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Abstract: The fault detection and isolation (FDI) in industrial processes has been under 

an active study during the last decade, but fault tolerant control applications relying to the 

traditional FDI methods have been scarce. In this paper a fault tolerant model predictive 

controller (MPC) with an embedded FDI system is developed for controlling a simulated 

heavy oil fractionator process, the Shell Control Problem (SCP). Two different kinds of 

FDI systems are used for achieving the fault tolerance in co-operation with MPC: system 

based on Principal Component Analysis (PCA) and Partial Least Squares (PLS) and a 

system based on Subspace Model Identification (SMI). The effectiveness of selected 

methods was successfully tested by introducing bias and drift faults to simulated process 

measurements. Finally the results are presented and discussed. Copyright © 2006 IFAC 
 

Keywords: FTC, FDI, PCA, PLS, SMI, MPC, fault tolerance, simulation, shell control 

problem. 

 

 

 
 

1. INTRODUCTION 
 

During the last decades, fault detection and isolation 

(FDI) as well as model predictive control (MPC) have 

been one of the most researched areas in the control 

field, especially in the process industries. In addition, 

MPC is one of the most implemented advanced 

control methods in the chemical industries as 

McAvoy et al. (2002) have stated in their milestone 

report. The reason for such popularity has mainly 

been the demand for efficient and reliable control 

systems. This demand derives from the need to 

improve quality of the end products, to increase 

profits and to ensure a reliable, safer way to run the 

industrial processes.  

 

The fault diagnosis methods are traditionally divided 

to process history based methods and methods based 

on first principle models. Most relevant data-driven 

methods currently are based on the principal 

component analysis (PCA) and the partial least 

squares (PLS). Dynamical variants of the basic 

methods have been developed (Ku et al., 1995, Chen 

et al., 1998) and also recursive versions (Qin, 1998, 

Li et al., 2000). The basic assumption with the static 

models is that the dynamic characteristics of the 

process are not changing. Real processes usually have 

strong dynamic changes, often affecting the accuracy 

of the static methods. The dynamic behaviour of the 

process can be captured from process history data by 

using subspace model identification (SMI) methods. 

During the last decade a number of different 

approaches have been proposed for the SMI; 

canonical variate analysis (Larimore, 1990), N4SID 

(van Overschee and de Moor, 1994), MOESP 

(Verhaegen, 1994) and a PCA-based approach by 

Wang and Qin (2002).  The successful FDI studies for 

dearomatization process by Komulainen et al. (2004) 

and Vermasvuori et al. (2005) have lead to a question 

if the FDI could be utilized to enable more efficient 

control of an industrial process.  

 

Various modifications have been made to the MPC 

formulation during the past decade especially in order 

to solve the problems related to nonlinear process 

models. The MPC has been related to fault tolerant 

control schemes, mainly due to the flexibility and 

some inherent resistance to the process disturbances 

and faults. For instance, Pranatyasto and Qin (2001) 

have been using MPC as part of their FTC desing. 

 

Fault Tolerant Control (FTC) attempts to enhance the 

availability of a plant by using the measurements and 

knowledge of the plant model to improve 

performance and fault-tolerance of the control 

system. So far the industrial applications on the field 



 

     

have been scarce, but currently there are several 

research projects that are aimed at creating an 

effective, reliable and fault tolerant control system to 

be used in the process industries. Traditionally the 

FTC strategies have been applied to simple control 

systems, but recently the research has been increased 

in developing FTC systems based on MPC systems. 

For instance, Pranatyasto & Qin (2001) have been 

studying a PCA-based FTC system controlling a 

simulated fluid catalytic cracking (FCC) unit. Also 

Prakash et al. (2002) developed fault tolerant control 

system (FTCS) based on generalized likelihood ratio 

(GLR) and a standard MPC controller. This FTC 

system was then applied to a simulated nonisothermal 

continuous stirred tank reactor (CSTR) system. Later 

on Patwardhan et al. (2005) improved the system 

developed by Prakash et al. (2002) and applied it to a 

laboratory-scale continuous stirred tank heater 

(CSTH) system and to a simulated heavy oil 

fractionator process, shell control problem (SCP). In 

this paper the presented FTC system is based on 

PCA/PLS and SMI in contrast to the GLR-based 

system presented in the study of Patwardhan et al. 

