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Abstract: The work presented in this paper addresses fault detection and isolation 
properties of isolation enhanced PCA methods. Detection and isolation results for several 
different fault types is illustrated via simulation studies using a rigorous first principles 
based paper machine simulator. Three sensor faults and an actuator fault were studied. 
The first sensor fault was a pressure measurement in the steam section, whereas the two 
remaining sensor faults were product quality measurements of moisture and basis weight. 
The actuator fault was related to the basis weight valve. All faults are illustrated to be 
properly detected and isolated with one of the studied methods. 
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1. INTRODUCTION  

 
Handling of abnormal situations, such as equipment 
failures and process disturbances, has received 
increasing attention from industry and academia 
alike. The potential benefits, even from modest 
improvements in abnormal situation handling, are 
enormous. An important group of equipment failures 
in process industries are obviously faults in actuators 
and sensors. The paper industry is an industry sector 
with a high level of automation. Considering that a 
modern paper mill has several thousands of I/O:s 
connected to its automation systems it’s evident that 
some systematic methods are needed to process the 
data.  
 
Principal component analysis is a method that has 
been around for quite some time for monitoring and 
fault detection of processes with large amounts of 
data. This method has however some inherent 
problems related to its fault isolation capabilities, as 
the basic T2 and SPE indices do not offer any 
probable location of the detected faults. So-called 
contribution plots can however give some assistance 
when locating the faults. These plots are however not 
always providing reliable and unambiguous results 
Improved fault isolation can be obtained with the 
fairly recently introduced Partial PCA method 

(Gertler, ), and the related Isolation enhanced PCA 
method (Gertler).  
 
The aim of this paper is to assess the fault isolation 
capabilities of the Partial PCA method and the 
isolation enhanced PCA method via a paper machine 
case study were four different faults are introduced 
into the system. The paper is organized as follows. In 
the next section the system description as well as the 
Partial PCA method and the associated residual 
limits are introduced. Furthermore the isolation 
enhanced PCA method is introduced. In section 3 the 
case study is presented. First the studied process is 
described and followed by a description of the 
studied faults. The fault diagnosis results using 
Partial PCA and isolation enhanced PCA are given in 
section 4. These results are also compared those of 
standard PCA with contribution plots. Finally the 
conclusions are drawn and summarized in section 5. 
 
2. ISOLATION ENHANCED AND PARTIAL PCA 
 
Partial PCA was first introduced by Gertler and 
McAvoy in 1997 and was further described and 
extended to to nonlinear cases in (Huang and Gertler, 
2000). The related isolation enhanced PCA which 
relies on algebraic transformations of the residuals 
represented by the last principal components was 
described in (Gertler et al., 1999).  



     

 
2.1 Partial PCA 
 
The main idea in Partial PCA is that a set of PCA 
models are made, each of which are insensitive to 
some fault(s). The model set will hence generate a 
residual pattern γ. This pattern has to be strongly 
isolating which means that each fault has a unique 
pattern. The patterns for the different faults can be 
described using an incidence matrix.  
 
An example of a strongly isolating incidence matrix 
is given in table 1. 
 

Table 1 A strongly isolation incidence matrix 
 

 f1 f2 f3 f4 
γ1 1 1 1 0 
γ2 1 1 0 1 
γ3 1 0 1 1 
γ4 0 1 1 1 

 
Let’s assume that the system being studied is 
described by a linear static relation  
 
 ( ) ( ) ( )τττ BfAuy +=            (1) 

 
where y(t) represents the measured outputs, u(τ) the 
known inputs, while f(τ) represents the unknown 
faults affecting the system. y(τ) and u(τ) are m and k 
dimensional vectors respectively.  
  
