

Modelling for Process and Control Design

Sten Bay Jørgensen

CAPEC, Department of Chemical Engineering Technical University of Denmak, DK-2800 Lyngby, Denmark

> Nordic Process Control Workshop 15 29-30´th Januar 2009

- Motivation
 - Multipurpose Modelling, e.g.
 Integration of Process & Control Synthesis
 Exemplified through defining the Control Problem
- Modelling Paradigm for Process & Control Synthesis
 - Didactic Example (from food technology)
 - Workflow for Qualitative Process & Control Synthesis
- Application example on defining the Control Problem
 - Single cell Protein production in U-loop fermentor
- Other Application Examples of Modelling Paradigm
 - Alarm Design (Us et al.(2008))
 - HAZOP assistant (Rossing et al. (2008))
- Conclusions and Research challenges

Integration of Process and Control Design

Process design involves stages such as

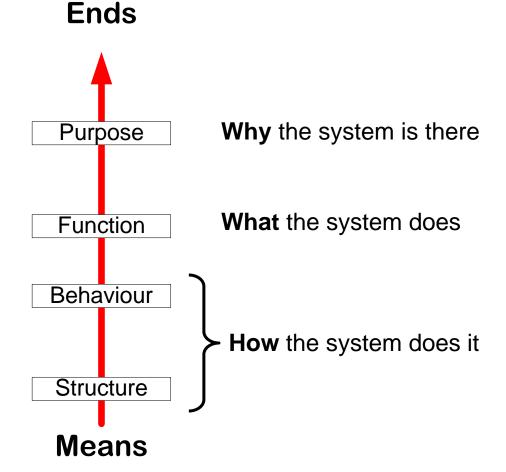
- 1. conceptual process synthesis based upon requirement specifications
- 2. conceptual design
- 3. detailed design etc.
- To integrate control design into these stages as early as possible involves dealing with control design already from the requirements level
- Thus there is a need to be able to handle integration of process synthesis and control synthesis while devloping the process functionality to satisfy the process requirements
- Since conceptual process design is qualitative. Then Integration of Process and Control design may be viewed from a qualitative viewpoint before handling the quantitative aspects.

Representing System Requirements: Objective heteraki

Representing System Knowledge:

- Selection of a proper level of abstraction plays an important role in model building:
 - Spatial structure (the anatomy), many levels of detail possible
 - Behaviour (dynamics), several levels of temporal resolution possible
- Alternatively, levels can be distinguished according to the functional organisation of a system

Modelling Paradigm


- To combine the process requirements to the functional behaviour points to a need for a suitable modelling paradigm!
- With such a modelling paradigm suitable workflows can be formulated!
- How is that accomplished?
 - What is there and what needs to be developed!
 - What else can such a modelling paradigm contribute to CAPE?

Functional modelling

This type of system analysis is means-end analysis or functional modelling which enables causal reasoning It is based upon theory of actions! Lind (1994)

