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Abstract— This paper deals with the challenging problem of
closed-loop identification for multivariable chemical processes
and particularly the estimation of an open-loop system model
for a laboratory twin-screw extruder used in powder coatings
manufacturing process. The aim is to produce a low order
efficient model in order to assist the scaling-up and the control
design of the manufacturing process. Various identification
techniques, such as prediction error and subspace methods are
used to first generate candidate closed-loop models that fit to
the original input-output process data. Then, a comparison and
a model validation of the estimated models was performed,
by means of the mean square error and data fitting criteria,
in order to select the model that best describes the dynamic
behaviour of the underlying process. The idea is to extract
the dynamics of the plant from the dynamics of the identified
closed-loop system by using the knowledge of the controller
parameters.

I. INTRODUCTION

In chemical process control and particularly in the polymer
industry there is a strong demand to produce efficient models
for control design applications. For the majority of the in-
dustrial processes open-loop experiments are prohibited due
to safety, economic considerations, efficiency of operation
and stability issues and therefore closed-loop identification
methods should be performed. For that reasons the identifica-
tion of closed-loop systems has received much interest within
the last decades [1],[2],[3],[4],[5] and excellent reviews may
be found in the relevant literature [2],[6],[7]. Closed-loop
identification methods are divided to three main groups,
namely the direct, the indirect and the joint input-output
approaches. In the direct approaches the identification is
performed as in an usual open-loop context up to a suitable
data processing. The indirect approach is mainly based on
an open loop identification and relies on extensive data and
the knowledge of the controller parameters to first generate
good estimates of the loop sensitivities and in the second
step these loop sensitivities are used to recover the open-loop
plant dynamics by inverse filtering. The joint input-output
approach uses the system input-output behaviour together
with an external excitation input. In this work the indirect
approach is exploited mainly due to the feedback control
configuration of the particular powder coatings extrusion
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process. A variety of system identification methods from
the family of prediction error and subspace-based techniques
are applied in order to generate first candidate closed-loop
models which are then compared by means of error and data
fitting criteria in order to see which method produces the
most accurate process model. The idea behind the Prediction
Error Methods (PEM) is to find a parametrized model
that minimizes the error between system output y and the
predicted output ŷ produced by some candidate models.
This method of identification is of iterative type, relying
upon the solution of non-convex optimization problems. An
alternative identification technique which is based on linear
algebra is the Subspace Identification Method (SIM). A great
advantage of such methods is that they are non-iterative
and using well-understood algorithms with good numerical
properties. They are also known to cope excellent with large
data sets, rendering it possible to identify large systems in a
fair amount of time.
This paper examines the experimental identification of small-
scale Twin-Screw Extruder (TSE) for a powder coatings
application. By using an indirect approach and a variety
of identification algorithms we aim to estimate a 2-input,
2-output open-loop model of the TSE system based on
real experimental data and the knowledge of the controller
parameters. The overall identification strategy used for the
identification of the TSE process can be summarised in the
following steps:

1) Development of the data-acquisition system and
perform the identification experiments in order to
gather real process data;

2) Pre-treatment and classification of the data with
the aim to choose a representative of the process
behaviour data-set;

3) Estimate the input sensitivity functions (closed-loop
system) by using both Prediction Error Methods
(PEM) and Subspace Identification Methods (SIM)
with various model structures;

4) Comparison of the estimated models and validation
with a fresh data-set and selection of the most
accurate identified model;

5) Based on the identified model of (d) and the knowl-
edge of the controller recover the open-loop plant
dynamics of the TSE via inverse filtering.

The rest of the paper is organized as follows: In section 2 the
closed-loop identification problem is stated and the main ap-
proaches are described together with a short literature review.
Section 3 presents the closed-loop identification framework,



the general set-up and the derivation of the controller set-
up that is used in our case. System identification results and
comparison of the estimated closed-loop models are provided
in section 4, along with the derivation of the open-loop TSE
model. Finally, in section 5 some of the practical problems
encountered in the implementation are discussed and the
future directions for improved results are given.

