem 1. Given plant (1) and the linear state feedback
law (2), given a scalar α > 0, determine the gain K and
a sampled-data implementation of the state feedback law
(periodic, event-triggered or self-triggered) guaranteeing
local exponential stability of the origin for the sampled-
data system, with a region of attraction containing B(α)
and possibly an upper bound on the performance index
(3).

2.3 Hybrid representation of sampled-data systems

A sampled-data implementation of the feedback law (2)
for plant (1) corresponds to breaking the continuous-time
closed loop given by u(t) = Kx(t), for all t ≥ 0 and
converting this into a zero order hold ṡ = 0 combined with
the update rule s+ = sat(Kx) for s, which should be per-
formed at suitable times according to the specific sampled-
data architecture. As mentioned in the introduction, this
architecture could be given by 1) periodic sampling, 2)
event-triggered sampling; 3) self-triggered sampling. We
explain the three architectures below and provide for each
on of them a hybrid formulation that uses the hybrid
formalism of Goebel et al. [2009], Prieur et al. [2007, 2013].
1) Periodic sampling corresponds to performing the update
rule s+ = sat(Kx) at periodic instants of time. Following,
e.g., [Goebel et al., 2012, Example 1.4], the corresponding
closed loop can be described by adding a timer τ ∈ R to
the hybrid model. Then, for any sampling period T > 0,
the dynamics of the system can be rewritten as{

ẋ = Ax+Bs,
ṡ = 0,
τ̇ = 1,

τ ∈ [0, T ] , x+ = x,
s+ = sat(Kx),
τ+ = 0,

τ = T ,

(4)

where s ∈ Rm represents the held value of the control
input and it appears that the timer τ is confined to the
compact set [0, T ].

Remark 1. As shown in Goebel et al. [2009], the hybrid
model (4) expresses the case of periodic sampling. Since
τ+ = 0 across jumps, all solutions have to flow for T
ordinary time after each jump. This rules out Zeno solu-
tions and also simplifies the implementation. A drawback
is that, in general, the origin of system (4) is not asymptot-
ically stable (although when A + BK is Hurwitz one can
show asymptotic stability of the origin for small enough
T ). Some conservative estimates of the range of values
of T preserving asymptotic stability can be computed by
using the results in Seuret and Gomes da Silva Jr. [2012].
However, to reduce the average number of samplings per
unit of time, one needs to resort to alternative schemes
such as the ones described below.

2) Event-triggered sampling corresponds to performing the
update rule s+ = sat(Kx) whenever the augmented state
(x, s) belongs to suitable sets that should be designed in
such a way to guarantee asymptotic stability. In this case,
the sampled-data system does not require a timer and can
be written as
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{
ẋ = Ax+Bs,
ṡ = 0,

if (x, s) ∈ FE ,{
x+ = x,
s+ ∈ sat(Kx),

if (x, s) ∈ JE ,
(5)

where s ∈ Rm represents the held value of the control input
and FE and JE are two subsets of Rn × Rm indicating
where the solution is allowed to flow and to jump. Sets
FE and JE are respectively called flow and jump sets and
are the available degrees of freedom in the control design.

3) Self-triggered sampling corresponds to performing the
update rule s+ = sat(Kx) at times which are determined
on-line, only based on the information about the last sam-
ple. As compared to the event-triggered case, this is more
advantageous because it does not require to permanent
monitor the plant state and is useful in situations where
sampling the plant state is expensive in some sense. The
sampled-data system can then be written as
ẋ = Ax+Bs,

ξ̇ = 0,
ṡ = 0,
τ̇ = 1,

(ξ, s, τ) ∈ FS ∩ FT ,


x+ = x,
ξ+ = x
s+ = sat(Kx),
τ+ = 0,

(ξ, s, τ) ∈ JS ∩ JT ,

FT = Rn × Rn × Rm × [0, T ], JT = Rn × Rn × Rm × {T}
(6)

where the sets FT , JT are introduced to ensure that the
timer τ belongs to a compact set and where T would be
typically selected as a large timeout constant. The self-
triggered nature of the sample appears evident from the
fact that the jump/flow condition (namely the structure
of the jump and flow sets) only depends on the sampled
values (ξ, s, τ) and is independent of the instantaneous
value of the state x. Then, this implementation does not
require acquiring continuous measurements from the plant.
Just as in the previous case, the design of the self-triggered
policy amounts to designing the flow and jump sets FS and
JS in (6).

