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This contribution presents a systematic methodology for rapid acquirement of discrete-
time state space model representations of batch processes based on their historical op-
eration data. These state space models are parsimoniously parameterized as a set of
local, interdependent models. The present contribution furthermore presents how the
asymptotic convergence of Iterative Learning Control is combined with the closed-loop
performance of Model Predictive Control to form a robust and asymptotically stable op-
timal controller for ensuring reliable and reproducible operation of batch processes. This
controller may also be used for Optimizing control. The modeling and control performance
is demonstrated on a fed-batch protein cultivation example. The presented methodologies
lend themselves directly for application as Process Analytical Technologies (PAT).

1. Introduction

The batch processing types covered in this paper includes Batch, Fed-batch and peri-
odic operation which all have the common traits of a repeated operation which start from
nearly the same initial conditions. Thus the time within the bacth and the batch number
are the two characteristic independent variables. Batch processing is subject to varia-
tions in raw material properties, in start-up initialization and other disturbances during
execution. These different disturbances introduce variations in the final product quality.
Compensating for these disturbances have been difficult in the past due to the nonlinear
and time-varying behavior of batch processing and to the fact that reliable on- or in-line
sensors for monitoring final product quality rarely are available. Consequently develop-
ment of a systematic methodology which can ensure reliable reproducible operation may
provide significant bennefits for batch processing.

Each batch operation may be defined as a series of operational tasks, i.e. mixing,
reaction and separation. Within each task a set of subtasks, e.g. heating/cooling, (dis-
)charging is handled. There may be more than one feasible set of operational tasks that
can produce the specified product(-s). Consequently an optimal sequence of tasks and
subtasks with respect to. a defined objective needs to be identified. This set of operational
tasks is labeled the optimal batch operations model. Thus the Batch Operations Model
combines the batch processing tasks normally specified in a generic recipe with the batch
equipment under availability and other resource constraints.
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Several research groups have used general empirical model knowledge to develop meth-
ods for control of batch processes including an experimental adaptation (optimization) of
the Batch Operations Model, labelled ”the solution model” through tracking the Neces-
sary Conditions of Optimality (NCO) Srinivasan and Bonvin (2004). Another approach
Åkesson et al. (2001) exploits the knowledge that optimal batch operation consists of a
sequence of operations to determine the presently (most) constrained variable. A data
driven approach develops prediction of end of run properties (Flores-Cerrillo and Mac-
Gregor, 2003), while asimmilar inspiration lead to reconstruction of approximate time
series models from available process data (Gregersen and Jørgensen, 2001; Bonné and
Jørgensen, 2003).

This paper presents methodologies based upon a model for batch or periodic opera-
tion which can ensure reliable reproducible operation and which may enable optimizing
operation. The contribution comprises data driven time series modeling of batch pro-
cesses and a learning model predictive control methodology. The modelling methodology
produces both a Linear Time-Invariant state space model representation for inter-batch
prediction and a Linear Time-Varying state space model representation for intra-batch
prediction. The modelling approximates the non-stationary and nonlinear behavior of
batch processes with a set of local but interdependent linear regression models param-
eterized as AutoRegressive Moving Average models with eXogenous inputs (ARMAX).
Tikhonov Regularization is applied to estimate the parameters of this model set. Learn-
ing Model Predictive Control is presented for control of repeated operation of stochastic
Linear Time-Varying systems with finite time horizons together with tuning requirements
for ensuring guaranteed convergence and hence closed-loop stability. The methodologies
have been implemented as a Matlab toolbox Grid of Linear Models (GoLM).

2. Methods

Batch processes are modeled with the toolbox GoLM as a sets of N LTI models. Such
a set of LTI models could also be referred to as one LTV batch model. These LTI models
can be parameterized in a number of ways, but in the present contribution an ARMAX
parameterization was chosen. This choice of parameterization offers a simple multivariable
system description with a moderate number of model parameters. The objective of the
model set is to quantify the causal correlations between the process outputs yk,i ∈ R

ny ,
inputs uk,i−1 ∈ R

nu , and distrubances vi ∈ R
ny , for i = 1, . . . , t, at times t = 1, . . . , N

in batch k. To simplify notation, define the input uk, output yk, shifted output y0
k, and

disturbance vk profiles in batch k as

uk =
[

u′
k,0 u′

k,1 . . . u′
k,N−1

]′
yk =

[
y′

k,1 y′
k,2 . . . y′

k,N

]′
y0

k =
[

y′
k,0 y′

k,1 . . . y′
k,N−1

]′
vk =

[
v′

k,1 v′
k,2 . . . v′

k,N

]′
(1)

