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Abstract: This paper discusses the (inverse) optimality and practical usage of passivity-
based controls for distributed port-Hamiltonian systems. We first clarify that passivity-based
controls, damping assignment and potential shaping can be derived from a linear quadratic
type optimal control problem. Next, we describe the limitation of passivity-based boundary
controls and propose a practical usage of the methods in terms of discretization. Finally, we
illustrate numerical results having a similar property to the strain feedback methods derived
from semigroup theory for stabilizing and stiffness controlling flexible beams.
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1. INTRODUCTION

In recent developments of advanced control systems, non-
linear PDEs have become important as numerical models
of complex systems to reduce experimental productions.
We only have to find numerical solutions for such anal-
ysis. On the other hand, many traditional approaches
to controlling systems of PDEs are based on analytical
solutions [1]. Control theory for systems from which it
is difficult to derive analytical solutions seems not to be
sufficiently discussed. The development of control theory
that can be applied in the process of numerical analysis is
practically significant.

This paper discusses the optimality of passivity-based con-
trols for distributed port-Hamiltonian (DPH) systems [2]
and a practical usage of the controls in numerical schemes.
Passivity-based controls are conventional techniques for
nonlinear systems; they are simple, versatile, robust in
regard to disturbance, and we can apply them with-
out information on analytical solutions of control sys-
tems [3, 4, 5, 6, 7]. Passivity-based controls follow two
major strategies. One is to connect a control system with
a compensating energy to a system for changing the en-
ergy of the original system through particular pairs of
inputs/outputs, called port variables. The other strategy
is to assign dissipative elements to increase the stability
of the connected system at the global minimum of the
shaped energy. Thus, passivity-based controls can globally
stabilize nonlinear systems, which are difficult to ana-
lyze. However, this advantage is realized by trading off
tight control performances based on analytical solutions,
e.g., frequency response and orbits explicitly described by
equations. Thus, they are, so to say, geometrical methods.
Therefore, to bring out the best in passivity-based con-
trols, we focus attention on enhancing the versatility of
port representations.

On the other hand, a DPH system is a standard representa-
tion for partial differential equations (PDEs) for passivity
based controls extended as boundary energy controls [3].
DPH systems satisfy a power balance that means an
internal energy flow defined on the domain balances an
energy flowing across the boundary. The power balance is
derived from boundary integrability in the sense of Stokes
theorem [12] and it is expressed by using boundary port
variables. Hence, we can discuss boundary controls and
observations with respect to the power balance by using
DPH systems. However, system representations should
be discretized when we apply the boundary controls to
PDEs. Moreover, distributed controls have been expected
as smart controller, e.g., light-weight, low power, and
multi-degree of freedom with the developments in sensors
and actuators made from soft materials [8].

This paper is constructed as follows. The second section
is devoted to recall basic definitions on optimal problems
and DPH systems. In the third section, we show that
passivity-based control methods, i.e., damping assignment
and potential shaping can be derived from optimal prob-
lems on DPH systems. This means that passivity-based
controls can be considered as a solution of inverse optimal
controls. In the final section, we illustrate applications of
passivity-based controls for the DPH system of the flexible
beam with large deformations [9, 10, 8]. The flexible beam
model is nonlinear and it can be solved in terms of numer-
ical calculations; however, the analytical solution of the
model has not been derived. Furthermore, we clarify that
passivity-based controls have a similar feature of the strain
feedback methods [1, 11] derived from semigroup theory
for stabilization and stiffness controls of Euler-Bernoulli
beams. The strain feedback method is based on analytical
solutions of PDEs; however, the methods derived from
DPH systems do not depend on them.
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2. PRELIMINARIES

This section is devoted to briefly summarize the basic
definitions of variational problems and DPH systems.

2.1 Variational Problems

Variational problems with constraints are expressed as the
problem of determining the minima of the functional

J = P (t0, t1, x, ẋ) +
∫ t1

t0

F (t, x, ẋ, λ) dt, (1)

F (t, x, ẋ, λ) = L(t, x, ẋ) + λ�(t)C(t, x, ẋ), (2)

where x(t) = [x1(t), · · · , xn(t)]� is the vector of indepen-
dent state variables, we denoted ẋ = dx/dt, L(t, x, ẋ)
is the objective function, P (t0, t1, x, ẋ) is the bound-
ary condition that free end-points must satisfy, λ(t) =
[λ1(t), · · · , λm(t)]� is the vector of Lagrange multipliers,
and C(t, x, ẋ) = [C1(t, x, ẋ), · · · , Cm(t, x, ẋ)]� is the vector
of constraints that a local minimum of L is subject to.