3. MAIN RESULTS

3.1 A saturated LQ design for a linear plants

In this section we introduce a design technique for the
gains in (2) in such a way to guarantee a bound on the
value of a linear quadratic cost function evaluated along
the closed-loop solutions. The arising feedback stabilizing
law will be revisited in the next section using an event-
triggered implementation.

Theorem 1. Given Q = QT > 0 and R = RT > 0, assume
that there exist matrices W = WT > 0 ∈ Rn×n, Y , X in
Rm×n, a diagonal positive definite matrix S > 0 in Rm×m
and positive scalars α, µ satisfying the following linear
matrix inequalities:[

W Xi

XT
i u20i

]
≥ 0 ∀i = 1, ...,m,

[
I αI
αI W

]
≥ 0, (7a)

He

AW +BY BS 0 W
Y +X −S 0 0
Y S −µR−1/2 0
0 0 0 −µQ−1/2

 < 0, (7b)

where Xi denotes the i-th column of matrix X. Then,
selecting

K = YW−1 (8)

in (2) ensures:

(1) local exponential stability of the origin of system
(1), (2) with region of attraction E(W−1) = {x ∈
Rn : xTW−1x ≤ 1} which contains the α-ball
B(α) = {x ∈ Rn : |x| ≤ α};

(2) for any initial condition x(0) ∈ E(W−1), the cost
function J in (3) evaluated along the corresponding
(unique) solution to (1), (2) satisfies J ≤ µ;

(3) global exponential stability of the origin of system
(1), (2) if the solution to (7) is such that X = 0.

The result of Theorem 1 can be used to determine a
suitable trade-off between two conflicing goals: maximize
the region of attraction of the closed loop (namely select
a large α) and minimize the cost function (namely select
a small µ). In particular, one may fix the size α of the
guaranteed region of attraction and optimize performance
by solving the following LMI eigenvalue problem:

min
W,X,Y,S,µ

µ, subject to (7), (9)

or one may fix the desired performance level µ and
maximize the size of guaranteed region of attraction by
solving the following LMI eigenvalue problem:

max
W,X,Y,S,α

α, subject to (7). (10)

In particular, either of the two optimizations above can be
used to compute a curve corresponding to the boundary
feasibility set for the LMI constraints (7) on the (α, µ)
plane (see Section 4).
It should be emphasized that from the point of view of
the achievable region of attraction, conditions (7) are not
overly conservative. Indeed, it is known (see, e.g., Sontag
[1984]) that global exponential stability (GES) can only be
achieved from a bounded input if the plant has its poles
in the open left half plane (namely it is already GES with
zero input). Moreover, any plant with an exponentially
unstable pole has a bounded controllability region (namely
the set of initial conditions that can be driven to zero by
a suitable – but bounded – input). Then the best that
one can achieve from a bounded input is GES if A in
(1) is Hurwitz, semiglobal exponential stability (SGES)
if A has only eigenvalues with nonpositive real part and
local results otherwise. These results are achievable with
the construction in Theorem 1 as stated in the next
proposition whose proof can be carried out using similar
reasonings to [Teel, 1995, Lemma 3.1].

Proposition 1. Consider the LMI constraints (7). Then the
following holds:

(1) if A in (1) is Hurwitz, then there is a feasible solution
with X = 0;

(2) if A in (1) has no eigenvalues with positive real part,
then for each (arbitrarily large) α > 0 there is a
feasible solution;

(3) in all cases, there exists a small enough α > 0 leading
to a feasible solution.

Moreover, given two positive scalars α1 ≤ α2, if the
corresponding optimization (9) has solutions µ∗1 and µ∗2,
then µ∗1 ≤ µ∗2. Finally given two positive scalars µ1 ≤ µ2,
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if the corresponding optimization (10) has solutions α∗1,
α∗2, then α∗1 ≤ α∗2.

