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Abstract: In this paper, a methodology based on proper orthogonal decomposition (POD)
for computing approximate closed-loop optimal or robust control laws for finite-dimensional
nonlinear systems is proposed. The solution can be obtained on any arbitrary domain of the
state space represented by a multidimensional grid. The method only requires the computation
of a limited number of well-conditioned two-point boundary value problems and a simple
backwards integration of a reduced model of the Hamilton-Jacobi-Bellman or Hamilton-Jacobi-
Isaacs equation associated to the control problem. Two illustrative examples demonstrate the
effectiveness of the approach.
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1. INTRODUCTION

Closed-loop computation of nonlinear robust or opti-
mal control problems arising from the Hamilton-Jacobi-
(Bellmann or Isaacs) equation (HJ(B/I) equation) remains
a challenging issue, due to the fact that generic solutions
are not available for state-space dimensions greater than
1, and HJ(B/I) computation is limited by the curse of
dimensionality. In this paper, an approach based on the
so-called proper orthogonal decomposition (POD) is pro-
posed. POD seems to have been first proposed by Pear-
son (1901) and is now extensively used for the purpose
of finite-dimensional modeling and control of fluids par-
tial differential equations (Ly (2002)), model reduction
of nonlinear systems (Lall (2002)), approximate solution
of infinite-dimensional optimal control problems (Kunisch
(2008)). POD provides a nice way to get orthonormal
basis functions from a finite number of experiments (called
”snapshots”), i.e. system solutions obtained by simulations
or observations, which optimally span a subspace of the
system space. A way to compute approximate solutions
to HJ(B/I) equations by using functional basis has been
proposed in Georges (1996) and Beard (1998). The goal of
this paper is to come back to this idea using POD rather
than a standard polynomial basis which appears to be ill-
conditioned. In this paper, some preliminary results will be
provided: first the robust and optimal control approximate
solutions of a very simple one-dimensional example, which
gives a nice insight to the proposed approach, are studied.
Secondly, an example of practical interest is studied: it con-
sists in the computation of the POD approximate solution
of the nonlinear optimal regulator of a boost converter.

The paper is organized as follows. In section 2, some back-
ground is provided on proper orthogonal decomposition.
Section 3 describes the overall methodology based on POD
for solving HJ(B/I) equations. In section 4, two illustrative

examples demonstrate the effectiveness of the approach.
Some conclusions and perspectives are given in section 5.

2. SOME BACKGROUND ON PROPER
ORTHOGONAL DECOMPOSITION

Let {Ei(x) : 1 ≤ i ≤ N ;x ∈ Ω ⊂ Rn} denote the
set of N observations (snapshots) of some distributed
parameter systems over a domain Ω. These observations
can be obtained apart from numerical simulations at N
time samples i = 1, ..., N for instance. The problem is now
to determine some basis functions {φk(x)}Nk=1, solutions
to the following least-square problem

min
φk,k=1,...,N

N∑
i=1

‖Ei(x)−
N∑
k=1

〈Ei(x), φk(x)〉φk(x)‖2 (1)

subject to 〈φi(x), φj(x)〉 = δij (orthonormality con-

straint), where 〈h, g〉 =

∫
Ω

fT gdx defines the associated

inner product.

It can be easily shown (by simply using Lagrange necessary
conditions for optimality) that the solution of this problem
is the following eigenvalue problem

Rφk(x) :=

N∑
i=1

〈Ei(x), φk(x)〉Ei(x) = λkφk(x),

k = 1, ..., N (2)

〈φk(x), φl(x)〉 = δkl, (3)

where λk is nothing but the Lagrange multiplier associated
to constraint 〈φk(x), φk(x)〉 = 1.

R may be rewritten as a N ×N matrix with the elements

Rij = 〈Ei(x), Ej(x)〉,
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and solving the symmetric eignevalue problem

RVk = λkVk, 1 ≤ k ≤ N, λ1 ≥ λ2 ≥ ... ≥ λN ,
with the eigenvectors Vk = (ak1 , ..., a

k
N )T . Then the basis

functions φk(x), k = 1, ..., N may be expressed by

φk(x) =
1√
λk

N∑
i=1

akiEi(x),

Clearly, each basis function is simply a linear combina-
tion of the set of experiments. Furthermore, it can be
easily shown that the φk(x)’s form an orthonormal basis
(〈φk(x), φl(x)〉 = δkl).