When performing PCA modelling, the data vectors 
y(τ) and u(τ) are concatenated into a larger m+k 
dimensional vector x(τ) = [y(τ)T u(τ)T]T. In Partial 
PCA each individual PCA model will be identified 
on a subset )′ τ(x  of x where the subset is defined by 

the incidence matrix (1). In can be shown (Huang et 
al.) that no more than m−1 elements can be removed 
from the vector x for the Partial PCA models to have 
fault isolability. In practise m has be determined 
numerically by first identifying a full PCA model 
based on the entire data set. Based on the observed 
eigenvalues of   
 
Each Partial PCA model with n principal 
components will generate a residual ε (also known as 
SPE) according to:  
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where Q is the loading matrix including the n first 
eigenvectors of the covariance matrix of )′ τ(x  and 

t(τ) is the principal component scores of )′ τ(x , 

representing a compressed version of the data. 
 
For each sub-model a limit for ε can be calculated by 
using the eigenvalues removed from that model (λj in 
equation 4b.) 
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where cα is the upper limit from a normal distribution 
with confidence level α. 
 
If the system is exactly described by equation 2 then 
the theoretical number of zero eigenvalues of the full 
covariance matrix should be equal to the number of 
equations in equation 2. In such a case the ε-limit 
will not be defined. However, since for any real 
system there will be noise and nonlinearities present, 
the eigenvalues will not be exactly equal to zero and 
thus the limit on the ε residual will defined.  Also 
because one or several variables are removed from 
the vector x, the number of zero magnitude 
eigenvalues will decrease with the number of 
removed variables.   
 
In the standard Partial PCA the ε-residuals are 
calculated for each of the sub-models and evaluated 
against their individual limits. If the ε-residual 
exceeds the limit the corresponding binary residual γ 
is declared as 1, whereas it’s value otherwise is zero. 
The final isolation step is performed by comparing 
the obtained residual pattern to the incidence matrix 
of the monitored system.  
 
2.2 Isolation enhanced PCA 
 
In isolation enhanced PCA a full PCA model is first 

identified and then a loading matrix Q
~

for the last m 
eigenvectors is constructed. Subsequently an 

algebraic transformation is performed on Q
~

to 
improve the fault isolation properties of the model.  
 
It can be shown () that the residual r (τ) can be 

expressed based on Q
~
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The residual can also be expressed in the lower 
dimensional residual space 
 
    ( ) ( ) ( )τττ xQxQe ∆== ~~           (5) 

 
In the second equality the fact that the observed x can 
be decomposed as x0+∆x (i.e. the true value plus a 
fault term) and that it is only the fault term ∆x that 
will affect the residual has been noted.  
 
The crucial point in isolation enhanced PCA is to 
perform an algebraic transformation of e to obtain a 
new residual p with improved isolation properties: 
 
        ( ) ( )ττ Vep =            (6) 

 



     

If a residual pi is to be insensitive to a fault ∆xj then 
the following condition has to be fulfilled.  
 
           0=jiqv            (7) 

 
where vi represents row i of the transformation 
matrix V and qj represents column j of TQ

~ . 
 
Equation 7 can be solved for vi by finding an 
orthonormal basis for the null space of qj. In the 
Matlab environment this can be performed with the 
null command. 
 
Since the isolation enhanced residuals don’t have 
associated limit values it was decided to use the 
double sided version of the CUSUM method by Page 
and Hinckley (Hinkley, 1971) which can detect 
positive and negative jumps in the mean of a noisy 
residual p. For a positive mean jump, the following 
applies. 
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where β is a user specified minimum detectable 
jump. When  
 

λ>Σ−Σ min)(k ,          (10) 

 
a jump has been detected). The parameter λ provides 
some robustness to the fault detection but it will also 
delay the detection. A more general procedure can be 
developed based on the simple positive jump case for 
detecting two-directional jumps and residual 
recovery back to the normal situation. 
 
β and λ are design parameters, usually tuned 
according to the requirement for false alarm and 
missed alarm rates. Theoretically the CUSUM 
method can detect very small jumps in the mean, but 
in practice, β is decided by the minimum detectable 
fault and λ is usually set to 10−20 times of β. 
 