Note that from item 3 of Theorem 1, the statement of
item 1 of Proposition 1 implies that there is a solution
inducing GES; from item 1 of Theorem 1, the statement
of item 2 of Proposition 1 implies that for any arbitrarily
large compact subset of Rn there is a solution induc-
ing LES with region of attraction containing that set
(semiglobal exponential stability).

3.2 Event-triggered control design

In this section we will propose an event-triggered imple-
mentation of the state feedback design of Theorem 1 in
such a way to still ensure that B(α) be contained in the
region of attraction and that some relaxed LQ property
is ensured. In particular, given a feasible solution to con-
ditions (7) of Theorem 1, consider the arising Lyapunov
matrix P = W−1 and the controller gain K = YW−1,
the periodic sampling implementation (4) will not guar-
antee, in general, the stated LQ performance. Moreover,
asymptotic stability of the origin may be lost too if T is
too large. Here we suitably select the flow and jump sets
FE and JE in (5) to preserve those properties, as clarified
in the theorem below.
Before stating the theorem, it is useful to recall that,
according to the hybrid framework in (Goebel et al. [2009,
2012]), each solution x to a hybrid system is defined on
hybrid time domains E = dom(x) corresponding to a
suitable subset of R× N satisfying the following property
for all pairs (T, J) ∈ R+ × N:

E ∩ ([0, T ]× [0, J ]) =

J⋃
j=0

[tj , tj+1]× {j},

for the nondecreasing sequence of times 0 = t0 ≤ · · · ≤
tJ+1 = T , where t1, . . . , tJ are called “jump times”. We
also call domj(x) = {j ∈ N : ∃t, s.t. (t, j) ∈ dom(x)}.
Then dom(x) can be seen as the union of finitely many
or infinitely many intervals of the type [tj , tj+1] × {j},
j ∈ domj(x) with the last interval possibly satisfying
tj+1 = ∞ and being open. When rewriting the LQ cost
(3) in this context, one needs to take special care of the
hybrid nature of solutions. A possible way to generalize
(3) is the following one:

J(α) = max
x(0,0)∈B(α)

∑
j∈domj(x)

∫ tj+1

tj

ψ(x(t, j), s(t, j))dt

(11)
where Q ∈ Rn×n, R ∈ Rm×m are symmetric positive
definite matrices and ψ(x, s) = xTQx+ sTRs.

The following result relies upon Theorem 1.

Theorem 2. Consider any feasible solution to the con-
straints (7) and the corresponding values P = W−1,
K = YW−1, α, µ. Given any scalar µ̂ ≥ µ, define the
following flow and jump sets for (5):

FE =

{
(x, s) :

[
x
s

]T
Πµ̂

[
x
s

]
≤ 0

}
, (12a)

JE =

{
(x, s) :

[
x
s

]T
Πµ̂

[
x
s

]
≥ 0

}
. (12b)

Πµ̂ =

[
PA+ATP +Q/µ̂ PB

BTP R/µ̂

]
. (12c)

Then, denoting by U0 = {u ∈ Rm : |diag(u0)−1u|∞ ≤ 1}
the range of the saturation function, the event-triggered
closed-loop system (5), (12) is such that the set

A = {0} × U0, (13)

is locally exponentially stable with region of attraction
including the set E(P )× U0.

Moreover, for each initial condition in E(P ) × U0 there
exists at least one solution having unbounded time domain
in the ordinary time direction t. Finally, for all x(0, 0) ∈
E(P ) ⊃ B(α), the worst case LQ cost given by (11) satisfies
J(α) ≤ µ̂.

Remark 2. Theorem 2 guarantees local stability of the ori-
gin while the results proposed in Kiener et al. [2013] only
guarantees the convergence of the closed-loop trajectories
to a bounded set around the origin.

