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1. INTRODUCTION

An impulsive system combines continuous and discontinu-
ous behavior in one model. Such systems have many real-
world applications and are very interesting from theoreti-
cal point of view. They can be considered as a subclass of
hybrid systems. Since stability properties are of great im-
portance for applications a lot of research was devoted to
investigation of stability for such systems, see Samoilenko
and Perestyuk [1995], Hespanha et al. [2008], and Chen
and Zheng [2009]. Since impulsive systems combine two
types of behavior it can happen that one of them stabilizes
the system while another one destabilizes it. In this case
one needs to restrict the number of impulses per time
unite. Such restrictions are called dwell-time conditions.
Several types of dwell-time conditions were developed in
the literature, see Dashkovskiy and Mironchenko [2012].

Many applications lead to consideration of interconnected
systems. It is known that even if each subsystem of an
interconnection is stable the whole system can be unstable.
One of the possible frameworks to study stability of inter-
connections is input-to-state stability, see Sontag [1989].
Small-gain condition that guarantee stability of large-scale
interconnected impulsive systems were developed recently
in Dashkovskiy et al. [2012]. This conditions are used in a
combination with a dwell-time condition.

In the current paper we will study the interplay between
these two conditions. First we provide a linear example
to illustrate this interplay. However the most interesting
and essentially more complicate is the case of nonlinear
systems. Several preliminary results will be shown and
illustrated for this case. We will also briefly show the open
problems and explain the direction for further research. In
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the following section we introduce notation and necessary
notions as well we recall some known related results.
Section 3 explains the motivation, where for simplicity an
interconnection of linear systems is considered. In section
4 we give our main results for the case of linear supply
rates and indicate in section 5 what is expected in case
of nonlinear supply rates. A nonlinear example is also
provided there. Section 6 concludes the paper.

2. PRELIMINARY

First of all, let us review some important background.
Denote by R the set of real numbers, R≥0 = [0,∞), Rn
denotes n-dimensional Euclidean space, N = {0, 1, 2, 3, ...},
and ∅ denotes the empty set. For any vectors a, b ∈ Rn,
the relation a > b is defined by ai > bi for all i = 1, 2, . . . , n
and its logical negation is denoted by a ≯ b meaning
that there exists i ∈ {1, 2, . . . , n} such that ai ≤ bi. The
relations ≥, <,≤ and their negation are also defined in
the same manner. Denote by aT the transposition of a
vector a ∈ Rn. By both of 〈a, b〉 and a · b denote the vector
scalar product of a and b. By ∇ we denote the standard
vector gradient. The Lebesgue spaces are denoted by Lp,
and ‖·‖p denotes the Lp-norm, |·| denotes the Euclidean
norm . A continuous function α is called a class K-function,
α ∈ K, if α : R≥0 → R≥0 is strictly increasing, and
α(0) = 0. In addition, α ∈ K∞ if α ∈ K is unbounded.
A continuous function is called positive definite α ∈ P, if
α : R≥0 → R≥0 satisfies α(x) = 0 iff x = 0. A continuous
function α ∈ L if α : R≥0 → R≥0 is strictly decreasing, and
limt→∞ α(t) = 0. A function β ∈ KL if β : R2

≥0 → R≥0,

β(·, t) ∈ K for all t > 0, and β(r, ·) ∈ L for all r > 0.

2.1 Impulsive Systems

Consider a system Σ consisting of n subsystems called Σi
for i = 1, 2, . . . , n where n ≥ 2. Let x =

[
xT1 , x

T
2 , . . . , x

T
n

]T ∈
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RN be the state vector of Σ where xi ∈ RNi denotes the
state vector of Σi, and

∑
Ni = N . Let T = {t1, t2, . . . , } be

a nondecreasing sequence of impulse times without finite
accumulation points. Suppose that the dynamics of Σi are
governed by

Σi :
ẋi(t) = fi (x1(t), . . . , xn(t), u(t)) , t ∈ [t0,∞) \ T,
x+i (t) = gi (x1(t), . . . , xn(t), u(t)) , t ∈ T,

(1)

where f, g : RN × RM → RN and t0 ∈ R≥0 denotes an
initial time.