Let us consider control inputs u(t) = [u1(t), · · · , un(t)]�
as independent variables in (1), and consider the system
of differential equations ẋi = fi(t, x, u) as the constraint
Ci(t, x, u, ẋ) = ẋi − fi(t, x, u) = 0 for 1 ≤ i ≤ m. Then,
the integrand (2) can be rewritten by the Hamiltonian
H(t, x, u, λ) = L(t, x, u) + λ�(t)f(t, x, u). Accordingly, the
stationary condition of the variational derivative of H is
given by the equations:

λ̇ = −
(

∂H

∂x

)�
,

∂H

∂u
= 0, ẋ =

(
∂H

∂λ

)�
. (3)

The linear optimal regulator problem can be defined by
(1) with F = H , where f = A(t)x + B(t)u, L(t, x, u) =
x�Q(t)x +u�R(t)u, and P (t1, x) = x�(t1)Sx(t1), where A
and B are (n × n)-matrices, Q and S are symmetric non-
negative definite (n × n)-matrices, and R is a symmetric
positive definite (n × n)-matrix. Then, the solution (3) of
the problem is given as follows:

λ̇ = −Qx − A�λ, u = −R−1B�λ, ẋ = Ax + Bu, (4)
where λ(t1) = Sx(t1). To solve the two boundary value
problem determined by (4), we consider S(t) such that
λ(t) = S(t)x(t). Indeed, we can calculate S(t) by solving
the Riccati equation. In this case, the control input can be
described by u = −R−1B�Sx.

2.2 Distributed port-Hamiltonian systems

A DPH system is a standard control system representation
for passivity-based boundary controls. We first define a
system domain for DPH systems.
Definition 1. Consider the product space Y = T × X
consisting of a 1-dimensional Euclidian space T � R and
an n-dimensional smooth Riemannian manifold X , where
we denote the local coordinates of T and X , respectively,
by the time coordinate t and the vector x of spatial
coordinates, where x is the vector of functions of time:
x(t) = (x1(t), · · · , xn(t)). Then, we define the subspace
I × Z ⊂ Y with the boundary ∂I × ∂Z, where I means a
time interval, and a connected n-dimensional submanifold
Z ⊂ X means the spatial domain at each time t ∈ I.

Next, we define state variables used in DPH systems.

Definition 2. Let⎧⎨
⎩

(fp, f q) ∈ Ωp(Z) × Ωq(Z),
(ep, eq) ∈ Ωn−p(Z) × Ωn−q(Z),
(f b, eb) ∈ Ωn−p(∂Z) × Ωn−q(∂Z),

(5)

where (f i, ei) for i ∈ {p, q} and (f b, eb) are the pairs in
the sense of the pairings,

〈 f i, ei 〉 =
∫

Z

ei ∧ f i, 〈 f b, eb 〉 =
∫

∂Z

eb ∧ f b, (6)

∧ is the wedge product, and we denoted the spaces of
differential i-forms on a manifold A ∈ {Z, ∂Z} by Ωi(A).
Definition 3. Consider the following Hamiltonian density
functional H with the Hamiltonian density H:

H =
∫

Z

H(αp, αq), (7)

H = αp ∧ ep + αq ∧ eq ∈ Ωn(Z). (8)

We define the variational derivative of (8) with respect to
αp and αq as follows:

δH = ep ∧ δαp + eq ∧ δαq

:=
∂H
∂αp

∧ δαp +
∂H
∂αq

∧ δαq, (9)

where δαi ∈ Ωi(Z) means the infinitesimal variation with
respect to αi for i ∈ {p, q}. Then, the variational derivative
(9) restricted to the time space T can be described as
follows:

δH|T =
∂H
∂αp

∧ ∂αp

∂t
+

∂H
∂αq

∧ ∂αq

∂t
. (10)

Thus, we define the variables (5) as

fp = −∂αp

∂t
, f q = −∂αq

∂t
, ep =

∂H
∂αp

, eq =
∂H
∂αq

(11)

according to (6).