II. THE CLOSED-LOOP IDENTIFICATION
PROBLEM: A QUICK REVIEW

In this section the most common closed-loop system identi-
fication methods that exists in the literature are discussed.

The Direct Approach

Identification under closed-loop using the so-called direct
approach, involves that the estimation is done using unaltered
input/output signals. Hence, this is considered as a simple
approach . A number of advantages [6] with this approach:

a) It works regardless of the complexity of the regulator,
and requires no knowledge about the feedback structure;

b) Given that the model structure contains the true system,
consistency and optimal accuracy are obtained;

c) No special algorithms and software are required.
On the other hand, the main problem with the direct approach
is that the estimate may be biased due to correlation be-
tween disturbances and controllable inputs, see for instance
[8],[9],[10],[11],[12],[13].

The Indirect Approach

The indirect approach of closed loop identification assumes
that the controller transfer function is known. The idea is to
identify the closed-loop transfer function

Gcl =
GK

1 + GK
(1)

by manipulating the reference signal. Since this is an open-
loop problem, all the identification techniques that work
for open-loop data may be applied. The drawback is that
this approach demands a linear time-invariant controller.
In industrial practice, this method has some limitations
due to non-linearities that almost always exist in the con-
trollers, such as delimiters, anti-reset-windup functions and
other non-linearities. In addition, estimates of the plant by
the indirect approach are usually of higher order [8] and
some model reduction procedure might be needed after-
wards. Such approaches have been examined for instance
in [14],[15],[16],[17].

The Joint Input-Output Approach

It is possible to view the closed-loop scheme of Fig. 1 as a
system with input r, and two outputs u and y. The system
is driven by the reference, producing outputs in the form of
controller outputs and process outputs. The joint input-output
technique use models of how both u and y are generated. If
we define the transfer functions

Gry(s) =
GK

1 + GK
Gru(s) =

K

1 + GK

and perform identification experiments to find estimates of
Ĝry and Ĝru, the open-loop transfer function, Gol(s), may
be estimated as

Gol(s) =
Ĝry

Ĝru

(2)

From the above it is clear that the denominators of Gry

and Gru are equal and ideally should cancel out when
performing the calculation in (2). The problem is that even
small estimation errors from the identification of Gry and
Gru will prevent this cancellation, since the estimates Ĝry

and Ĝru will have slightly different denominators. A solution
to this is to use e.g. the normalized coprime factor method,
proposed by [18] to perform a model-reduction on the open-
loop estimate Ĝol. Other contributions [19], [20], [8].

III. THE CLOSED-LOOP IDENTIFICATION
FRAMEWORK

Consider multivariable linear time-invariant systems and the
standard closed-loop identification scheme [2], [21], [18],
which is shown in Fig. 1, where r1 is the reference signal
(set-point), r2 is an extra input which is applied additionally
to the control signal u, n denotes the measurement noise and
u and y are the input (control signal) and output variables
of the open-loop process respectively.

Fig. 1. The standard closed-loop identification scheme.

Using standard block diagram algebra, we express the input-
output relationships of the generalized feedback system
shown in Fig. 1, as

y =
[
GK(I + GK)

−1
G(I + GK)−1

] [ r1
r2

]
=
[
H1 H2

] [ r1
r2

]
(3)

Let us denote by Ĥ1, Ĥ2 the identified closed-loop transfer
function matrices from r1 and r2 to y respectively. Accord-
ing to the Joint Input-Output approach, when both excitation
signals are used, i.e. r1 6= 0, r2 6= 0, the open-loop system
model, GID, may be calculated using the identified transfer
functions Ĥ1 and Ĥ2, by

GID = Ĥ2(I− Ĥ1)−1 (4)

assuming of course that (I− Ĥ1)−1 is invertible. This is
defined as the generalized system identification problem.
Two special cases are also arising from the above standard
identification scheme, that is when r1 = 0 or r2 = 0. For



both of the above the indirect approach should be used to
identify the open loop system, which implies that the closed
loop transfer function is used to recover the open-loop plant
model. More precisely we have:

• the controller set-up, that is when the reference signal
r2 = 0 and the open-loop identified model is given by

GID = Ĥ1(I− Ĥ1)−1K−1 (5)

• the compensator set-up, for the case that r1 = 0, where
the open-loop model may be obtained by

GID = Ĥ1(I− Ĥ1)−1K−1 (6)

In this experimental-research work the step-type excitation
signals were applied to the reference input r1 and hence the
controller set-up will be utilized for the TSE identification.