The first equation of (1) exhibits the continuous dynamics
of Σi. Together with the second equation, the jumps of
a state at impulse times, discrete dynamics, of Σi are
described. The equations (1) with impulse times T define
an impulsive system.

Our assumptions of the subsystem Σi are listed as follows:
The external inputs u ∈ L∞

(
[t0,∞) ,RM

)
and xj ∈

L∞
(
[t0,∞) ,RNj

)
where i 6= j are right-continuous and

possesses left limit. The functions fi and gi are assumed to
be such that for any initial condition there exists a unique
solution for each subsystem Σi, i = 1, . . . , n.

An interconnection of impulsive systems (1) can be written
as one impulsive system as follows

Σ :
ẋ(t) = f (x(t), u(t)) , t ∈ [t0,∞) \ T,

x+(t) = g (x(t), u(t)) , t ∈ T,
(2)

where f =
[
fT1 , f

T
2 , . . . , f

T
n

]T
: RN+M → RN and g =[

gT1 , g
T
2 , . . . , g

T
n

]T
: RN+M → RN . Note that to write (1)

as one impulsive system (2) it is necessary to require that
the set T of the impulse times is the same for each Σi.
Next we introduce the stability notion that we will use
throughout the paper.

2.2 Input-to-State Stability

Definition 1. (ISS). The impulsive system Σi is input-to-
state stable if there exist βi ∈ KL, γij ∈ K∞ with γii := 0,
γi ∈ K∞ such that for all initial conditions xi(t0), for all
inputs u, xj where i 6= j it holds

|xi(t)| ≤ βi (|xi(t0)| , t− t0) +

n∑
j=1

γij (|xj |) + γi (‖u‖∞) .

(3)
The functions γij and γi are called gains.

An important tool to investigate this kind of stability
prvide ISS-Lyapunov functions that can be defined as
follows

Definition 2. (ISS-Lyapunov Function). A smooth func-
tion Vi : RNi → R≥0 is an ISS-Lyapunov function for
the impulsive system Σi if there exist ψi1, ψi2 ∈ K∞ such
that for all xi ∈ RNi

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|), (4)

and there exist γij ∈ K∞ with γii := 0, γi ∈ K∞, αi ∈ P
and ϕi ∈ P such that for all x ∈ RN and for all u ∈ RM

Vi(xi) ≥
n∑
j=1

γij (Vj(xj)) + γi (‖u‖∞) (5)

implies

V̇i(xi) := 〈∇Vi(xi), fi(x, u)〉 ≤ −ϕi(Vi(xi)), (6)

and

Vi(gi(x, u)) ≤ αi(Vi(xi)) +

n∑
j=1

γij (Vj(xj)) + γi (‖u‖∞) .

(7)

Sontag and Wang [1995] showed that for systems without
impulses (T = ∅) the existence of an ISS-Lyapunov
function for Σi is equivalent to its ISS property. However in
case of T 6= ∅ one needs additionally to apply restrictions
on the sequence T to assure ISS. One of them is called
fixed dwell-time condition and was used in Dashkovskiy
and Mironchenko [2012]:

Theorem 3. (Fixed Dwell-Time Condition). Let Vi be an
ISS-Lyapunov function for Σi, and ϕi, αi be as in the
Definition 2. If there exists θ, δi > 0 such that for all a > 0∫ αi(a)

a

ds

ϕi(s)
≤ θ − δi, (8)

then Σi is ISS for all impulse time sequences

T ∈ Sθ := {{tk}∞k=1 ⊂ R≥0 : θ ≤ tk+1 − tk} . (9)

Definition 4. (Gain Operator). Let Vi be an ISS-Lyapunov
function of the impulsive system Σi with corresponding
gains γij ∈ K∞. The gain operator Γ : Rn≥0 → Rn≥0 is
defined by

Γ(s) :=

 n∑
j=1

γ1j(sj), . . . ,

n∑
j=1

γnj(sj)

T

, (10)

where s = (s1, . . . , sn) ∈ Rn.