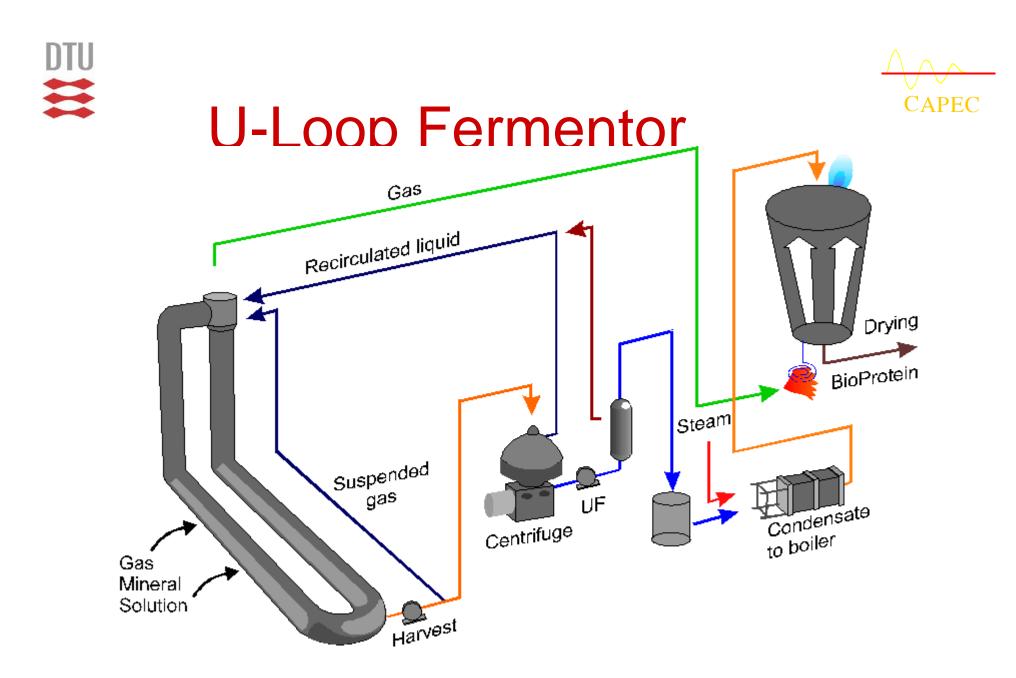
6

Elementary action types

The elementary action types (Von Wright, 1963)

- an attractive basis for the definition of concepts for modelling action functions, e.g control!
- in direct correspondence to the types of action functions used in control engineering

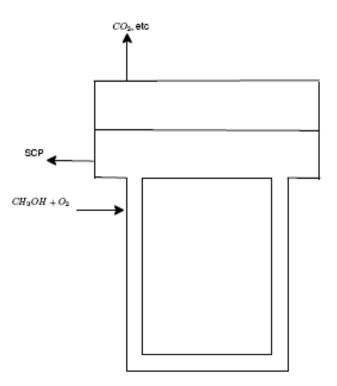
Elementary action	Control action	
Produce	Steer	
Maintain	Regulate	
Destroy	Trip	
Suppress	Interlock	



Defining the Control Problem

- State the goal(-s), i.e. the functionality for process/plant
- Determine the degrees of freedom (DOF) available in the plant
 - DOF for goal achievement, i.e. actuator variables
 - DOF as disturbances or unassigned
- DOF used for goal achievement become the actuator variables and defines the operating window for the process/plant
- Desirable measurements are pinpointed by considering information provided concerning goal achievement
- Couplings between measurements and actuators is designed, e.g. though inventory control

9



Methane \longrightarrow Oxygen \longrightarrow Ammonia \longrightarrow Minerals \longrightarrow BioProtein

CAPEC

Desired Functionality

- Control goal: To achieve high productivity of biomass with high protein content
- This implies that the bioreactor should produce biomass without too high a biomass concetration which would limit oxygen transfer

Degree of Freedom Analysis

		Variable	No.
Equation	No.	PFR variables	$14 \cdot N_d$
PFR equations	$14 \cdot N_d$	CSTR variables	7
CSTR equations	7	Mixer variables	5
Mixer equations	5	Operation variables	$F_{f,I}, F_{f,g}, F_{res}$
Sum	$14 \cdot N_d + 12$		C_{f,O_2}, C_{f,CH_3OH}
	-	Sum	$14 \cdot N_{d} + 17$

• Thus five degrees of Freedom

CAPEC

DOF Analysis

- $F_{f,I}$ $C_{f,CH3OH}$ Substrate feed rate and Concentration
- $F_{f,g}$ C_{O2} Gas feed rate and concentration
- **F**_{res} Recirculation rate

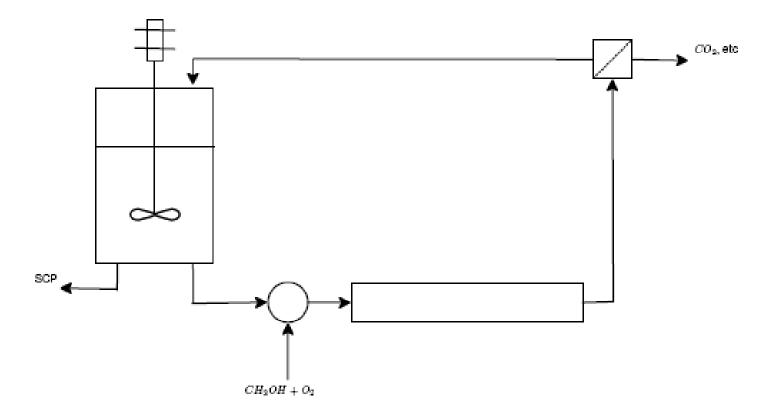
 C_{O2} constant nearly pure Oxygen

F_{res} is nearly constant to maintain the effect of the static mixers

Thus three degrees of freedom $F_{f,l} \ c_{f,CH3OH,} \ F_{f,g}$ define the operating window

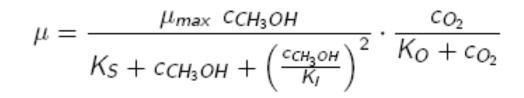
Note the above analysis is based upon qualitative model information. Npow let us use a quantitative model to understand the process behaviour.