By considering only the K most significant eigenval-
ues of the problem (for instance eigenvalues such that
K∑
i=1

λi/

N∑
j=1

λj > p), we get a representation of p% of the

energy contained in the experimental set. In practice, we
can often observe that K � N , what allows important
basis reduction.

3. APPROXIMATION OF NONLINEAR OPTIMAL
AND ROBUST CONTROL PROBLEM SOLUTIONS

VIA POD

The main goal of this section is to provide a methodology
for solving PDEs associated to nonlinear optimal or robust
control problems.

3.1 Some Background on Nonlinear Optimal Control

Now we consider some nonlinear systems defined by

ẋ(t) = F (x(t)) +G(x(t))u(t) (4)

where x(t) ∈ Rn and u(t) ∈ Rp, with F (0) = 0. F and G
are also assumed to be at least continously differentiable.

We consider the following family of optimal control prob-
lems P(t, x) parametrized by initial t and initial state
x(t) = x with control horizon T , and whose value func-
tional V (t, x) is given by:

V (t, x) = min
u(.)

∫ T

t

{l(x(τ)) +
1

2
uT (τ)R(x(τ))u(τ)}dτ (5)

subject to ẋ(τ) = F (x(τ)) +G(x(τ))u(τ), τ ∈ [t, T ], with
x(t) = x, and where

l(x) ≥ 0,∀x 6= 0, l(0) = 0, (6)

R(x) = RT (x) > 0,∀x, (7)

where R(x) is a p × p matrix. By using Bellmann prin-
ciple of optimality (dynamic programming) and under
the assumption that V (t, x) is continuously differentiable,
solution to problem P(t, x) is given by the following HJB
equation

∂V

∂t
(t, x) + min

u(.)
H(x,

∂V

∂x
) = 0, (8)

V (T, x) = 0 (9)

where H(x,
∂V

∂x
) =

∂V

∂x
(F (x)+G(x)u)+ l(x)+

1

2
uTR(x)u

is the so-called Hamiltonian associated to the problem.

By using first order necessary condition for optimality, an
optimal solution u∗(.) is such that

u∗(τ) = −R−1(x(τ))GT (x(τ))
∂V

∂x

T

(τ, x(τ)),

τ ∈ [t, T ]. (10)

Since
∂V

∂t
(t, x) + min

u(.)
H(x,

∂V

∂x
) = 0 should hold for all

x ∈ Rn, the following necessary condition must be satisfied

∂

∂x
(
∂V

∂t
)(t, x) + min

u(.)

∂

∂x
(H(x,

∂V

∂x
)) = 0 (11)

By setting p(t, x) =
∂V

∂x

T

(t, x), (11) may be rewritten as

the following quasi-linear hyperbolic equation

∂p

∂t
+
∂p

∂x
(F (x) +G(x)u∗) +∇xl(x)

+
∂

∂x
[F (x) +G(x)u∗]T p = 0, (12)

p(T, x) = 0. (13)

p(t, x) is nothing but the adjoint state associated to the
problem. Solution to this hyperbolic PDE may be obtained
by the method of characteristics. Not surprisingly, the
characteristic lines are solutions of the canonical equations
associated to P(t, x)

ẋ = F (x) +G(x)u∗, x(t) = x (14)

ṗ = −∇xl(x)− ∂

∂x
[F (x) +G(x)u∗]T p, p(T ) = 0, (15)

where u(.)∗ is given by (10). The characteristic equations
are the canonical equations associated to problem P(t, x)
which constitues a two-point boundary value problem
(denoted TPBV P (t, x) in what follows).

When T → +∞, we get the so-called optimal regulator
problem (Moylan (1973)), whose solution V (x) is given by
the following algebraic HJB equation

min
u(.)

H(x,
∂V

∂x
) = 0, V (0) = 0, (16)

with

V (x) = min
u(.)

∫ ∞
0

{l(x(τ)) +
1

2
uT (τ)R(x(τ))u(τ)}dτ(17)

subject to ẋ(τ) = F (x(τ)) +G(x(τ))u(τ), with x(0) = x.

Similarly (12) becomes

∂p

∂x
(F (x) +G(x)u∗) +∇xl(x)

+
∂

∂x
[F (x) +G(x)u∗]T p = 0, (18)

p(0) = 0, (19)

where u∗ = −R−1(x)GT (x)∂V∂x
T

(x).