Let us recall the notion of the gain operator and the small-
gain condition for interconnected systems. Recall how the
small-gain condition can be used Dashkovskiy et al. [2010]

Theorem 5. (The Small-Gain Condition). Let Vi be an
ISS-Lyapunov function for Σi with T = ∅ and the corre-
sponding gains be γij ∈ K∞. If there exists some ρ ∈ K∞
such that the gain operator Γ defined in (10) satisfies

D ◦ Γ(s) ≯ s, ∀s ∈ Rn, s 6= 0, D := diag(ρ, . . . , ρ)
(11)

then there exists an ISS-Lyapunov function for the inter-
connected system Σ implying that Σ is ISS.

For T 6= ∅ a combination of the dwell-time condition and
the small-gain condition can be used to guarantee stability
of the interconnection of impulsive systems.

Recall that, in case of linear gains, the condition (11) is
equivalent to

Γmax(s) ≯ s, ∀s ∈ Rn, s 6= 0, (12)

where

Γmax(s) :=

(
n

max
j=1

γ1j(sj), . . . ,
n

max
j=1

γnj(sj)

)
, (13)

Small-gain conditions (11) and (12) require that the gains
of subsystems are small enough. Another way to equiv-
alently state (12) is to require that all the gain cycle
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compositions are less than the identity, that is for any
p > 1 it holds

γk1k2 ◦ γk2k3 ◦ . . . γkp−1kp(s) < s, ∀s > 0 (14)

where (k1, k2, . . . , kp) ∈ {1, 2, . . . , n}p and k1 = kp. It is
known that if all of gains γij in Γ are linear functions,
then the small gain condition (11) is equivalent to

ρ(Γ) < 1 (15)

where ρ(Γ) denotes the spectral radius of the linear oper-
ator Γ, see Dashkovskiy et al. [2007]. To see the relation
between a small-gain condition and a dwell time condi-
tion, a simple motivating example is provided in the next
section.

3. MOTIVATION

Next we consider the case of linear systems to illustrate
the interplay between the small-gain and the dwell-time
condition that motivates the more general problem of
this interplay for nonlinear systems. Let us consider the
following interconnected linear impulsive systems

Σi :

ẋi = −xi +

n∑
j=1
i 6=j

γijxj + ui, t ∈ [0,∞) \ T

x+i = e−dxi, t ∈ T,

(16)

where 2 ≤ n ∈ N, γij > 0, ui ∈ L∞ [0,∞), d ∈ R. For
simplicity we consider d < 0, i.e., the case where jumps at
the impulse times destabilize the system.

Let us show that Σi possesses an ISS-Lyapunov function
and calculate the corresponding gains. Let

Vi(xi) := |xi| .
For any 0 < αi < 1 it follows that

Vi(xi) ≥
n∑
j=1
i6=j

(
γij

1− αi

)
|xi|+

|ui|
1− αi

implies

V̇i(xi) = sign (xi)

−xi +

n∑
j=1
i6=j

γijxj + ui


≤ − |xi|+

n∑
j=1
i 6=j

γij |xj |+ |ui|

≤ −αi |xi| = −αiVi(xi).

This shows that Vi is an ISS-Lyapunov function for Σi
with T = ∅ and that the gains can be taken as

Γij :=

{
0 if i = j
γij

1− αi
if i 6= j

so that the linear gain operator is given by Γ := [Γij ]n×n.

Note that the gains are not unique and that in view of
the application of the small-gain condition it is desired to
have possibly small gains Γij by adjusting 0 < αi < 1,
i.e., taking αi close to 0. However in any case the gains are
bounded from below by γij < Γij . As well it is important

to notice that αi characterizes the decay rate for Σi. Due
to the dwell-time condition taking αi close to 0 will lead
to the conclusion that the time intervals between jumps
have to be close to ∞, see below. This shows the trade-off
between the choice of gains to be small and decay rates to
be large.

