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Introduction

e Approaches to decoupling: Ideal, simplified, normalized
e 2 X 2 case most often considered
Decoupling in the 2 x 2 case (Luyben, 1970):
g1t g12 | | Ju Jio pu 0
G(s)F(s) = = = P(s) (1
(5)E(s) [921 922] [f21 fzz] [0 p22] (s) (1)

In ideal decoupling P is specified and, as a consequence, the struc-
ture of [ can be complicated. In simplified decoupling, parts of F'
is specified while P is free.
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Simplified decoupling in the 2 x 2 case

Four F-matrix candidates (Waller 1974):

1l I ST
o= ] Pl 2
By = [fln f;] Fyy — [fln f112]

Structure of equation system:

+ +
GF, = g11 + g12f21 911 + G122 (3)
921 + g22f21 go1 + 9o f22

92 foo | _ | g2
0 g12 22 gi1



Challenges and ongoing work

Handling systems of higher dimensions
1. A detailed analysis of the 3 x 3 case
2. Investigate possible generalizations
Systematic analysis and design procedure
e Mathematica software

e Discrete time representations
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Discrete time representations

e Easy handling of time delays
e Realizability (causality) checked through polynomial orders

e Sampling time must be chosen considering system specification
Example (taken from Waller 1974):

92925 1.3¢03s

_ 1475 1+7s
G(s) = _9.28¢ 185 4 3,—0.35s (4)
14+9.5s 1+9.2s
With sampling time T, = 1 min —
—0.293 0.124240.0493
o 0.867 2(2—0.867
G(Z) =1 -o. 0%88 9222 0.293z+0.1g0 (5>
22(2— 0900) 2(2—0.897)
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Simplified decoupling in the 3 x 3 case

e The number of F-matrix candidates for a system of dimension
n X n is equal to the number of ways one element equal to 1
in each column can be chosen, i.e. n"™ candidates. Thus, the
3 X 3 case has 3% = 27 F-matrix candidates.

e [ssues:
Does a solution to the equation GF' = P exist?
If so, is the resulting matrix F’ realizable?
Problems with the resulting (free) dynamics?
Impact from model uncertainties?
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Simplified decoupling in the 3 x 3 case

_911 912 913_ _f11 J12 f13_
921 922 G923 Jo1 Jo2 Ja3 | = (6)
| 931 932 §33 | _f31 32 f33_
p1 0 0]
0 peo 0 | =P(s)
i 0 0 P33 |

One element in every column of [ is set equal to 1.
Notation: Fjs3 means that fi; = foo = f33 = 1, Fi19 means that

Ji1 = fi2 = fog = 1 etc.
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Simplified decoupling in the 3 x 3 case

With Fi93, the equation system to be solved becomes

(g1 0 0 0 0 gi3| [ fio g12
0 gn 0 g2 0 O J13 g13
0 0 g2 0 g3 0 fa | _ |92 (7)
0 g21 0 g2 0 O J23 923
0 0 g2 0 g33 0 /31 gs31
1931 0 0 0 0 gs3] | fa2_ | 932 |
d - L L7321 . ,

M f g
Solution, if M has full rank,

L —1
f=—-Mg (8)



Observations

e The sparse matrix M to be inverted has at most 1/3 non-zero
elements in the 3 X 3 and the corresponding figure for the 2 x 2
case is 1/2.

In general: For a system GG of dimension n X n, the coefficient
matrix M will be of dimension n(n —1) x n(n—1). M will be
sparse and have at most 1/n of its elements apart from zero.

e The invertibility of M can, for example, be investigated using a
block-matrix approach. Row operations on the system M f =
—g are allowed.
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Observations (cont.)

e The solutions to the 3 X 3 case involve conditions on some
2 X 2-minors of the system matrix GG. In total, nine such minors
exists and each specific F'-matrix requires that three of these
are non-zero.