In this work both partial PCA and isolation enhanced 
PCA are applied and evaluated on a dynamic first 
principles paper machine simulator.  
 
 
 

3. CASE STUDY 
 
This paper provides a case study concerning fault 
detection and isolation on a paper machine simulator. 
For this study, the Advanced Process Simulator 
(APROS) was used to build the paper machine 
model. For a general description of the APROS 
simulator, the reader is referred to the APROS 
website (APROS, 2005). In the remainder of this 
section, the paper machine process is described 
together with a presentation of the studied faults. 
 
 
 

3.1 Process description 
 
The paper machine can be divided into 3 main parts: 
the wire section, the press section and the dryer 
section. Diluted stock with a consistency of 
approximately 1% is sprayed from the hydraulic 
headbox onto the wire at a constant speed. On the 
wire the stock is dehydrated to form a wet web. 
About 98% of the water and 54% of the filler and 
fibre go through the wire and flow to the wire pit as 
white water. In the press section additional water is 
removed by mechanically pressing the paper between 
the press cylinders leaving the exiting paper with a 
dry content of approximately 50%. In the dryer 
section steam heated cylinders evaporate most of the 
water remaining in the paper after the press section. 
The dryer section is divided into several dryer groups 
each made up of several drying cylinders. The fresh 
high pressure steam is first fed to the last drying 
group after which it is reused in previous groups at 
lower pressures. On the reel the paper typically has a 
moisture content of approximately 8%.  
 
In the approach system before the paper machine 
mechanical pulp, chemical pulp and broke, are 
pumped into a blending chest and mixed according to 
a given recipe. The stock is next pumped from the 
blending chest to the machine chest. The consistency 
if the stock between the blending chest and the 
machine chest is controlled to a set-point of 
approximately 3%. Closely interconnected to the 
paper machine is the short circulation which starts 
after the machine chest. Usually the machine chest is 
followed by a thick stock pump and a basic weight 
valve, which is used for basic weight control. The 
thick stock is pumped to the wire pit and mixed with 
white water and filler controlled by the filler valve. 
The diluted stock is pumped by a fan pump via the 
hydro-cyclones to the deculator. Many important 
tasks are performed in the short circulation process. 
The dilution of the fiber-suspension entering the 
process to a suitable consistency for the headbox 
takes place in the short circulation, in a mixing 
process were low-consistency water from the wire-pit 
is mixed with high-consistency stock. The second 
important task of the short circulation is the removal 
of impurities and air. This task is performed in the 
hydro-cyclones, machine screens and the so-called 
deculator. As the intermediate process between stock 
preparation and former, the short circulation process 
is very important for paper quality control, since the 
basic weight, ash consistency and stock jet ratio 
control are performed in the short circulation part. 
No faults related to the press section have been 
studied in this work.  

 
The APROS simulator provides first principle 
models for the necessary components, with which the 
model for the paper machine was construed and 
parameterized. Figure 1 shows the model used for 
this case study. A static test for linearity has been 
performed on the process simulator to motivate the 
use of linear methods (Cheng et al, 2006). The result 
of the test was that the process behaves nearly 
linearly in the studied range.  
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Figure 1 Part of the APROS model of the papermachine 

 
3.2 Studied faults 
 
The sensor and actuator faults studied in this work 
were: 
 

1) basis weight actuator fault  
2) basis weight sensor fault  
3) steam pressure sensor fault.  
4) moisture sensor fault 

 
The basis weight measurement fault is incipient 
while the other faults are abrupt. 
 
The actuator fault is caused by a decrease in the 
pressure difference over the pneumatic actuator of 
the basis weight valve and causes the controller 
signal to increase to compensate for the fault. The 
steam pressure which is controlled by a steam valve 
is in the inner loop of a cascade controller for the 
moisture. The steam pressure may thus be considered 
as a system input. The steam pressure also affects the 
basis weight just like the basis weight valve will 
influence the moisture 

 
4. RESULTS 

 
The necessary data for the PCA modelling phase was 
generated using the APROS simulator. All control 
loops were closed during both training and testing 
phases, but during the generation of the training data 
the process was perturbed by changing the basis 
weight and moisture set-points in the ranges 50 to 58 
g/m2 and 7 to 10 wt-% H2O respectively.  
 