The variables f i and ei for i ∈ {p, q} are called port
variables, and they correspond to collocated control in-
puts and outputs for passivity-based distributed controls.
Moreover, the variables f b and eb are called boundary port
variables that are collocated control inputs and outputs
for passivity-based boundary controls. DPH systems on
the system domain Z can be defined as follows.
Theorem 4. ([2]). Consider (11). A DPH system is defined
by substituting (11) into the following Stokes-Dirac struc-
ture with distributed terms:⎧⎪⎪⎨

⎪⎪⎩

[
fp

f q

]
=

[
0 (−1)rd
d 0

] [
ep

eq

]
+ fd,[

f b

eb

]
=

[
ep|∂Z

(−1)peq|∂Z

]
, fd =

[
fp

d
f q

d

]
, ed =

[
ep

eq

]
,

(12)

where d : Ωi(Z) → Ωi+1(Z) is the exterior differentiation,
|∂Z is the restriction of differential forms to ∂Z, r = pq+1,
and p + q = n + 1. Here, we have defined the distributed
energy variables fd and ed that are used for describing
boundary non-integrable subsystems, where fp

d ∈ Ωp(Z)
and f q

d ∈ Ωp(Z).

DPH systems satisfy the following boundary power bal-
ance.
Proposition 5. ([2]). A DPH system satisfies the following
power balance:∫

Z

(
ep ∧ fp + eq ∧ f q + ed ∧ fd

)
+

∫
∂Z

eb ∧ f b = 0, (13)
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where each term ei ∧ f i for i ∈ {p, q, b} has the dimension
of power. We call eb ∧ f b a boundary energy flow and call
ed ∧ fd a distributed energy flow.

The power balance (13) is the essential relation used for
passivity-based boundary controls and boundary observa-
tions. Because, in (13), the first integral is equivalent to the
change in the Hamiltonian of the system defined on Z, and
the second integral means the energy flow on ∂Z. Thus,
the change in the energy defined on Z can be transformed
into that on ∂Z.

3. OPTIMALITY OF PASSIVITY-BASED CONTROLS

This section shows that passivity-based controls for DPH
systems, i.e., damping assignment and potential shaping
are naturally derived from optimal problems. We first
recall the dual structure of vector fields on oriented Rie-
mannian manifolds.

3.1 Duals on Riemannian manifolds

Let M be an n-dimensional oriented Riemannian manifold.
Differential k-forms ω are equivalent to antisymmetric con-
travariant k-tensors that define an alternating multilinear
map ωp(v1, · · · , vk) : (TpM)k → R at any point p ∈ M ,
where TpM is the tangent space of M at p, and we
introduced the natural pairing 〈df, v〉 between v ∈ TpM
and df ∈ T ∗

p M . The space Ωk(M) of differential k-forms
on M is defined as all of smooth sections of the kth exterior
power ΛkT ∗M of the cotangent bundle of M .

The dimensions of ΛkT ∗
p M and Λn−kT ∗

p M at p ∈ M coin-
cide with each other, i.e., dim ΛkT ∗

p M = dimΛn−kT ∗
p M =(

n
k

)
. Therefore, ΛkT ∗

p M is isomorphic to Λn−kT ∗
p M as

a vector space. Since M is oriented Riemannian, we
can define the natural isomorphism by the linear map
∗p : ΛkT ∗

p M → Λn−kT ∗
p M ; θ1 ∧ · · · θk �→ θk+1 ∧ · · · θn,

where (θ1, · · · , θn) is the orthonormal basis of T ∗
p M . Ac-

cordingly, the linear map ∗ : Ωk(M) → Ωn−k(M) can be
derived from the linear maps ∗p for all p ∈ M .

We can define the inner product of differential k-forms
ω, η ∈ Ωk(M):

〈ω, η 〉 =
∫

Z

η ∧ ∗ω (14)

that can be considered as the pairing (6) in the case of
manifolds with metric. Note that (14) can be regarded as
the inner product of l-dimensional vector:

〈ω, η 〉 =
∫

Z

(ηi1···ik dxi1 ∧ · · · ∧ dxik )

∧ (ωik+1···in dxik+1 ∧ · · · ∧ dxin)

=
∫

Z

ηi1···ik · ωik+1···in dxi1 ∧ · · · ∧ dxin ,

=
∫

Z

(ηi1···ik , ωik+1···in) dx, (15)

where l =
(
n
k

)
, the coefficients ηi1···ik , ωik+1···in ∈ C∞(M)

are components of l-vectors, dx ∈ Ωn(M) is the volume
form, we defined the inner product of l-dimensional vector
( , ) : (C∞(M))l × (C∞(M))l → R, and we used the
summation convention regarding the indexes i1, · · · , in of
basic differential 1-forms dxi.