(2005). 

 

This paper is organized as follows: in Chapter 2 the 

target process is introduced along with the sensor 

faults. Chapter 3 describes the structure of the FTC. 

Chapter 4 describes the training of the FDI system 

and description of the MPC. Chapter 5 contains the 

results and a discussion. Chapter 6 ends the paper 

with conclusions.  

 

 

2. DESCRIPTION OF THE SHELL HEAVY OIL 

FRACTIONATOR 

 

Heavy oil fractionators are used in oil refining 

industry for initially fractionating the crude oil to 

different product draws by cooling down the mixed-

phase oil feed. In a real oil refinery there are several 

fractionators in series fractionating different products 

from different product draws. The simulated process 

contains one reactor section, three heat exchangers, 

one side stripper, one product feed and three product 

draws. The process model used in the study was 

originally presented in 1987 to serve as a standard 

performance test for new control strategies. The 

process model is known as the Shell Control Problem 

by Prett and Morari (1987). The target process is 

described in Fig.1. 

 

Hot, mixed-phase oil is fed to the unit and cooled 

down using reflux flows along the fractionator. The 

different fractions of the oil are divided to product 

flows leaving the fractionator in different parts of the 

unit. These reflux flows enable the separation 

procedure in the fractionator. The heat requirement of 

this system varies, because the streams are reboiled in 

other parts of the plant. 
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Fig. 1. The Shell Control Problem by Prett and 

Morari (1987). 

 

The bottom heat reflux loop of the fractionator has an 

enthalpy controller, regulating the heat removal in the 

loop by adjusting the creation of the steam. For the 

purposes of controlling the column, the bottom loop 

heat duty is used as a manipulated variable (MV). The 

temperatures of the other two regulating streams are 

treated as measured disturbances (MD). Finally, for 

the top and the side draws, the product specifications 

are determined by operating requirements and 

economics. In addition there is an operating constraint 

for the temperature of the bottom draw. The gaseous 

stream in the feed provides all the required heat for 

the process. The analyzer outputs y1 and y2 and the 

bottom reflux temperature y7 are considered as 

controlled variables (CV).  

 

Heavy oil fractionators are in crucial position in the 

oil refineries since the purpose of the columns is to 

produce raw material for the entire refinery. Normal 

production rates are high, which means that the other 

parts of the process are dependant of the performance 

of the fractionators. Faults in the measurement 

devices or analyzers might cause large economical 

losses. It is Therefore important that the measurement 

faults in the fractionator measurements are detected 

and countered as soon as possible. 

 

Constraints for the input and output variables and the 

variable rates are given in the model description by 

Prett and Morari (1987). Also the control objectives 

are given in the description, but the main purpose of 

this study is to observe and prevent the effect of faults 

in the process measurements. 

 

 

 

 



 

     

3. THE STRUCTURE OF THE FDI/FTC SYSTEM 

 

The FTC system developed in the study is constructed 

of two parts: the FDI-system for detecting and 

measuring the fault magnitude and the supervisory 

part for carrying out the necessary actions to prevent 

the effects of the fault. Several approaches are used 

for the FDI/FTC: a model based residual evaluation, a 

system using analytical redundancy and subspace 

model identified (SMI) model and a PCA/PLS-based 

evaluator. The PCA is using the standard formulation 

and the PLS is using the NIPALS algorithm 

developed by Wold (1975). The SMI algorithm used 

in the study is a simplified version of the method, 

developed by Hyötyniemi (2001). The evaluator is 

using two different kinds of approaches: a 

measurement signal reconstruction, where the faulty 

signal is compensated with a correction value and a 

reference trajectory matching, where the correction is 

done by changing the MPC reference trajectory. The 

alternative FTC strategies are presented in the Fig. 2, 

Fig. 3 and Fig. 4. 
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Fig. 2. The structure of the SMI-based FTC system 

using residual evaluation. 
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Fig. 3. The structure of the PCA/PLS-based FTC 

system using measurement signal reconstruction. 
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Fig. 4. The structure of the PCA/PLS-based FTC 

system using reference trajectory matching. 