Remark 3. The jump and flow sets in (12) can be suitably
modified by selecting the desired LQ performance level
µ̂. In particular, note that for µ̂ = µ one recovers the
same LQ performance as the continuous-time solution of
Theorem 1. However, one may increase µ̂ and give up
some performance because this leads to strictly larger
flow sets and strictly smaller jump sets (the strict nature
of this property comes from positive definiteness of ψ).
As confirmed by the simulation results of Section 4, it
is expected that enlarging the flow set and reducing the
jump set leads to less jumps in solutions starting from
the same initial conditions, namely smaller average sample
rate. This is desirable from an event-triggered viewpoint.
While this observation is only qualitative, its advantages
are readily appreciated by inspecting the numerical results
of Section 4.

Remark 4. The shape of the jump and flow sets in (12)
heavily relies on the properties of the Lyapunov func-
tion that are established in Theorem 1. For example,
an advantageous feature of these sets stands in the fact
that whenever the continuous-time feedback of Theorem 1
would lead to a control input that remains saturated for
some time interval (this is the case, for example, during
the initial transient of a trajectory which starts far from
the attractor), the event-triggered solution (5), (12) does
not jump (namely it does not sample) for all that period
of time. This fact can be appreciated by noticing that the
flow set is defined as the set where the desirable Lyapunov
decrease established in Theorem 1 is preserved (possibly
an even larger version of it if µ̂ is strictly larger than
µ). Since for all such responses the plant input remains
constant also for the continuous-time solution (where the
Lyapunov decrease is established by Theorem 1), then the
event-triggered solution remains in the flow set without
performing any sample until it is necessary to modify the
plant input. This aspect is well illustrated by some of the
simulations reported in Section 4.

Remark 5. Note that due to the definition of jump and
flow sets in (12), the hybrid system exhibits Zeno solutions
at the origin (even though it also admits solutions that
never jump at the origin). This is caused by the fact
that both jump and flow sets are closed, which causes a
nonempty intersection (including the origin) and could be
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avoided picking a jump set which is not closed. Selecting
closed jump and closed sets however ensures well posedness
of the hybrid dynamics, as illustrated in [Goebel et al.,
2012, Ch. 4 and 6] and allows to capture in the set
of the (non-necessarily unique) solutions to the well-
posed dynamics any possible limiting solution produced
by arbitrarily small perturbations of the dynamics. For our
specific case, the presence of a Zeno solution at the origin
reveals that there might be defective trajectories which
exhibit many jumps (many samples) close to the origin.
This fact is confirmed to a certain extent by the simulation
results reported in Section 4 and motivates future research
where the proposed policy is preserved far from the origin
(this is very effective also in light of Remark 4) and is
suitably modified close to the origin where the state is
small so that a small error might be perhaps tolerated.

3.3 Self-triggered control design

The event-triggered control design of the previous section
has the drawback of requiring a continuous monitoring of
the plant state to verify whether the state [ xs ] belongs to
the flow or jump set and possibly trigger a sample if it be-
longs to the jump set. A more convenient implementation
could be that of a self-triggered approach where it is not
necessary to continuously monitor the plant state and it is
possible to decide when to sample again based on the only
knowledge of the past sampled value of the state.
Due to the linear nature of dynamics (1) this is possible
using the architecture in (6) and explicitly computing the
current value of the state x(t, j), t ≥ tj based on the
last sample x(tj , j) which is held in the additional state
variable ξ. In particular, it is evident that for j ≥ 1, any
solution to (6) satisfies ξ(t, j) = ξ(tj , j) = x(tj , j) which
means that the following holds:[

x(t, j)
s(t, j)

]
= exp

([
A B
0 0

]
τ

)[
ξ(t, j)
s(t, j)

]
:=M(τ)

[
ξ(t, j)
s(t, j)

]
.

The following flow and jump sets for (6) are then selected:

FS =

{
(ξ, s, τ) :

(
M(τ)

[
ξ
s

])T
Πµ̂

(
M(τ)

[
ξ
s

])
≤ 0

}
,

JS =

{
(x, s) :

[
x
s

]T
Πµ̂

[
x
s

]
≥ 0

}
.