e A pattern between the position of the elements equal to 1 in
the F-matrix and the 2 X 2-minors exists. Let m; be the 2 x 2-
minor of G when excluding row j and column ¢. If a F-matrix
with f;; = 1 is to be used, then mj; # 0 is required.

e As a result, if some minors of G are zero, the number of F'-
matrix candidates can be effectively reduced.
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Observations (cont.)

e When a solution exists, the resulting elements of the F-matrix
will be quotients of some 2 X 2-minors. The elements of the
P-matrix will be on the form

det G
mzj
where the minors m;; are the same found in the denominators
of the F'-elements.

k=1,2,3 (9)

Prk = L

e [n addition to conditions on minors, conditions on certain ele-
ments of (G are also found.
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Observations (cont.)

Example: For Fi1s (f11 = f12 = f23 = 1) a solution exists if

mi1 = §22933 — 923932 7 0 (10)
ma1 = g12933 — 913932 7& 0
m32 = g11923 — 913921 7’é 0

at the same time as

g # 0
g9 # 0 or 523 z 8 (11)
g12 # 0 s
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Observations (cont.)

e An extension to the 4 X4 case indicates that minors of dimension
3 x 3 will have a significant role. Besides that, conditions on

2 X 2-minors as well as single elements of the system matrix G
are found.

e The software Mathematica is suitable for symbolic solving this
kind of large equation systems.

A note on decoupling NPCW’09



CHALMERS

Example: Blending system of three vessels

Consider a system of three ideally stirred tanks. The volumes
(V) and the flows (Q and R) are all constants.
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Example: Blending system (cont.)

Introduce the time constant 7 = V/(@Q and the relative flow
o = R/Q). From a material balance over each vessel, the following
transfer function model is obtained

C'(s) = G(s)Cip(s) (12)
14+ 0+ TS 0 o 17
G(s) = —0 l4+0+7s 0 (13)
I 0 —0 1+U+TS_
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Example: Blending system (cont.)

Calculating the 2-times-2-minors of G gives

™33 132 1M31
mo3 Moo MM21

| 13 M2 My

~ 14+0+47s 0 —0
h(s h(s)
o 14+0+7s 0
s) h(US) l+to+7s
0 h(s) h(s)

(14)

h(s) = (14 75)(30% + 30 (1 +75) + (1 + 75)%) = (det G) !

As mgo = mo; = my3 = 0, F-matrices haveing f35, f31 and/or
f12 equal to one can not be used. As a result, the F-matrix candi-
dates are reduced from the general 27 to 8.
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Example: Blending system (cont.)

The filter F}93 gives a realizable decoupling

i —mg] —m3y | -
m mo2 77717;’23 1 O
— 12 — 32 _ —0
]a23__ miq ms3s3 o 1+o0+7s 1
—mi3 —mo3 0 : —0
| m11 mo9 _ L +o0+Ts
B 1
l+o+7s ? 0
}ﬁ23:: 0 l+o+Ts 0
0 0 L
| l+o+7s 4

—0
1+o0+7s

(15)

(16)
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Example: Blending system (cont.)

1 0 1
Fioi= | Tors 1 0 (17)
0 g e
“Uirin) =
Fio1 = 1 1 0 (18)
0 1

As these two filters (like the remaining five for which a solution
exists) include elements that are non-causal, they are not realizable
and can not be used for decoupling.
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Realizability

For every F'-matrix that generates a solvable equation system,
all resulting elements are investigated with respect to polynomial
degree. Write an F'-matrix element as fractions between polyno-
mials

fule) = 22 19

Check the relation between the polynomials ();; and F;; in terms

of their highest exponent. In order for a certain F-matrix to be

realizable, for all of its elements f;; the highest exponent of P,
must be equal to, or larger than, the highest exponent of ();;.

If no time delays are present, then the procedure can be carried

out for s instead of 2.
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Decoupling
911 912 013 | (p; 0 0
G(s) = | g21 g2 go3 | ——* P(s) = 0 py O
| 31 932 933 0 0 ps3

F-matrix candidates
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