IV. APPLICATION: EXPERIMENTAL
IDENTIFICATION OF THE TWIN-SCREW

EXTRUDER

A. The Powder Coatings Manufacturing Process

Powder coatings manufacturing is a semi-continuous multi-
step process involving the following steps:

a) Weighing of the raw materials;
b) Pre-mixing (i.e. dry blending of the polymer binder

granules with the cross linker and the necessary
additives);

c) Extrusion, where the pre-mix is fed into an extruder
where it is compacted and heated until it melts,
while shear forces break down the pigment aggre-
gates to form a homogeneous dispersion;

d) Solidification process, which involves the cooling
of the the processed material via an industrial
cooling belt and then flaking it using a breaker;

e) Milling/classification (milling and sieving of the
chips to produce a fine powder with a specified
particle size range).

A typical powder coating formulation consists of the
polyester - epoxy or acrylic resin, the necessary additives
(flow and levelling agents, pigmentation, and inorganic
fillers) and the cross-linker. The material used during the
experiments was the White RAL-9010.

B. The Twin-screw Extruder

Extrusion is the most critical part in the powder coatings
production line and with this work we aim to produce an
accurate model in order to assist the scaling up from the
laboratory extruders to production plant. The TSE system
for which we seek to estimate a model is shown in Fig.
2 and is manufactured and supplied by Steel Belt Systems
(S.B.S.). It is a co-rotating twin-screw extruder with a 21mm
screw diameter and a modular, openable type barrel 28 L/D
divided in 6 temperature zones. The capacity (throughput) is
0.5− 50 kg/h.

Fig. 2. Laboratory Twin-screw Extruder.

C. System Identification

The strategy to tackle the identification problem that we
seek to address in this paper is analysed here. The system
under consideration is a lab-scale TSE which is the main
machinery in a range of industrial applications such as
plastics, food processing and powder coatings manufacturing.
It is a complex non-linear multivariable plant with multiple
interaction dynamics behaviour, many inputs to manipulate
and many outputs for measurement. The TSE should be
always controlled and operate in feedback loop due to
instability, damage risk and operation efficiency. The closed-
loop feedback configuration includes the TSE system and
two (SISO) PI-controllers, as depicted in Fig. 3.

Fig. 3. The TSE MIMO feedback system.

We consider as manipulative inputs u1, u2, the Screw-Speed
(SS) and the Barrel Temperature (BT) of the last 3 zones re-
spectively and as measured outputs y1, y2, the Motor Torque
(MT) and the Product Temperature (PT) at the die, i.e. the
exit point. The real process data were gathered by a series of
identification experiments, with sampling time Ts = 1sec.,
performed in June and July of 2015 in the SBS premises.
The overall work is split into several steps among which are



data acquisition, pre-treatment of the experimentally obtained
data, closed-loop identification via different methods and
model validation and finally recovery of the open-loop plant
dynamics. We elaborate on our approach in the sequel.
A first step in order to get a feeling of the dynamics
and assess the interactions is to have a quick look at the
step responses between the different input-output channels
estimated directly from the measurement data-set.

Fig. 4. Step responses estimated by the measurement data.