 

 

4. TRAINING OF THE FAULT DETECTION AND 

ISOLATION MODELS AND MPC 

 

For the FDI training data was created using the 

original process model under closed-loop control. 

Closed-loop data was used, since the MPC would 

affect the fault detection procedure and thus the effect 

of the controller should be included in the FDI 

models. Also, according to Pranatyasto and Qin 

(2001), it is more favourable to use closed-loop 

training data for PCA training when designing FTC 

system for process with an MPC. In general, the 

training data was selected to be such that it would 

contain as much variance as possible to capture the 

behaviour of the process.  

 

All output and manipulated variables were used in the 

creation of the FDI models. The output variables 

were: analyzer outputs y1 and y2 and temperature 

measurements y3, y4, y5, y6 and y7. The manipulated 

variables were the top draw flow u1, the side draw 

flow u2 and bottom reflux flow u3.  

 

5.1 FDI training 

 

Principal Component Analysis. A PCA model was 

formed using seven process measurements. In the 

final model 96 % of the total variance was captured 

by using three PC’s. For FDI purposes, squared 

prediction error (SPE) and Hotelling T2 limits were 

calculated using 50 % confidence in both cases. The 

SPE limit was formed by using the left-out PC’s with 

the method by Jackson (1979). The Hotelling T2 limit 

was calculated using the standard T2-formulation.  

 

Partial Least Squares. For PLS, the data used for 

training was formed using less variance as with the 

PCA, since this approach gave the best result in terms 

of fault detection and isolation. The long process 

delays have effect on the PLS behaviour, especially 

when the there are rapid changes in the process. The 

PLS latent variables were calculated using the 

NIPALS algorithm by Wold (1975).  In the final 

model there were four latent variables (LV) which 

captured about 96 % of input variance and about 72 

% of the output variance. 

 

Subspace Model Identification. The training data used 

for the SMI was same set of data that was used with 

the PCA. When creating the state-space models, the 

order of the model was reduced from 35th order model 

to 10
th

 order model for optimization purposes. 

 

5.2 MPC  

 

The MPC used a 10
th

 order reduced model, which had 

almost the same input-output behaviour as the full, 

perfect 35
th

 order model of the plant. Due to this fact, 

no robustness problems were encountered with the 

MPC. The weights on the manipulated variable rates 

were set to 100 to prevent the effects of the rapid 

changes caused by the FTC system. Weights for the 

controlled variables were set to 1 and for the 

manipulated variables 0.1. 

 

 

5. TESTING, RESULTS AND DISCUSSION 

 

The evaluation of developed FTC systems was 

carried out with a simulated data set. Bias and drift 

faults were introduced to the simulated measurements 

during the simulation. Whole data set consisted of 

800 minutes of simulated process data including 

measurement errors.  



 

     

5.1 Faults 

 

Two different kinds of faults are common in oil 

refining process analyzers and sensors: abrupt bias 

faults and slowly increasing or decreasing drift faults. 

Bias faults can be caused by some contamination of 

the analyzer sample. The drift faults are usually 

caused by a slow accumulation of substance into the 

sensors or analyzers. In this study, these two fault 

types are introduced to simulated process 

measurements. In the test setting, a positive bias fault 

with a magnitude of 0.9 and a positive drift fault with 

a target value of 0.9 were introduced to the 

measurement y1 at time 100 minutes and lasted for 

200 minutes after which the fault was removed from 

the measurements. 

 

 

5.2 The performance of the FTC systems 

 

First, the FTC system based on PCA and PLS was 

tested on the simulated data set. Because the SPE is 

usually more sensitive to unexpected disturbances 

than the Hotelling T2, it was decided that the SPE 

would solely be used as a fault detection index in this 

study. Hotelling T2 index was used for reference and 

verification purposes. 