3.2 Optimality of passivity-based controls for DPH systems

As we have seen in the previous section, optimal prob-
lems described by the pair of differential forms using the
wedge product (14) can be considered as typical optimal
problems described by the pair of vectors using the vector
product (15).

In this section, we first describe that one of passivity-based
controls, damping assignment using the port variables
distributed on the whole system domain Z can be regarded
as an optimal regulator.
Theorem 6. Let us consider the control input ui ∈
Ωn−i(Z) to the effort variable ei of the DPH system (12),
i.e., ẽi = ei + ui, where i ∈ {p, q}. Then, the controls

up = (Rp)−1 (Qpep − Spėp) , (16)
uq = (Rq)−1 (Qqeq − Sqėq) (17)

can be derived from the optimal regulator problem deter-
mined by

F =
∫

I

∫
Z

F dt =
∫

I

∫
Z

(L + λp ∧ Cp + λq ∧ Cq) dt, (18)

L = Qp∗αp ∧ αp + Qq∗αq ∧ αq

+ Rpup ∧ ∗up + Rquq ∧ ∗uq, (19)

where Qi, Ri, Si ∈ C∞(Z) for i ∈ {p, q} are constant
functions, and we have defined the following constraints
describing the DPH system:

Cp = α̇p + (−1)rd(∗αq + uq) ∈ Ωp(Z), (20)
Cq = α̇q + d(∗αp + up) ∈ Ωq(Z) (21)

by regarding ei as ∗αi in (12).

Proof. The integrand F of (18) can be transformed as
follows:

F = L + λp ∧ {α̇p + (−1)rd(eq + uq)}
+ λq ∧ {α̇q + d(ep + up)}

= L− λ̇p ∧ αp − λ̇q ∧ αq

+ (∂/∂t)(λp ∧ αp) + (∂/∂t)(λq ∧ αq)
− (−1)r(−1)n−pdλp ∧ (eq + uq)
+ (−1)r(−1)n−pd{λp ∧ (eq + uq)}
− (−1)n−qdλq ∧ (ep + up)
+ (−1)n−qd{λq ∧ (ep + up)}, (22)

where we have used the formulas of integration by parts:
(∂/∂t)(λ ∧ α) = λ̇ ∧ α + λ ∧ α̇ and d(ω ∧ η) = dω ∧ η +
(−1)kω ∧ dη for α, ω ∈ Ωk(M) and λ, η ∈ Ωn−k(M). By
applying Stokes theorem to (22), we obtain

F = L − λ̇p ∧ αp − λ̇q ∧ αq

− (−1)r+n−pdλp ∧ (eq + uq)
+ (−1)r+n−p[λp ∧ (eq + uq)]∂Z

− (−1)n−qdλq ∧ (ep + up)
+ (−1)n−q[λq ∧ (ep + up)]∂Z , (23)

where we have eliminated constant terms on the boundary
∂I. We shall derive Euler-Lagrange equations from the
variational derivative of (23) with respect to ui and ∗αi.
The Euler-Lagrange equation with respect to the variation
of ui derived from (23) is given by the stationary conditions
of the following variation:
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(
∂F
∂ui

− ∂

∂t

∂F
∂u̇i

)
∧ δui =

∂F
∂ui

∧ δui

=
∂

∂ui

{
(−1)p(n−p)Rp∗up ∧ up + (−1)q(n−q)Rq∗uq ∧ uq

− (−1)r+n−pdλp ∧ uq + (−1)r+n−p[λp ∧ uq]∂Z

−(−1)n−qdλq ∧ up + (−1)n−q[λq ∧ up]∂Z

} ∧ δui = 0
−→{

(−1)p(n−p)Rp∗up − (−1)n−qdλq

+(−1)n−q[λq]∂Z

} ∧ δup = 0, (24){
(−1)q(n−q)Rq∗uq − (−1)r+n−pdλp

+(−1)r+n−p[λp]∂Z

} ∧ δuq = 0. (25)
From the stationary conditions of (24) and (25), we obtain
the following feedback laws:

∗up = (−1)p(n−p)(−1)n−q(Rp)−1 (dλq − [λq ]∂Z)
= (−1)r(Rp)−1 (dλq − [λq]∂Z) , (26)

