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Background

Considered controllers for performance comparison

@ PI(D)
@ Smith Predictor, PI(D),
@ “Bad” reputation, sensitive to modelling errors.

Tuning — Control requirements

@ Remove load disturbance errors quickly, 1AE.
@ Robust

Considerations

@ Process properties change simultaneously,
e.g., gain, time constant, and time delay.



Specifying robustness in easy ways

Classic measures

@ Gain, phase, and dead time margins do not guarantee
stability for simultaneous process changes.



Specifying robustness in easy ways

Classic measures

@ Gain, phase, and dead time margins do not guarantee
stability for simultaneous process changes.

Present solution: Robust control
@ Lumps all uncertainties together

@ Conservative, especially for time delays

@ Design should be as simple as possible
@ Common design for PI(D) — min IAE with

[S($)lleo < Ms,  [IT(8)lloc < Mr

@ Works very well for PI(D) design



@ Minimizing IAE with PI1; controller and constraints
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@ Minimizing IAE with PI; controller and constraints
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@ Result: Nyquist plot *
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@ Why? No dead time margin set, it deper?a on frequency.



Robust control — dead times

Example:

1 L .
@ Process P(s) = ponE] e~® + 20% uncertainty in dead time.
Minimize IAE using PI control, appropriate weight on T'(s).

@ Result: 15% higher IAE than if only dead time margin is
used.



Robust control — dead times

Example:

1 L .
@ Process P(s) = ponE] e~® + 20% uncertainty in dead time.
Minimize IAE using PI control, appropriate weight on T'(s).

@ Result: 15% higher IAE than if only dead time margin is
used.

Conclusion: Must have frequency dependent weights, but
ordinary robust control is (most often) too conservative.



Focusing on dead times — |

@ |dea: Separate dead time and other uncertainties

@ Why?
o Dead time uncertainty give rotation of Nyquist curve.
o Badly approximated by disk.

@ Modelling: Multiplicative uncertainty
Py = Po(]- + WTA)e_s(L+AL)

P, — nominal process, dead time free.
WrA — gain, time constants,... ordinary weight, ||A||. = 1.
AL —in dead time uncertainty interval [ALyin, ALmax]
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Robust stability cond.: |CP,Wr| < |1+ CPe ' ®(L+AL)| VAL, @



Focusing on dead times — I

@ Condition can be rewritten as

sup |T(io,AL)Wr(®)| < 1,VAL
(0]
with extended complementary sensitivity function

CPe—sAL
T(s,AL) = —————
(s,AL) 14 CPe—sAL
@ Graphical interpretation in Nyquist plot: Circles with
centers and radii
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Example — PI ; control of FOTD

@ Control of

with the Pl;-controller

0.75s +1 0.75s

Pl =26
(%) 0.755 0.75s + 1 — e 125

@ 10% uncertainty in gain and time constant
20% (symmetric) uncertainty in dead time.

@ Robustly stable?



Example — Weights Wr

Weights on (extended) complementary sensitivity function
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Example — Graphical interpretation
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Example — Graphical interpretation
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@ No guarantees from ordinary robust control



Example — Graphical interpretation
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Example — Graphical interpretation

Frequency
20

0.5

1k

15 i i
. 0.5 1 15

Re
@ Conclusion: Robustly stable by separating uncertainties.
@ Actually, IAE is minimized with active constraints.



Relations to other margins

@ If no dead time uncertainty, we have ordinary robust control
|T(iw, AL)Wrp(@)| = |T(io)Wr(w)| < 1

@ If only dead time uncertainty
o radii are 0
@ recover ordinary delay margin
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Focusing on dead times — VI

@ Inverse multip. uncertainty Py = P,(1 + WgA)~le—s(L+AL)
gives the condition

sup |S(iw,AL)Wg(w)| < 1
@ Graphical interpretation in Nyquist plot: Circles with
centers and radii
—(coswAL,sinwAL), Wg(w)
@ Robust performance, i.e., sup,, |Sa (i) W,(@)| < 1, gives
sup (IS(iw, AL)Wy(@)| + |T (iw, AL)Wrp(@)|) < 1

or equivalently
sup [S(iw,AL)W,(w)| < 1
[

Wy() = Wy(w) + |CP, Wy ()|



Computational effort

@ Algorithms developed to compute margins, e.g.,

@ decide if robustly stable (shown in example)
@ given weight Wx (@), compute [A Lyin, ALmax]
@ given uncertainty interval [A Lyin, ALmax|, cOmpute Wx (@)

@ Based on graphical interpretation
@ Fast



Always better?

@ Depends on process and controller

@ Phase of e~*AL not taken into account

@ Solution: Combine allowed areas. Better or equal
performance.
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Summary

Explores dead time characteristics

T(s) — T(s,AL), S(s) — S(s,AL) + robust control

In between robust control and classic measures

Gives good insight on inherent problems of time delays
Algorithms available

Combine allowed areas for better or equal performance