The GoLM toolbox models the differences between two successive batches with the AR-
MAX model

∆yk = yk − yk−1 = −A∆y0
k + B∆uk − Cvk (2)
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where ∆uk = uk − uk−1 and ∆y0
k = y0

k − y0
k−1. The batch ARMAX model (2) may be

converted into different representations dependent on the particular application task. If
the task at hand is to predict (or simulate) the behavior of a batch before it is started,
the following form is convenient

∆yk = H∆yk,0 − G∆uk + Fvk (3)

where ∆yk,0 = yk,0 − yk−1,0. The change in the initial conditions ∆yk,0 can be considered
as either an input/control variable or a disturbance. Form (3) above is also convenient
for the task of classification (e.g. normal or not) of a batch after it has been completed.
Furthermore, the form (3) can be used to determine open-loop optimal recipes in the sense
of optimizing an objective for the batch. If the objective is to minimize the deviations
ek =

[
e′k,1, e

′
k,2, . . . , e

′
k,N

]′
, ek,t ∈ R

ny , from a desired Batch Operations Model ȳ, then (3)
can be modified into

ek = ȳ − yk = ek−1 − H∆yk,0 + G∆uk − Fvk (4)

The two forms (3) and (4) of the batch ARMAX model above are applicable to off-line or
inter-batch type applications. For on-line estimation, monitoring, feedback control, and
optimization however, it is convenient to use a state space realization of the batch ARMAX
model. In an observer canonical form, which is structurally a minimal realization, the
state space realization is given as

xk,t = Atxk,t−1 + Bt∆uk,t−1 + Etvk,t

∆yk,t = yk,t − yk−1,t = Cxk,t

(5)

with ∆uk,t−1 = uk,t−1 − uk−1,t−1 and the initial condition xk,0 = C′∆yk,0. Just as (3), the
state space model form (5) is convenient for prediction, monitoring, and optimization type
applications, and it facilitates on-line implementation of such applications. Furthermore,
the state space model form (5) is particularly well suited for closed-loop or feedback
control applications. For tracking control applications the state space model form (5) can
be modified to

xk,t = Atxk,t−1 + Bt∆uk,t−1 + Etvk,t

ek,t = ȳt − yk,t = ek−1,t − Cxk,t

(6)

In order to use (6) for tracking control, it is necessary to estimate the states based on
noisy observations of the outputs. Assume that during a batch (k), observations zk,t of
the outputs yk,t are collected at times t = 0, 1, . . . , N and let the optimal estimate of the
state xk,t1 in batch k at time t1 given data up to and including time t2 be given as the
conditional mean (e.g. obtainable with a Kalman filter) x̂k,t1|t2 = E{xk,t1 | Ik,t2} where
the information Ik,t:

Ik,t = {zk,t, ∆uk,t, Ik,t−1}, Ik,−1 = Ik−1,N , I0,−1 = {y−1,u−1,z−1} (7)

Then the tracking error ek,t1 in batch k at time t1 given data up to and including time t2
is estimated as êk,t1|t2 = êk−1,t1|N − Cx̂k,t1|t2 where the smoothened estimate of the error
profile in batch k − 1 is given as

êk−1|k−1 =
[

ê′k−1,1|N ê′k−1,2|N . . . ê′k−1,N |N
]′

= ȳ − ŷk−1|k−1 (8)
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and ŷk−1|k−1 is the smoothened output profile estimate from batch k − 1 (e.g. obtain-
able with a Kernel Smoother). To utilize available information during a batch to obtain
the best possible tracking performance, the following learning Model Predictive Control
formulation

{∆uk,l,t}N−1
l=t = arg min

{∆uk,i}N−1
i=t

[
N∑

i=t+1

ê′k,i|tQiêk,i|t + ∆u′
k,i−1Ri∆uk,i−1

]

s.t. x̂k,i|t = Aix̂k,i−1|t + Bi∆uk,i−1

êk,i|t = êk−1,i|N − Cx̂k,i|t
umini−1 ≤ ∆uk,i−1 + uk−1,i−1 ≤ umaxi−1

ymini ≤ ȳi − êk,i|t ≤ ymaxi

(9)

is solved at times t = 0, 1, . . . , N − 1 in batch k and the control sequence

∆u�
k =

[
∆u′

k,0,0 ∆u′
k,1,1 . . . ∆u′

k,N−1,N−1

]′
(10)

then approximates a closed-loop optimal control sequence. I.e., at time t in batch k,
(9) is solved based on updated state estimates, and the input uk,t = ∆uk,t + uk−1,t is
implemented the process.