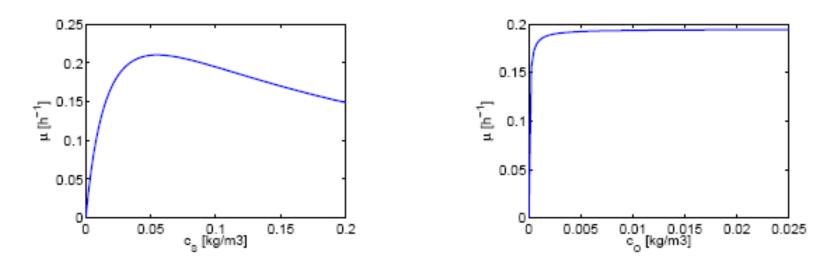
Stoichiometry


 $CH_3OH + Y_{SN} HNO_3 + Y_{SO} O_2 \rightarrow Y_{SX} X + Y_{SC} CO_2 + Y_{SW} H_2O$

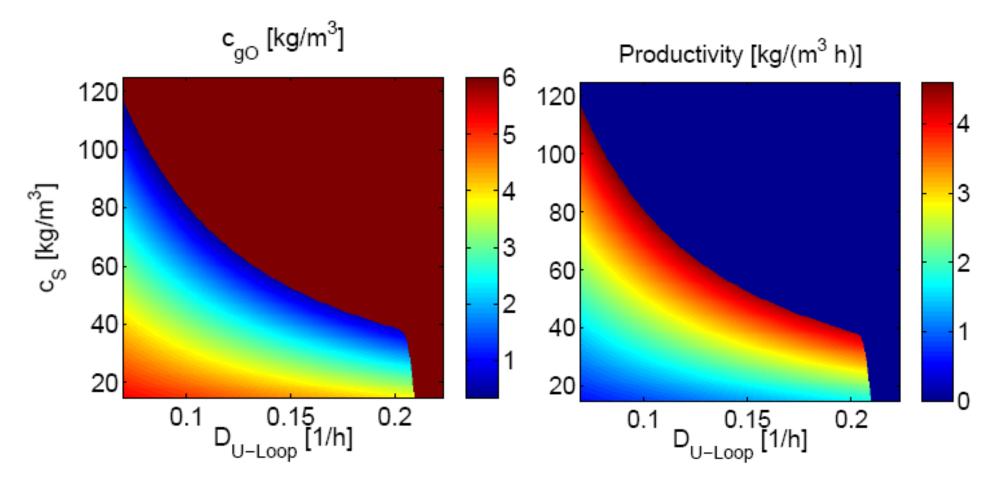
Symbol	Value
Y_{SC}	0.268
Y _{SN}	0.146
Y_{SO}	0.439
Y_{SW}	1.415
Y_{SX}	0.732