To guarantee the ISS property for Σi we require that the
set T satisfies T ∈ Sθ, i.e., a dwell time condition

−d
αi

< θ ≤ tk+1 − tk.

is satisfied. Since at any impulse holds

Vi
(
x+i
)

= Vi
(
e−dxi

)
=
∣∣e−dxi∣∣ = e−dVi (xi) ,

there exists δi > 0 for all a > 0 such that∫ e−da

a

ds

αis
=
−d
αi
≤ θ − δi.

Therefore, the subsystem Σi is ISS since a dwell-time
condition is satisfied.

To guarantee the ISS property for the interconnection
of Σ1,Σ2, . . . ,Σn, where n ≥ 2 and finite we firstly
require that Γ satisfies the small-gain condition ρ(Γ) < 1.
Secondly, we are going to show that Σ is ISS if it holds

−d
mini αi

< θ ≤ tk+1 − tk. (17)

To this end we construct an ISS-Lyapunov function for the
interconnected impulsive system Σ. Since ρ(Γ) < 1, there
exist s = (s1, s2, . . . , sn) ∈ Rn+ such that

si >

n∑
j=1
i 6=j

(
γij

1− αi

)
sj .

Let x := (x1, x2, . . . , xn) ∈ Rn, u := (u1, u2, . . . , un) ∈ Rn
and

V (x) := max
i

Vi(xi)

si
, and γ(|u|) := max

i

|u|
κi

(18)

where

κi := (1− αi)

si − n∑
j=1
i 6=j

(
γij

1− αi

)
sj

 .

Then V (x) ≥ γ(|u|) implies

V̇ (x) ≤ −αV (x), with α := min
i
αi.

At any impulsive time it holds

V (x+) = max
i

Vi(x
+
i )

si
= max

i

e−d |xi|
si

= e−dV (x).

Therefore by (17), for all a > 0, there exists δ > 0 such
that ∫ e−da

a

ds

αs
=
−d
α
≤ θ − δ, (19)

and we can conclude that the interconnection is ISS.

Note that if some αi is close to zero then α is close to
zero. This implies that the the distance θ between any two
impulse times needs to be close to infinity.
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Now let ρ
(

[γij ]n×n

)
= 1 − ε for some 0 < ε < 1. Then

since γij > Γij ≥ 0 we have ρ(Γ) < ρ
(

[γij ]n×n

)
= 1− ε

If in particular the spectral radius of the interconnecting
matrix approaches 1, i.e., ε→ 0 then α → 0. This can be
seen for example from the small-gain condition stated in
the cycle from:

ρ(Γ) approaches 1 means that
γij1

1− αi
· γj1j2

1− αj1
· . . . · γjci

1− αjc
→ 1.

Let γij1γj1j2 . . . γjci approach 1, then it follows

(1− αi) (1− αj1) . . . (1− αjc)→ 1

and in particular αi → 0 and hence α → 0. From (19) it
follows that θ →∞.

As a result for this example we obtain the following:

Proposition 6. Let the interconnection matrix of (16) sat-

isfy ρ
(

[γij ]n×n

)
= 1 − ε for some 0 < ε < 1 then

there exists some finite θ so that if the time distance
between any two impulse times satisfies tk+1 − tk ≥ θ,
the interconnection Σ is ISS. Moreover it holds θ →∞ for
ε→ 0.

4. MAIN RESULTS

In the above example we have seen that the choice of ISS
gains affects the choice of theta in the dwell-time condition.
In a simple example we have seen how these gains can be
adjusted to cope with the dwell-time condition. Coming
back to the case of nonlinear systems given a general
form we cannot calculate the gains explicitly and hence
we have no possibility to adjust the gains. For this reason
we require that each subsystem is equipped with an ISS-
Lyapunov function satisfying an ISS dissipative inequality
with given supply rates. Recall that existence of such an
ISS-Lyapunov function is equivalent to the existence of
Lyapunov function defined above.