(14)
where Πµ̂ is defined in (12c), and the trajectories of the
arising self-triggered closed loop (6), (14) coincide with
those of the event-triggered one in the previous section. In
particular, one can prove the next result following exactly
the same steps as those in the proof of Theorem 2.

Theorem 3. Consider any feasible solution to the con-
straints (7) and the corresponding values P = W−1,
K = YW−1, α, µ. Given any scalar µ̂ ≥ µ, the event-
triggered system (6), (14), (12c) is such that the set

A = {0} × E(P )× U0 × [0, T ], (15)

is locally exponentially stable with region of attraction
including the set E(P )× U0.
Moreover, for each initial condition in E(P )×E(P )×U0×
[0, T ] there exists at least one solution having unbounded
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Fig. 1. Graph representing the average number of control
updates with respect to the performance index µ̂ and
the size of attraction set 1/α.

time domain in the ordinary time direction t. Finally, for
all x(0, 0) ∈ E(P ) ⊃ B(α), the worst case LQ cost given
by (11) satisfies J(α) ≤ µ̂.

4. SIMULATION EXAMPLES

Consider the system (1) studied in Zaccarian and Teel
[2011] with

A =

[
0 1

−k/m −f/m

]
, B =

[
0

1/m

]
. (16)

where k = 1, m = 0.1 and f = 0.01 and u0 = 1. The cost

function (3) is taken with Q =

[
2 1
1 1

]
and R = 0.5. The

simulation results are described below.
First, Figure 1 shows the evolution of the average number
of control updates with respect to 1/α ∈ [0.32 0.48], the
inverse of the size of the attraction set and µ̂ ∈ [10 40],
the performance index. To obtain this figure, a gridding
of 1/α over the interval [0.32 0.48] is performed. For each
value of 1/α, the matrices P and K are obtained by solving
the conditions of Theorem 1 and the optimization problem
(9). Then the performance index µ̂ is gridded from its min-
imal value until 40. Finally, for these parameters, several
simulations are run using 12 different initial conditions
which satisfies V (x0) = 1. The simulation stops when
V becomes lower than 0.1. This allows focussing on the
transient response of the system. The average number of
control updates is computed over the simulation time and
the initial conditions.
In Figure 1, the boundary between the regions for which
there exists a solution to Theorem 1 and the region where
such a solution does not exist, represents the optimal
solutions to the saturated LQ control design. This curve
shows the trade-off between the size of the domain of
attraction and the performance index. In Figure 1, the
greatest number of updates is achieved when the param-
eters α and µ̂ are taken close to the optimal solutions to
the saturated LQ control design. As stated in Remark 3,
Figure 1 also depicts that selecting a larger µ̂ reduces the
average number of control updates since it enlarges the
flow set and reduces the jump set.
Solving problem (9) with α = 2.5 delivers the Lyapunov
matrix and the controller gain given by
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Fig. 2. Simulation results representing the state, the timer
and the control input for the initial conditions x0 =
[0.375 − 6.1005]T .

P =

[
0.1597 0.0062
0.0062 0.0240

]
, K = [−3.2182 − 12.1459].

Using this controller gain and µ̂ = 30, simulations are
provided in Figure 2 with the initial conditions x0 =
[0.375 − 6.1005]T .Using the condition provided Seuret
and Gomes da Silva Jr. [2012] on stability of saturated
sampled-data systems, this control gain ensures stability of
the closed-loop system if the timer τ is lower than 0.015s.
However, in Figure 2, the time interval is greater than
0.9. This shows the benefits of the event-triggered control
provided in Theorem 2.

5. CONCLUSION

Focusing on linear plants with input saturation we pro-
posed a stabilizing linear static state feedback law with
LQ performance guarantees and guaranteed domain of at-
traction. Then we proposed different algorithms to imple-
ment the saturated control law in a sampled-data context.
More precisely periodic, event-triggered and self-triggered
sampling architectures have been considered. It has been
shown that a suitable event-triggered algorithm may re-
cover the same LQ performance as the continuous-time
saturated controller and the same domain of attraction.
The event-triggered algorithm is then modified to derive
a self-triggered algorithm ensuring the same properties for
the closed-loop system.
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