∗uq = (−1)q(n−q)(−1)r+n−p(Rq)−1 (dλp − [λp]∂Z)
= (Rq)−1 (dλp − [λp]∂Z) . (27)

The Euler-Lagrange equation with respect to the varia-
tion of ∗αi derived from (23) is given by the stationary
conditions of the following variation:(

∂F
∂∗αi

− ∂

∂t

∂F
∂∗α̇i

)
∧ δ∗αi =

∂F
∂∗αi

∧ δ∗αi

=
∂

∂∗αi

{
(−1)p(n−p)Qpαp ∧ ∗αp + (−1)q(n−q)Qqαq ∧ ∗αq

− (−1)p(n−p)∗λ̇p ∧ ∗αp − (−1)q(n−q)∗λ̇q ∧ ∗αq

− (−1)r+n−pdλp ∧ ∗αq + (−1)r+n−p[λp ∧ ∗αq]∂Z

−(−1)n−qdλq ∧ ∗αp + (−1)n−q[λq ∧ ∗αp]∂Z

} ∧ δ∗αi

= 0
−→{

(−1)p(n−p)Qpαp − (−1)p(n−p)∗λ̇p − (−1)n−qdλq

+(−1)n−q[λq]∂Z

} ∧ δ∗αp = 0, (28){
(−1)q(n−q)Qqαq − (−1)q(n−q)∗λ̇q − (−1)r+n−pdλp

+(−1)r+n−p[λp]∂Z

} ∧ δ∗αp = 0, (29)
where we used the formulas η ∧ ∗ω = ω ∧ ∗η ∈ Ωn(M)
and η ∧ ∗ω = (−1)k(n−k)∗ω ∧ η for any η, ω ∈ Ωk(M).
By substituting the stationary conditions of (24) and (25)
into (28) and (29), respectively, we obtain

Qpαp − ∗λ̇p − Rp∗up = 0, (30)

Qqαq − ∗λ̇q − Rq∗uq = 0, (31)
The system of (30) and (31) can be rewritten as the port-
Hamiltonian system,⎧⎪⎪⎨

⎪⎪⎩

[−∗λ̇p

−∗λ̇q

]
=

[
0 (−1)rd
d 0

] [
λp

λq

]
−

[
Qpαp

Qqαq

]
,[

f b

eb

]
=

[
λp|∂Z

(−1)pλq|∂Z

]
,

(32)

where (fp
d , f q

d ) := (Qpαp, Qqαq) are the distributed energy
terms that mean dissipations. Accordingly, a trivial gen-
eral solution of (32) can be given by

λp = Spep, λq = Sqeq (33)

for any Si ∈ C∞(Z) for i ∈ {p, q}. Hence, these relations
with (30) and (31) yield the control laws (16) and (17). �

Remark 7. In the Lagrangian (19), we have used the
volume form, e.g., Qi∗αi ∧ αi as a cost function instead
of the conventional quadratic form, e.g., x�Qx, where x
is a vector and Q is a matrix. For example, in the case of
L = p2/(2m) dx, where p is a function and m is a constant,
we can define

αi = p dx(i), ∗αi = ei =
∂L
∂αi

=
p

m
dx(n−i), (34)

where dx ∈ Ωn(Z), dx(i) ∈ Ωi(Z), note that dx(i) and
dx(n−i) have the same dimension as a vector space spanned
by basic 1-forms, and we have assumed that the size of the
vector p is equivalent to that of the number of the basis of
the space Ωi(Z). Then, the cost function H can be given
by

1
2
∗αp ∧ αp =

p2

2m
dx, (35)

which is a quadratic form on Riemannian manifolds.
Note that the Hodge star ∗ depends on a metric of the
manifolds.

3.3 Boundary controls and distributed controls

In the previous section, we discussed the optimality of the
distributed controls. This section discusses the limitation
of passivity-based boundary controls.

The general expression of distributed controls for the DPH
system (12) is given by

fp = (−1)rd(eq + vq) − wp, (36)
f q = d(ep + vp) − wq, (37)

f b = (ep + vp)|∂Z , eb = (−1)p(eq + vq)|∂Z , (38)
where vp, vq, wp, and wq are controls. In this case, the
power balance (13) is changed into∫

Z

{(ep + vp) ∧ fp + (eq + vq) ∧ f q}

+
∫

Z

{(ep + vp) ∧ wp + (eq + vq) ∧ wq}

+
∫

∂Z

eb ∧ f b = 0. (39)

The pair of vp and vq means boundary integrable, because
they can be considered as portions of ep and eq. However,
wp and wq means boundary non-integrable, and they
cannot be transformed into the boundary term eb ∧ f b.