Under system controllability and zero-state observablity
of (l(x, 0), F (x, 0)) assumptions, solution V (x) > 0 is a

closed-loop Lyapunov functional since V̇ = −l(x, u∗(x))
and u∗ given by (10) is a nonlinear state feedback, thanks
to Lasalle’s invariance principle.
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3.2 Some Background on Nonlinear Robust Control

Extension to robust control with disturbance attenuation
(see Didinsky (1993) for instance) (here denoted Pr(t, x))
is a direct generalization of the previous approach to a
two-player zero-sum differential game defined as follows

V (t, x) = min
u(.)

max
w(.)

∫ T

t

{l(x(τ)) +
1

2
uT (τ)R(x(τ))u(τ)

−1

2
γ2‖w(τ)‖2}dτ

(20)

subject to

ẋ(τ) = F (x(τ)) +G1(x(τ)(τ))u(τ) +G2(x(τ))w(τ),

such that F (0) = 0, with x(t) = x, and where w is the
disturbance input.

Under regularity assumptions, the solution is obtained
from the so-called HJI equation

∂V

∂t
(t, x) + min

u(.)
max
w(.)

H(x,
∂V

∂x
) = 0, (21)

V (T, x) = 0 (22)

where H(x,
∂V

∂x
) =

∂V

∂x
(F (x) + G1(x)u + G2(x)w) +

l(x)+
1

2
uTR(x)u− 1

2
γ2‖w‖2, with u∗ and w∗, solutions to

necessary conditions

u∗ = −R−1GT1 (x)
∂V

∂x

T

, (23)

w∗ =
1

γ2
GT2 (x)

∂V

∂x

T

. (24)

When γ → +∞, problem P(t, x) is easily recovered.
In this sense, HJI equations generalize HJB equations.
Consequently, the previous derivations apply; in particular
some hyperbolic PDEs are obtained, which are very similar
to (12)-(18). When T → +∞, u∗ is also an optimal
nonlinear stabilizing feedback law, and w∗ is the worst-
case disturbance acting on the system. The minimum value
of γ, γ∗, allowing existence of a solution V (x) to the
HJI equation defines the so-called robust optimal control
problem. γ is closely related to the H∞ norm of linear
transfert functions (see Isidori (1992)).

3.3 Computation of the Snapshot Set

In this section, the way to get snapshots of P(t, x) for
computing a POD basis is discussed. A similar approach
is possible for robust problems Pr(t, x), which will not be
detailed in this paper.

Since we are interested in finding a solution in a domain
Ω ⊂ Rn including the origin, we define a multi-dimensional

regular grid on

n∏
i=1

[ai, bi]. We also define an approximate

inner product

〈f, g〉=
∫

Ω

fgdx (25)

≈
M1∑
i1=1

M2∑
i2=1

...

Mn∑
in=1

f(xi1 , xi2 , ..., xin)× (26)

g(xi1 , xi2 , ..., xin)dx1dx2...dxn (27)

= 〈f, g〉a (28)

where the Mi’s and the dxi’s are the number of space sam-
ples and the space discretization increment in dimension i,
respectively. For simplification purpose, we denote xg, the
set of all the space samples (xi1 , xi2 , ..., xin) on the spatial
grid.

We also define a grid [t1, t2, .., tN ] of the time interval [0, T ],
where the way to choose horizon T will be discussed later.

The snapshot set {Ei}i=1,...,N will be defined as the
collection of the numerical optimal cost functionals

Ei(xg) = V (ti, xg)

solutions to TPBV P (ti, xg), i = 1, ..., N .

For each space sample xjg, j = 1, ...,M1 ×M2, .... ×Mn,

solution to TPBV P (ti, x
j
g) may be obtained by computing

the initial adjoint state p(t, xjg) such that final adjoint state
satisfies transversality condition

p(T, x(T ; t, xjg, u
∗[t, T ])) = 0,

where p(T, x(T ; t, xjg, u
∗[t, T ])) denotes the adjoint state

corresponding to final state x(T ; t, xjg, u
∗[t, T ]) resulting

from initial state xjg and optimal control u(.)∗ defined on

interval [t, T ]. x(T ; t, xjg, u
∗[t, T ]) is obtained by standard

numerical integration of caracteristic equations (15) or
similar in the robust control case.

In this paper, a Gauss-Newton approach has been used,
which appears to be very effective to solve this problem,
by solving the following optimization problem

min
p(t,xg)

1

2
‖p(T, x(T ; t, xjg, u

∗[t, T ]))‖2. (29)

Finally Ei(x
j
g) = V (ti, x

j
g) will be obtained by integrating

the Hamiltonian H

V (ti, x
j
g) = −

∫ ti

T

H(xjg, p(τ, x
j
g))dτ. (30)

It is well known that the computation of optimal two-point
boundary value problems is difficult when control horizon
T is large due to the fact that the characteristic equations
always form an unstable differential system.