3. Case Study: Protein production

The case study considers modeling, control and optimization of the production of a
secreted protein in a fed-batch reactor (Banga et al., 1998) as a simple illustrative example
of a nonlinear batch process. The cultivation is subject to changing initial conditions,
hence the specification and yield of the final product varies significantly, which clearly is
undesirable a.o. for downstream processing.

Process Identification: To serve as an efficient alternative to the costly development
of phenomena-based models of batch processes, this modeling methodology is data-based
and a model can thus be relatively readily obtained from (designed) process operation
data with the use of the modeling software GoLM. Once the modeling purpose has been
defined, the process of identifying a batch process model is fully autonomous. Figures 1
and 2 illustrate the variablity resulting from random variations in initial conditions versus
those obtained from PRBS variations in feeding profiles. Both data sets illustrate a large
but realistic variability. The nominal model set used for control design is developed from
the identification data.

Control for Reproducibility: Reproducible operation aims at realizing the same
product quality, batch time and/or production yield from batch to batch. Reproducible
operation is attractive because it simplifies forecasting final batch time, scheduling of
batch units, forecasting load on up- and down-stream processes and/or down-stream pro-
cessing. The reproducibility of a batch process can be expressed in terms of the deviations
between the desired (optimal) operation trajectories and the trajectories realized during
operation of the batch process. Optimal reproducibility can thus be formulated as a
problem of tracking the optimal batch operations model. The learning MPC algorithm
significantly improves the reproducibility the batch process illustrated in figure 3, since it
utilizes process information as it becomes available during the batch runs.
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Figure 1. This figure shows the evolution
of 25 batch runs on a cultivation reactor
producing secreted protein. The cultiva-
tion reactor is operated in open-loop and
according to the nominal batch operations
model. Due to stochastic initial conditions,
an undesired variability in the final secreted
protein concentration is experienced.

Figure 2. This figure shows the outcome
of 50 designed experiments run on a cul-
tivation reactor. The process excitation is
generated by a Pseudo Random Binary Se-
quence (PRBS) dither signal. The cost in
terms of lost productivity associated with
these experiments is a modest 3% drop in
the mean final secreted protein mass.

Optimizing Control: Optimizing control is realizing the best possible product quality,
batch time and/or production yield in every single batch. Optimizing control is attractive
because it autonomously optimizes the product yield and/or production rate and thus the
profitability of every single batch unit. Since optimizing control and reproducible opera-
tion are implemented with the same process control software, a tractable combination of
the two approaches is easily implemented. The obtained result in Figure 4 achieves an
increased productivity, however the variabilty is increased compared to the reproducible
operation. This increase is mainly due to only using one actuator variable, i.e. substrate
feed flow rate. An extra degree of freedom available is substrate feed concentration which
would enable reducing the variability further.

4. Conclusions

A systematic procedure for development of pieceewise linear model sets for batch oper-
ation from operating data have been presented together with a learning model predictive
control methodology which may be tuned to achieve reproducible or optimizing opera-
tion or some combined objective. The methodlogies have been implemented in a Matlab
toolbox labelled GoLM. The presented methodologies hold significant promise to enable
data driven predictive control to harvest even more significant benefits in batch processing
compared to the success already achieved on many continuously operating processes.
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Figure 3. Closed-loop performance of a
learning MPC algorithm implemented on
a nonlinear batch process with stochastic
initial conditions. The control objective is
improved reproducibility. The mean pro-
ductivity achieved is reduced by 4% com-
pared to the nominal case.

Figure 4. Closed-loop performance of a
learning MPC algorithm implemented on
a nonlinear batch process with stochastic
initial conditions. The control objective is
maximizing the final secreted protein mass.
The mean protein productivity is increased
by 12% over the nominal case.
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