For practical purposes, we are interested in controlling the
above pair of vp and vq by using their boundary value.
That is, let us consider the boundary input ui ∈ Ωn−i(∂Z)
for i ∈ {p, q} such that

fp′ = (−1)rd(eq + ũq), f q′ = d(ep + ũp), (40)

f b′ = ep|∂Z + up, eb′ = (−1)p(eq|∂Z + uq), (41)

where ũi ∈ Ωn−i(Z) is an admissible differential (n − i)-
form satisfying ũi|∂Z = ui. Actually, ũi satisfies the power
balance∫

Z

{(ep + ũp) ∧ fp′ + (eq + ũq) ∧ f q′}

+
∫

∂Z

eb′ ∧ f b′ = 0. (42)

Copyright © 2013 IFAC 149



Then, ũi is naturally determined by the boundary condi-
tion given by uiunder preserving the power balance (42).
In other words, we cannot always assign desired states to
ũi distributed on Z by controlling ui defined on ∂Z.

In this paper, we are considering geometric controls; there-
fore, we cannot investigate ũi from the analytical view-
point. Hence, we consider instead discretized optimal dis-
tributed controls assigned to equally-spaced points.

4. NUMERICAL EXPERIMENTATION

This section illustrates applications of passivity-based con-
trol methods for the flexible beam with large deforma-
tions [9, 10]. The DPH system of the flexible beam with
large deformations that has been presented in [8]. More-
over, we discuss the relationship between the passivity-
based control methods for general PDEs and the strain
feedback methods for flexible beams.

4.1 Strain Feedback Methods

Let us consider the Euler-Bernoulli equation model

wtt +
EI

Aρ
wxxxx = −xτtt, (43)

where w(t, 0) = wx(t, 0) = 0, wxx(t, L) = wxxx(t, L) = 0,
x ∈ Z = [0, L] ∈ R is the spatial coordinate along the
beam, w = w(t, x) is the shearing position at x, Aρ is
the mass per unit length, EI is the flexural stiffness, τ
is the rotation of the electrical motor at the base of the
beam, and the subscripts mean partial derivatives. Then,
the strain feedback

τtt = K1wtxx(t, 0) (44)
and the integral strain feedback

τtt = K2wxx(t, 0) (45)
are defined, where K1 and K2 are constants. The strain
feedback (44) generates damping in (43). The inte-
gral strain feedback (45) changes the potential term
(EI/Aρ)wxxxx of (43).

4.2 System Model

In the previous section, the beam was modeled by the
linear PDE, i.e., the Euler-Bernoulli beam from which
analytical solutions can be derived in terms of semigroup
theory. The Euler-Bernoulli beam model can be extended
to a nonlinear PDE, i.e. it can be derived as a reduction
model from the equations of beams with large deforma-
tions ⎧⎨

⎩ Aρ

[
ytt

wtt

]
− ∂

∂x

(
Λ CΓ

)
=

[
0
u

]
,

Iρθtt − EIθxx − ΨΛ CΓ = 0,
(46)

where x ∈ Z = [0, L] ∈ R is the spatial coordinate along
the beam, y = y(t, x) ∈ R is the axial position along
the equilibrium position, (x + y) is the axial position,
w = w(t, x) is the shearing position, θ = θ(t, x) is the
rotation of the cross section along the unchangeable length
of the beam, u = u(t, x) is the distributed control input,
Aρ is the mass per unit length, Iρ is the mass moment of
the inertia of the cross section, EI is the flexural stiffness,

EA is the axial stiffness, GA is the shear stiffness, and we
defined the following variables:

C =
[
EA 0
0 GA

]
, Λ =

[
cos θ − sin θ
sin θ cos θ

]
, (47)

Γ =
[
Γ1

Γ2

]
= Λ�

[
1 + yx − cos θ

wx − sin θ

]
, Ψ =

[ −wx

1 + yx

]�
. (48)

The model (46) can be expressed by the port representa-
tion. From the total energy of the model:

H =
1
2

∫
Z

{
Aρyt

2 + Aρwt
2 + Iρθt

2

+EAΓ1
2 + GAΓ2

2 + EIθx
2
}

dx, (49)
the following port variable pairs are obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fp =

[
Aρytt dx
Aρwtt dx
Iρθtt dx

]
, ep =

[−yt

−wt

−θt

]
,

f r = −θt dx, er = −ΨΛ CΓ,

f q =

[−yxt dx
−wxt dx
−θxt dx

]
, eq =

⎡
⎣
(
Λ CΓ

)
1(

Λ CΓ
)
2

EIθx

⎤
⎦ ,

fd =

[
μAρyt dx

μAρwt dx dx
μIρθt dx

]
,

(50)

where (Λ CΓ )i means the i-th element of Λ CΓ . Accord-
ingly, the DPH system is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
fp

f r

f q

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 d 0 0
0 0 0 0 0 d 0
0 0 0 −∗ 0 0 d
0 0 ∗ 0 0 0 0
d 0 0 0 0 0 0
0 d 0 0 0 0 0
0 0 d 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
[
ẽp

er

ẽq

]
+

⎡
⎢⎣

fd

0
0
0

⎤
⎥⎦ ,

[
f b

eb

]
=

[
ẽp|∂Z

−ẽq|∂Z

]
,

(51)

where fd is a weak viscosity damping term for numerical
stabilizations, ẽi = ei + ui for i ∈ {p, q}, ui is the
control input, and note that the pair (f r, er) does not yield
boundary port variables.

4.3 Passivity-based controls

The formal form of the passivity-based controls for (51) is
given by

up = (Rp)−1(Qpep − Spėp), (52)
uq = (Rq)−1(Qqeq − Sq ėq), (53)

where Qi, Ri and Si for i ∈ {p, q} are constant diago-
nal (3, 3)-matrices. In (53), the term (Rp)−1Qpep corre-
sponds to damping assignment by a direct velocity feed-
back. In (53), the term −(Rq

3)
−1Sq

3 ėq
3 corresponds to the

strain feedback (44) that generates damping, and the term
(Rq

3)
−1Qq

3e
q
3 corresponds to the integral strain feedback

(44) that changes the flexural stiffness, i.e., this is one
of energy shaping methods, where k-elements or (k, k)-
elements are denoted by the subscript k, and note that
θ ≈ wx under small strains. Note that uq is realized by
using a pair of port variables at the boundary of each
discretized domain; therefore, it can be considered as a
discretized optimal distributed control assigned to equally-
spaced points.
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4.4 Numerical Results

Finally, we shall check the effects of the passivity-based
controls in (53) in terms of numerical calculations with
the method in [10]. We set Aρ = 1, Iρ = 10, EI = 20,
EA = 500, and GA = 500. The base of the beam is
constrained by x = 0 and θ = 0 at the origin of a
2-dimensional space. The tip of the beam was initially
actuated by a clockwise external force during 2 seconds.
The left graph in Figure 1 and the solid line in Figure 3
illustrate a free motion of the beam.

We first used the gains (Rq
1)

−1Qp
1 = (Rq

2)
−1Qp

2 = 0.01 and
(Rq

3)
−1Qp

3 = 0.1 for damping assignment at the points
x = 0.1L, 0.2L, · · · , 0.9L. The right graph in Figure 1
illustrates the controlled motion. It was stabilized.

We next used μAρ = 0.001 and μIρ = 0.01, which cause
a very weak damping. We applied potential shaping to
the beam at the boundary points of the intervals [0, 0.1L],
[0.3L, 0.5L], and [0.7L, 0.9L]. The graphs in Figure 2 illus-
trate the motion controlled by the energy shaping with
(Rp

3)
−1Qq

3 = −5.0 and (Rp
3)

−1Qq
3 = −10.0 during t ∈

[0, 20], where the smaller gains make the beam stiffer. In
Figure 3, the chained line shows the response in the second
case, and the dashed line is the same setting with the
damping assignment.
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Fig. 1. Free motion (left), Damping assignment (right)
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Fig. 2. Energy shaping 1 (left), Energy shaping 2 (right)

5. CONCLUSIONS

This paper derived passivity-based control methods from
the optimal problem on DPH systems. We illustrated the
numerical applications of passivity-based controls for the
DPH system of the flexible beam with large deformations
from which the analytical solutions has not been derived.

This work was supported by Japan Society for the Promo-
tion of Science Grant Number No. 22360167.
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