From Fig. 4 it is evident that the diagonal influences domi-
nate. It is also clear that the first output (y1=MT) is affected
by both inputs (SS and BT), while y2 = PT is affected only
by u2 = BT . Next, the dynamics of the closed-loop system
was identified using several identification methods and model
structures. More precisely, we have:
a) Identified Model 1: Let us first use a fixed structure with
2 poles and 1 zero and the PEM method to estimate a
2× 2 transfer function model. The identified model, Ĝ1(s),
is given by (7).[

0.00027s−4.692×10−6

s2+0.001s+2.076×10−5
−0.00082s+9.569×10−6

s2+0.211s+9.725×10−6

0.00042s+1.094×10−5

s2+0.00881s+1.833×10−5
0.0108s−2.031×10−5

s2+0.0103s+1.384×10−7

]
(7)

b) Identified Model 2: Using a different PEM algorithm [6]
and a structure with 2 states, the following state space model
was estimated initially,

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where,

A =

[
−0.001484 0.0001741
0.009913 −0.01585

]
B =

[
−1.367e− 07 4.591e− 06
−6.993e− 06 1.445e− 05

]
C =

[
233.8 −183.4
518.1 −0.05417

]
;D =

[
0 0
0 0

]
(8)

which then is transformed to an equivalent transfer function
matrix representation, denoted by Ĝ2(s), as seen below.[

0.001251 s+1.361×10−6

s2+0.01733s+2.179×10−5
−7.044s−1.752×10−6

s2+0.01733s+2.179×10−5

−0.001576 s + 5.319×10−6

s2+0.01733s+2.179×10−5
0.002378 s + 3.899×10−5

s2+0.01733s+2.179×10−5

]
(9)

c) Identified Model 3: Using the Subspace Identification
Method (SIM) method as proposed by Matlab (N4SID
algorithm), a state space model with 2−states, 2−inputs and
2−outputs was identified initially. It has to be mentioned
that this algorithm is designed to produce discrete-time state-
space models. By applying the necessary operations we
transform it to a continuous time transfer function matrix,
as seen in (10).

Ĝ3(s) =
1

∆3(s)

[
n3
11(s) n3

12(s)
n3
21(s) n3

22(s)

]
(10)

where,

∆3(s) = s2 + 0.02116s + 3.184 ∗ 10−5

n3
11(s) = 0.00139s + 1.939 ∗ 10−6

n3
12(s) = −0.00266s + 8.181 ∗ 10−6

n3
21(s) = −9.819s− 1.416 ∗ 10−6

n3
22(s) = 0.00265s + 5.065 ∗ 10−5

d) Identified Model 4: Finally, using a different numerical
implementation of the SIM method [22] and a free order
structure, a discrete-time state-space model with 5−states is
identified and is transformed to the equivalent 2× 2 transfer
function matrix. Due to the limited space the state-space
models are not included in this paper.

Ĝ4(s) =
1

∆4(s)

[
n4
11(s) n4

12(s)
n4
21(s) n4

22(s)

]
(11)

where,

∆4(s) = s5 + 0.4343s4 + 0.8602s3 + 0.02717s2+

+ 0.0004129s + 1.164 ∗ 10−6

n4
11(s) = 0.02107s4 + 0.01801s3 + 0.001112s2+

+ 1.177 ∗ 10−5s + 7.033 ∗ 10−8

n4
12(s) = 0.1111s4 − 0.1286s3 + 0.003784s2−

− 8.6 ∗ 10−5s + 2.752 ∗ 10−7

n4
21(s) = (−2.996s4 − 5.669s3 − 4.431s2) ∗ 10−5+

+ 2.479 ∗ 10−6s + 7.39 ∗ 10−8

n4
22(s) = −0.002421s4 − 0.0009892s3 − 0.001693s2+

+ 3.998 ∗ 10−5s + 1.146 ∗ 10−6



Fig. 5. Step responses of estimated models.

D. Comparison of closed-loop models and data validation
To evaluate the quality of these identified models, their
step responses are compared with responses of the original
system. Since the open-loop operation is prohibited for the
TSE, their closed-loop step responses are compared in Fig.
5. The results are summarised in Table I. In terms of error
and data fitting criteria, all methods produced models with
very good results, however, according to Table I, it is evident
that the generated model (10), obtained via the SIM method,
has the lower Mean Square Error (MSE) and the maximum
fitting to the process input-output behaviour.