Table: Yield coefficients

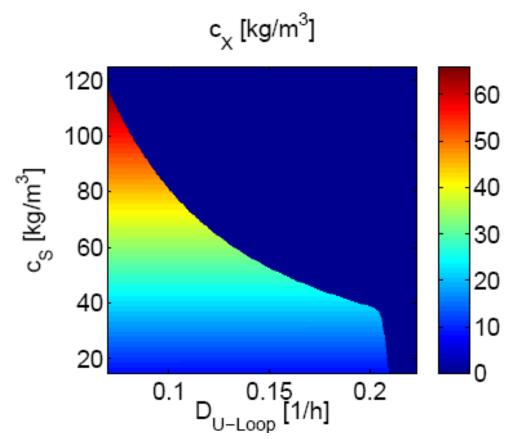



CAPEC

Kinetics



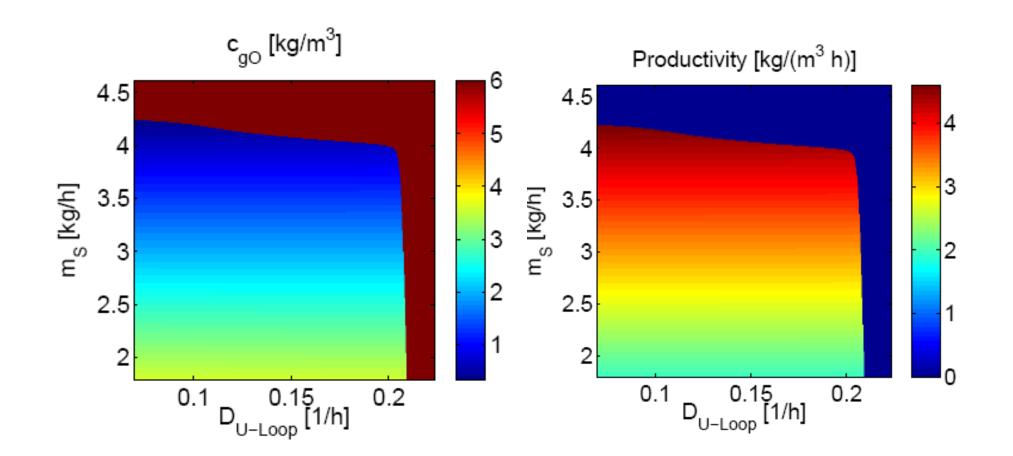
Operating Window



18

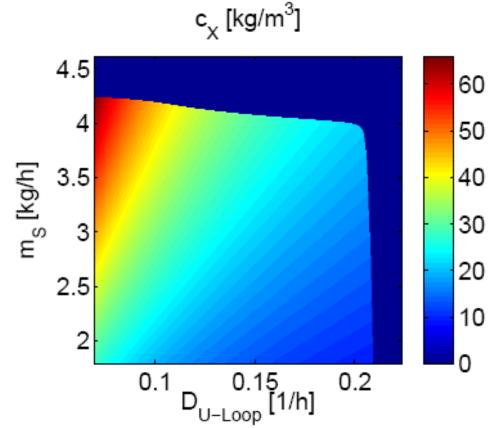
Biomass range

• Desig for optimal biomass concentration


$$m_{f,S} \in [1.8000; 4.6033] \frac{kg}{h}$$

 $D_{ULoop} \in [0.0697; 0.2231] \frac{1}{h}$
 $F_{f,I} \in [0.0360; 0.1152] \frac{m^3}{h}$
 $m_i = c_i \cdot F$

20


DTU

Biomass concentration around 20 kg/m³

Control Problem

- Control around a total substrate feed flow rate of 4 kg/h
- Ratio gas addition rate to total substrate feed rate

In addition

- Investigate dynamic interactions and decide on control design paradigm
- Consider control or constraining other nutrient addition rates: Nitric acid and phosphate

Conclusions I

- The control definition procedure relies mainly on qualitative knowledge
- It is based upon the intended functionality of the process/plant
- A strong coupling is apparent between process design and control design

Conclusions II

Functional Modelling provides a unified framework for qualitatively combining:

Many levels of abstraction, incl. a multilayered granularity

Thus providing potential for Integration of Multiple tasks, incl.:

Control Problem Definition

Process & Control Synthesis

Process & product design incl. Process

integration

Risk management (HAZOP-Assistant) Alarm design

Operator communication etc.

To harvest these potentials then:

Research in functional modelling within the different NPenaineerina knowledge domainsates 25 25

References

- Hamid, K.; Gani, R. (2008): "A Model-Based Methodology for Simultaneous Process Design and Control for Chemical Processes" Presentation at CAPEC annual meeting 2008.
- Lind, M. (1994): "Modeling Goals and Functions of Complex Industrial Plant". Applied Artificial Intelligence, 8(2):259-283, 1994.
- Rossing; N; Jensen, N.; Lind, M.; Jorgensen, S.B. (2008): "A Goal Based Methodology for HAZOP Analysis" Accepted for presentation at CSPEC08, Harbin, China.
- Us, T.; Jensen, N.; Lind, M.; Jorgensen, S.B. (2008): "Fundamental Principles of Alarm Design". Accepted for presentation at CSPEC08, Harbin, China.