 

The PCA/PLS FTC system was immediately able to 

detect the bias fault in the process measurement y1 

and the fault was quickly compensated for. The fault 

had almost no effect at all to the performance of the 

process. The drift was detected later than the bias 

fault, but was also detected and quickly compensated 

to prevent further effect to the process. The SPE 

index and Hotelling T2 index in the case of the bias 

fault are presented in Fig. 5 and for the drift fault in 

Fig. 6. As it is seen from these figures, the calculated 

limit in the Hotelling T2 is much higher and thus 

unable to detect the fault. In both cases the faults are 

detected at ease with the SPE index. The effect of the 

fault to the process measurement y1 and the 

compensated measurement signal are presented in the 

Fig. 7 for the bias fault and in Fig. 8 for the drift fault.  
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Fig. 5. The Hotelling T2 and SPE indices and limits 

for the bias-shaped fault in the measurement y1. 
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Fig. 6. The Hotelling T2 and SPE indices and limits 

for the bias-shaped fault in the measurement y1. 
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Fig. 7. The effect of the bias fault in the process 

measurement y1. 
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Fig. 8. The effect of the drift fault in the process 

measurement y1. 

 

After detecting a fault in the system, a fault isolation 

procedure based on SPE contribution plots was 

engaged. As an example, in the case of a bias fault a 

contribution plot for time step t= 240 is presented in 

the Fig. 9. In the contribution plot, the measurement 

y1 is classified as being faulty as can be clearly seen 

from the figure. The fault identification was carried 

out by using an iterative procedure based on the SPE 

score. 
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Fig. 9. The SPE- contribution of different 

measurements to the SPE value at time step 

t=240 when a bias fault is present in the output 

y1. 

 

Root mean square of prediction error (RMSEP) index 

was calculated using PLS latent variables, but was 

used for reference purposes. The RMSEP index was 

rather sensitive to the different fault types and the 

faulty signals clearly stand out of the healthy signal 

values, as it is seen from Fig. 10 for the bias fault and 

from Fig. 11 for the drift fault. 
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Fig. 10. The RMSEP values for the measurements in 

the case of a bias fault in output y1. 
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Fig. 11. The RMSEP values for the measurements in 

the case of a drift fault in output y1. 

 

Next, the SMI method was tested by using a model 

based analytical redundancy setting with a model 

obtained with SMI. By comparing the model outputs 

with the measurement outputs a residual value was 

achieved at each time step. If the residual value was 

higher than predefined limit, a fault was detected and 

isolated to that specific measurement. When a fault 

was present in one of the measurements, the model 

output was used instead of measurement value until 

the fault had ended and the residual returned under 

the limit. The performance of the SMI-based system 

was tested using the bias and drift faults. In the bias 

case, Fig. 12, the detection and fault compensation 

works really well, and almost no effect is caused to 

the process by the fault. In the case of drift fault, the 

performance is also good as can be seen from Fig. 13. 
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Fig. 12. The performance of the SMI-based FTC 

system in the case of the bias fault in output y1. 
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Fig. 13. The performance of the SMI-based FTC 

system in the case of the drift fault in output y1. 

 

 

5.3 Analysis of the results and discussion 

 

Based on the results presented in the previous 

sections, the faults introduced to the system were 

effectively detected, isolated and compensated with 

the presented FTC systems. Especially the PCA/PLS-

based FTC system was working efficiently and the 

fault detection and isolation rate was good. Also the 

SMI based analytical redundancy provided good 

results; the faults were efficiently detected and 

countered. The results clearly indicate that all the 

presented methods have potential to be used as 

effective FDI systems for real industrial processes.   



 

     

6. CONCLUSIONS 
 

In this paper, PCA, PLS and SMI methods were used 

for fault detection, isolation and identification 

purposes to achieve fault tolerance with MPC. Two 

FTC systems based on these methods were 

successfully implemented for controlling a simulated 

heavy oil fractionator. Based on the results, the 

methods proved to be effective and the FTC systems 

were able to counter the different faults in the 

simulated process measurements. In the PCA/PLS-

based system the use of SPE as a fault detection index 

was a good choice, because the resolution of the 

method was better than with the traditionally used 

Hotelling T2, which was unable to detect faults in the 

test setting. As a result, the fault detection was 

working very well in all fault cases. The RMSEP 

index based on PLS latent variables also provided 

good results and is definitely a promising addition to 

a fault-tolerant control system design. The identified 

SMI model described also the process well and was 

able to detect the possible faults in the measurements. 

It is worth noting that the data used in the study was 

simulated; therefore the results are probably better 

than they would have been if real process data would 

have been used instead. 
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