TABLE I
COMPARISON OF IDENTIFIED MODELS

Identified closed-loop
models Fit to Data (%) FPE MSE

Model 1 (PEM) [74.16;83.69] 666.4 29.08
Model 2 (PEM) [76.63;99.57] 0.3917 17.34
Model 3 (SIM) [80.05;99.63] 0.2112 12.64
Model 4 (SIM) [76.53;99.21] 1.333 17.50

E. Estimation of the open-loop TSE model
Based on the generated model (10) and the knowledge of
the controller parameters we are in position to recover the
dynamics of the open-loop TSE process by using (5).

ĜOL(s) =
1

∆(s)

[
nOL
11 (s) nOL

12 (s)
nOL
21 (s) nOL

22 (s)

]
(12)

where,

∆(s) = s4 − 0.003829s3 + 5.498 ∗ 10−6s2

+ 3.5 ∗ 10−9s + 8.398 ∗ 10−13

nOL
11 (s) = −8.99 ∗ 10−7s4 + 2.582 ∗ 10−9s3

+ 2.47 ∗ 10−12s2 + (7.88s− 5.372) ∗ 10−16

nOL
12 (s) = 0.0014s4 − 4.25 ∗ 10−7s3 + 0.468s2−

− 1.298 ∗ 10−13s + 1.77 ∗ 10−16

nOL
21 (s) = −7.93 ∗ 10−6 − 3.75s4 + 2.28 ∗ 10−8s3

− 2.18 ∗ 10−11s2 + 6.963 ∗ 10−15s + 4.318 ∗ 10−16

nOL
22 (s) = 0.0013s4 − 3.75 ∗ 10−6s3 + 3.592 ∗ 10−9s2−

− 1.146 ∗ 10−12s + 2.717 ∗ 10−19

V. LIMITATIONS, PRACTICAL PROBLEMS AND
FUTURE WORK

It has to be mentioned that in the identification of real
complex industrial processes implementation issues and im-
portant practical problems are often encountered. Two of
these problems are highlighted in this section. The first one
concerns the estimation of a model based on the closed-loop



data, whereas the second problem refers to the estimation of
a model on the basis of more than one data-set.
A typical situation that arises with the identification of an
industrial process is that during the identification experiments
the controller is not allowed to be turned off [23] due to
instability, safety and economic reasons amongst others. This
of course was the case for the identification of the TSE as
well. It is well known that the process estimation directly
from the input and output data u(t) and y(t), may result
in a biased model [6], [18]. The cause for a biased model
is the disturbances acting on the process and the correlation
between the inputs and the noise from the measurements. In
order to prevent this bias a specific closed-loop identification
method called the two-stage method [5] might be used. For a
further discussion on the two-stage method and other closed-
loop identification issues see: [18], [5], [21]. Another issue
that is often encountered in the identification of industrial
processes is that, due to the experimental conditions, not
one but several data sets are obtained from the experiments
in order to be used for the estimation of the model. To
deal with this problem a specific so-called multiple data
set identification method should be used [23]. Moreover, an
additional characteristic of such a multiple data set identifi-
cation method is that data sets obtained with a completely
different excitation signals and distribution of the power
over the frequencies could be combined with the aim to
produce data with more information. The design of such an
experimental data set that combines a step-type excitation
signal, and thereby with most of its power in the low
frequencies, with a data set that is obtained with a P-RBS
(Pseudo-Random Binary Sequence) input signal with a high
switching probability and hence most of its power in the high
frequencies is a possible future direction for improvement.

VI. CONCLUSIONS

The identification of a powder coatings extrusion process
via real closed-loop data has been examined in this paper
using 2 PEM and 2 SIM identification algorithms based on
the indirect (two-step) approach. The key idea was to first
estimate a candidate model for the closed-loop behaviour
and then extract the open-loop dynamics via inverse fil-
tering using knowledge of the controller parameters. From
the comparison of the identification results by the various
methods/algorithms the model corresponding to the SIM
(N4SID) method was the one with the lower mean square
error and fitted most with the underlying process data. As a
result a 2-input, 2-output, 4th order transfer function matrix
was derived for the powder coatings extrusion process in
order to assist the scaling-up and the control design of the
manufacturing process.
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