Theorem 7. Given an impulsive system Σ, defined in (2),
consisting of subsystems Σi defined in (1) for i = 1, 2, . . . , n
where 2 ≤ n <∞. Let each subsystem Σi admit a smooth
function Vi : RNi → R≥0 satisfying the following:

(1) There exist ψi1, ψi2 ∈ K∞ such that for all xi ∈ RNi

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|). (20)

(2) There exist σij > 0 with σii := 0, σi > 0, and di ∈ R
such that it holds
(a) For all x ∈ RN and for all u ∈ RM

V̇i(xi) := 〈∇Vi(xi), fi(x, u)〉

≤ −Vi(xi) +

j∑
i=1

σijVj(xj) + σi‖u‖∞.

(21)
(b) For all x ∈ RN and for all u ∈ RM

Vi(gi(x, u)) ≤ e−diVi(xi). (22)

(c) There exists 0 < ϕi < 1 such that for some
ε ∈ (0, 1) and for any p > 1 it holds

ρ
(

[σij ]n×n

)
:= 1− ε <

kp∏
k=k1

(1− ϕk) (23)

where (k1, k2, . . . , kp) ∈ {1, 2, . . . , n}p and k1 =
kp.

Then, there exists θ > 0 such that Σ is ISS for all
impulsive time sequences T ∈ Sθ defined in (9). Moreover,
θ approaches to infinity as ε approaches to zero.

Proof. For any 0 < ϕi < 1, we have that

Vi(xi) ≥
n∑
j=1

(
σij

1− ϕi

)
Vj(xj) +

(
σi

1− ϕi

)
‖u‖∞

implies

V̇i(xi) ≤ −ciVi(xi) +

j∑
i=1

σijVj(xj) + σi‖u‖∞

≤ −ϕiVi(xi).

From (23) it follows that there exists s = (s1, s2, . . . , sn) ∈
Rn+ such that

si >

n∑
j=1
i 6=j

(
σij

1− ϕi

)
sj ,

Therefore, define

V (x) := max
i

Vi(xi)

si
, ∀x = (x1, x2, . . . , xn) ∈ RN

and

γ(r) := max
i

r

κi
, ∀r ∈ R≥0

where

κi := (1− ϕi)

si − n∑
j=1

(
σij

1− ϕi

)
sj

 .

It follows that

V (x) ≥ γ(‖u‖∞)⇒ V̇ (x) ≤ −ϕV (x),

and

V (g(x, u)) = max
i

Vi(gi(x, u))

si

≤ max
i

e−diVi(xi)

si
≤ e−dV (x, u)

where

ϕ = min
i
{ϕi} , and d = −max

i
{−di} .

Hence the interconnected impulsive system Σ is ISS since
the dwell time condition (8) holds, i.e., there exist θ, δ > 0
for all a > 0 such that∫ e−da

a

ds

ϕs
=
−d
ϕ
≤ θ − δ. (24)

Finally, suppose ε→ 0+. From (23) it means that

kp∏
k=k1

(1− ϕk)→ 1.

Please note that
kp∏
k=k1

(1− ϕk) = 1−(ϕk1

kp∏
k=k2

(1− ϕk) + ϕk2

p∏
k=k3

(1− ϕk)

+ . . .+ ϕkp−1

(
1− ϕkp

)
+ ϕkp).
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We can conclude that ϕk approaches to zero. Therefore, ϕ
also approaches to zero. To hold the dwell-time condition
(24), θ eventually approaches to infinity.

5. NONLINEAR SUPPLY RATES

In the previous section we have considered the case of
linear supply rates. If they are nonlinear functions then
more research have to be done to obtain a counterpart of
the above results. Here we consider an example with two
interconnected nonlinear impulsive systems and show that
similar effects are expected to happen in case of nonlinear
supply rates.