The training and test data sets are illustrated in 
Figures 2 and 3 respectively.  
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Fig. 2 PCA training data 
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Fig 3 Test data set 
 
4.1 Results using Partial PCA 
 
The individual Partial PCA models were 
implemented using the incidence matrix defined in 
equation 1. The number of principal components and 
the amount of variance captured are given in table 1.  
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Figure 4 The results using the Partial PCA model 

 
Table 1. The partial PCA models 

model inputs no of PCs variance 
captured (%) 

1 BWC, BWS, PS 2 99 
2 BWC, BWS, MS 2 99 
3 BWC, PS, MS 2 100 
4 BWS, PS, MS 2 100 

 
Each fault is supposed to give rise to a unique fault 
pattern. From figure 4 it can be observed that faults 
one, two and four will be correctly isolated with 
partial PCA The third fault (the steam pressure 
sensor fault), however, cannot be fully isolated. 
Residuals ε3 and ε4 both exceed their respective 95% 
confidence threshold limits. Residual ε1 however 
doesn’t even exceed the 80% confidence limit. A 
closer inspection reveals that the residual in fact has 
increased but that the increase is so miniscule 
compared to the noise level that any automatic 
detection of the increase will fail because it will 
cause too many false alarms during fault free 
situations. 
 
4.2 Results with isolation enhanced PCA 
 
For the isolation enhanced PCA a full PCA model 
was identified and the Q

~ matrix was constructed.  
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Applying equation 7 the following transformation 
matrix V was obtained 
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V was designed so that p1 is insensitive to fault 4, p2 
is insensitive to fault 3, p3 is insensitive to fault 2 and 
p4 is insensitive to fault 1. In this way the incidence 
matrix in equation 1 can be used for the isolation 
task. Applying the obtained results on test data 
generated the sequences of isolation enhanced 
residuals p in figure 5. In the same figure the alarms 
generated by the CUSUM method have been given. 
The results are quite encouraging as all the faults can 
be correctly isolated. In the aftermaths of fault 4 
residuals p2 and p4 give false alarms for a rather short 
time. But since only 2 residuals are considered high 
no fault isolation can be performed and the false 
alarm remains unclassified. 
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Figure 5 Results with isolation enhanced PCA and CUSUM residual evaluation 
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Fig. 6 Residuals from standard PCA 

 
It is also interesting to compare these residuals to the 
residuals r  obtained without enhancement using 
standard PCA. The above figure clearly illustrates 
the improvement obtained by using the transformed 
residuals for fault isolation. Residual 3 for instance is 
no longer decoupled from fault 2. It is also 
interesting to note that an analysis based on a ε (SPE) 
contribution plot would draw the wrong conclusion 
that the last fault to occur was fault 4 when it in fact 
was fault 3. The problems related to fault 
identification using standard and partial PCA are 
most likely due the fact that the studied process is 
running under closed loop conditions. The problems 
are somewhat alleviated when using the isolation 
enhanced PCA approach. PCA based isolation under 
closed loop is a topic studied in a paper by Getler 
and Cao (Gertler and Cao, 2004). 
 
 

 
6. CONCLUSIONS 

 
In this paper two variations of the PCA approach for 
improved fault isolation have been evaluated on a 
realistic paper-machine simulator. The results 
indicate that the isolation enhanced PCA method is 
preferable in favour of the simpler partial PCA 
method. It is also shown that isolation based on 
standard PCA with contribution plots will be causes 
severe misclassifications of the fault state. An 
advantage of the PCA based approaches is that no 
faulty training data is required in the model building 
step. A more thorough analysis of the differences 
between isolation enhanced and partial PCA in the 
closed loop case is left as a topic for future research. 
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