In this paper, we consider T sufficiently small to avoid
such numerical problems, but large enough, to-
gether with a large enough number of snapshots,
to provide a sufficient ”excitation” of the funda-
mental modes of the characteristic equations.

Under this fundamental assumption, the computa-
tion of any optimal or robust control problem with
T large and even T → +∞ has been experimentally
shown to be possible.
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3.4 POD Basis Derivation

Once the previously-described snapshot set is obtained,
we are in position to derive a POD basis, by computing
the eigenvalues and eignenfunctions of Kernel matrix R,
whose coefficients are given by

Rij = 〈Ei(xg), Ej(xg)〉a, i, j = 1, ..., N (31)

=

M1∑
i1=1

M2∑
i2=1

...

Mn∑
in=1

Ei(xi1 , xi2 , ..., xin)× (32)

Ej(xi1 , xi2 , ..., xin)dx1dx2...dxn (33)

The orthonormal basis functions φk(x), k = 1, ..., N may
be expressed by

φk(x) =
1√
λk

N∑
i=1

akiEi(xg), (34)

while the aki ’s are the components of the eigenfunction Vk
associated to the eigenvalue λk.

By considering only the K most significant eigenval-
ues of the problem (for instance eigenvalues such that
K∑
i=1

λi/

N∑
j=1

λj > p), we get a representation of p% of the

energy contained in the experimental set.

3.5 Finite-Dimensional Modeling of HJ(B/I) Equations

The Galerkin method is a powerful tool for finite-
dimensional modeling and simulation of infinite-dimensio-
nal systems (see Fletcher (1984) for instance). In the
present case, it consists in seeking an approximate solution
Va(t, xg) to HJB equation (8)-(9) in the POD basis

Va(t, xg) =

K∑
k=1

αk(t)φk(xg). (35)

Introducing this approximation in PDE (8), and using (10)
to compute u∗a, leads to a residual

R(x, α) =
∂Va
∂x

(F (x) +G(x)u∗a) + l(x)

+
1

2
u∗a
TR(x)u∗a. (36)

By using the equivalent of a weak formulation, we get a
set of K equations

〈R(xg, α), φk(xg)〉a = 0, k = 1, ...,K, (37)

where α is the vector of the αk’s, which is equivalent to

α̇k(t) = −〈∂Va
∂x

(F (xg) +G(xg)u
∗
a) + l(xg)

+
1

2
u∗a
TR(xg)u

∗
a〉a,

k = 1, ...,K (38)

with αk(T ) = 0, k = 1, ...,K (corresponding to terminal
condition V (T, 0) = 0).

This differential system is integrated backwards for any
horizon T . The asymptotic solution obviously corresponds
to the approximate solution of the optimal regulator (T →
+∞).

Some remarks. The storage needed to solve this problem
is limited to N ×

∏n
i=1Mi for the snapshot set, while the

one for R is N×N . Once the computation of the snapshot
set is performed, the solution of any problem P(t, x) is
available with any control horizon T . The computation
may be performed on any arbitrary coarse multidimen-
sional grid. The only additional need will be to carry out
some multidimensional interpolation.

4. SOME ILLUSTRATIVE EXAMPLES

4.1 A scalar example

We consider the optimal and robust control of the follow-
ing scalar unstable nonlinear system (see Georges (1996))

ẋ = x3 + u (39)

The optimal infinite-horizon control problem is

min
u(.)

∫ ∞
0

(x2 + u2)dt (40)

subject to (39).

The optimal control u∗ is explicitly given by

u∗ = −x3 − x
√
x4 + 1. (41)

leading to the closed-loop globally stable system ẋ =
−x
√
x4 + 1.

We consider the computation of an approximate solution
on domain Ω = [−2, 2]. The number of time samples and
the number of spatial samples are provided in Table 1,
together with horizon T used for generating the snapshot
set. Fig 1 provides a comparison between the true optimal
control and the approximate one. As shown by the figure,
the fit is excellent (relative error ‖u∗−ua‖/‖u∗‖ = 2.8e−3).
Fig. 2 presents the snapshot set. Fig 3 shows the five
most significant POD basis functions obtained in this case
(over 30 possible basis functions), which have been used
to generate the approximate Va(t, xg). Fig. 4 demonstrates
the effectiveness of the approach when a coarser grid in
both time and space is used (N = 5 and M = 11, relative
error ‖u∗ − ua‖/‖u∗‖ = 1.5e−3).