Example 8. Let Σi, i = 1, 2 be given by

ẋi = −(1 + ε)xi + min
{√

xj , x
2
j

}
+ ui , t ∈ [t0,∞) \ T,

x+i = e−dxi , t ∈ T,
(25)

where j = 1, 2, j 6= i, d < 0 < ε.

Choose any α ∈ (0, ε). Consider Vi(xi) := |xi| as a
candidate for a Lyapunov function and let the gains be
given by

γij(r) :=
min

{√
r, r2

}
1 + ε− α

,∀r ∈ R≥0, i 6= j (26)

γi(r) :=
r

1 + ε− α
,∀r ∈ R≥0 (27)

It is easy to check that

Vi(xi) ≥ γij(|xj |) + γi(‖ui‖∞)

implies

V̇i(xi) ≤ −(1 + ε)|xi|+ min
{√

xj , x
2
j

}
+ ‖ui‖∞ (28)

≤ −α|xi|, (29)

and

Vi(x
+
i ) = e−d|xi|. (30)

This shows that Vi is an ISS-Lyapunov function for Σi.
As well it is easy to check that γ12 ◦ γ21(s) < s, ∀s > 0,
i.e., the small-gain condition is satisfied. This implies that
there exists a Lyapunov function V for the interconnection
of Σ1 and Σ2 such that

V (x) ≥ γ(‖ui‖∞)⇒ V̇ (x) ≤ −αV (x) ,∃γ ∈ K∞ (31)

and

V (x+) ≤ e−dV (x). (32)

Therefore, the interconnection is ISS, provided the impulse
times satisfy the dwell-time condition: there exist θ, δ > 0
such that ∫ e−da

a

ds

αs
=
−d
α
≤ θ − δ. (33)

If the distance between impulse times is less then θ then
the behaviour of the interconnection can be unstable.

Figures 1 and 2 illustrate simulations of this example with
parameters ε = 0.2, α = 0.1, d = −0.2, initial conditions
x1(t0) = 1, x2(t0) = 2, t0 = 0, external inputs

[
u1(t)
u2(t)

]
=



[
0

1

]
if 0 < t ≤ 2,

[
0

0

]
otherwise,

(34)

0 2 4 6 8 10
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2

4

6

8

10

12

14

16

18

 

 

x1

x2

Fig. 1. A simulation of Example 8 with impulse times
T = {0.1, 0.3, 0.5, 0.7, . . .}

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

 

 
x1
x2

Fig. 2. A simulation of Example 8 with impulse times
T = {0.1, 2.1, 2.2, 2.3, . . .}

and different impulse times T indicated below each figures:
the first figure corresponds to rather frequent jumps, where
the dwell-time condition is not satisfied and hence the
behaviour is unstable. On the second figure the time
distance between impulses satisfies the required dwell-time
condition and the simulation shows a stable behaviour.

We want to investigate in case the compositions of γij are
extremely closed to identity. There are ways to make an
investigation. First of all, in a case of an extremely small
ε, namely ε → 0+, it follows that θ becomes extremely
large to hold (33). On the another route, we just choose α
to be very closed to ε, i.e., α → ε. Eventually, θ is finite
to hold (33), i.e., choose any θ ∈

(
−dε−1 + δ,∞

)
. Since

gains are not unique, we avoid to choose the second route.
Therefore, the following can be obtained.

Proposition 9. There exists finite θ such that if the time
distance between any two impulse times satisfies tk+1 −
tk ≥ θ, the interconnection of (25) is ISS. Moreover it
holds θ →∞ as ε→ 0.
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6. CONCLUSIONS

In this work we have shown that in case of interconnected
impulsive systems one have to take care of the ISS gains to
be small enough and the dependence of the dwell time on
these gains. The relations between them is shown. In case
of nonlinear gains or supply rates more investigation needs
to be done and this is the currently under investigation.
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