The optimal robust control problem with disturbance
attenuation is defined by

min
u(.)

∫ ∞
0

(x2 + u2 − γ2w2)dt (42)

subject to ẋ = x3 + u+ w, with γ = 1+ corresponding to
the optimal attenuation factor. The explicit solution u∗ is
given by

u∗ = −(x3 + x

√
x4 + 1− 1

γ2
)/(1− 1

γ2
). (43)

Notice that when γ → +∞, optimal control solution (41)
is recovered.
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The same approach has been used to compute an approx-
imate solution u∗a with the parameters given by Table 2.
Fig. 5 shows a comparison between the true and approxi-
mate controls demonstrating a good performance (relative
error ‖u∗−ua‖/‖u∗‖ = 2.7e−3) for a more difficult problem
(see the value of the optimal control for γ∗ = 1.01, which
is closed to the problem singularity).

Table 1. Computation parameters - Optimal
control

N M T

30 31 0.1

uainf
ut rueinf
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-15
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0
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10

15

20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Opt im al Cont rol - N= 30 - M= 31

x

Fig. 1. Comparison between the exact and approximate
infinite-horizon optimal controls.
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Fig. 2. Snapshot set.

Table 2. Computation parameters - Optimal
robust control

N M T γ

30 31 0.1 1.01

4.2 Nonlinear optimal regulator for a boost converter

DC-to-DC boost converters are well-known power elec-
tronics devices used to elevate input voltage in many
embedded applications (Erickson (2000)). This system
exhibits non minimum phase behavior, which renders it
difficult to control.

The average model of the boost converter is given by

phi1

phi2
phi3
phi4

phi5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

POD basis funct ions

x

Fig. 3. The five most significant POD basis functions
obtained with p = 0.999.
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-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Opt im al Cont rol - N= 5 - M= 11

x

Fig. 4. Comparison between the exact and approximate
infinite-horizon optimal controls on a coarse grid.

Fig. 5. Comparison between the exact and approximate
infinite-horizon optimal robust controls.

İ = −uV/L+ E/L

V̇ = uI/C − V/(RC) (44)

where E is the input voltage, I is the inductance current,
V is the output voltage, and u the inverse of duty cycle of
the converter acting as control input.
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Here we consider the optimal regulation around the equi-
librium defined by (Ie, Ve, ue) of the boost converter de-
scribed by Table 3.

The optimal control problem is defined by

min
u

∫ ∞
0

(Ṽ 2 + ũ2)dt (45)

subject to the average model error dynamics

˙̃I = −ueṼ /L− V ũ/L
˙̃V = ueĨ/C − Ṽ /(RC) + Iũ/C (46)

where Ĩ = I − Ie, Ṽ = V − Ve, and ũ = u− ue.
Table 3. Boost converter parameters

L C R E Ie Ve ue
2mH 50µF R = 100Ω 1V 10V 1A 0.1

Fig. 6 gives the approximate infinite-horizon optimal
control law obtained on domain D = [−0.5,+0.5] ×
[−0.5,+0.5]. Only 4 POD basis functions have been used
with 10 time samples (N = 10) and 15 spatial samples in
each dimension (M1 = M2 = 15). A change of time scale
t′ = 1000t has been performed to avoid bad conditioning.
Fig. 7 shows the snapshot corresponding to t′ = T = 5
and the approximate infinite-horizon Bellman function.

Fig. 6. Approximate infinite-horizon optimal control law
of the boost converter.

5. CONCLUSIONS AND PERSPECTIVES

Some preliminary results on the computation of optimal
or robust nonlinear control problems via POD have been
provided in this paper by using a Galerkin method based
on a POD basis. The method only requires the com-
putation of a limited number of well-conditioned two-
point boundary value problems and a simple backward
integration of a reduced model of the Hamilton-Jacobi-
Bellman or Hamilton-Jacobi-Isaacs equation associated to
the control problem. Another advantage of the method is
its ability to handle coarse grids. A similar approach can
be derived for discrete-time nonlinear optimal or robust
control problems. Further works should be undertaken
to demonstrate the effectiveness of the here-proposed ap-
proach for nonlinear systems with higher dimensions.

Fig. 7. V (t′ = 2, x) (uncolored surface) and Va(∞, x)
(colored surface) on D.
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