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Abstract: Classical extremum seeking control (ESC), when applied to systems with distur-
bances, can be subject to large deviations during transients caused by abrupt changes in the
disturbances. In oil and gas production applications, such deviations can make ESC impractical.
This paper presents a simple yet practical extension to the classical gradient-based extremum
seeking control to make it robust to such disturbances, by removing the effect of the disturbance
with a priori information of the disturbance model. Modelling and robustness of the disturbance
models are discussed. The proposed method is demonstrated by a simulation-based study on
gas lift optimization of a single well in oil and gas production.
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1. INTRODUCTION

Extremum seeking controller (ESC) is a class of data-
driven adaptive control methods, where the steady state
performance of the system is optimised in real time by
applying constant perturbation to the system. The concept
of extremum seeking control was first introduced in 1922,
but gained steady interest only in the last decade after
a rigorous proof of the classical ESC was provided in
Krstic and Wang (2000). Various techniques have since
then been developed to improve the performance of the ex-
tremum seeking control. The most popular ESC approach
is the gradient-based approach due to its simplicity and
guaranteed local convergence. The classical ESC identifies
the extremum by estimating the gradient of input-output
map by correlating the input perturbation signal with the
measured performance function. The system is then driven
towards the extremum by simply integrating the estimated
gradient continuously, see Ariyur and Krstic (2003).

In many practical applications, however, the system is
subject to disturbances which may change the perfor-
mance function and the corresponding input-output map.
A relatively fast and abrupt change of a disturbance and
the corresponding effect on the performance function, can
cause fast and large deviations in the estimated gradient
and hence in the optimising parameter. Although the
extremum seeking controller may eventually converge to
the optimum after the disturbance has reached its new
constant value as shown in Krstic (2000), the resulting
transients may be far too large and long for practical
applications. In some cases, this can even cause the ESC
to converge to other stationary points that are no longer
optimal, see Trollberg and Jacobsen (2013).

The data based disturbance feedforward method presented
in Marinkov et al. (2014) addresses this issue by extending
the classical ESC with additional blocks that detect abrupt
changes in the performance function. The detected events
are then used to stop the perturbation and wait for a

predefined time to allow the disturbance or transients
to damp out before starting the extremum search again.
This method however may not be very practical for slow
processes, where the waiting time maybe too long, or if
the process is frequently subject to disturbances, where
the extremum seeking scheme may spend a lot of time
waiting for the transients from the disturbances to damp
out.

Many applications in the oil and gas industry have slow
system dynamics and may be subjected to disturbances
often. The method proposed in Marinkov et al. (2014)
may therefore not be very practical for such processes.
In this paper we propose an alternative solution that ad-
dresses this problem for processes with slow dynamics. The
method introduces robustness to disturbances by rejecting
the effect of the disturbance from the performance function
without stopping the perturbation or adaptation of the
optimising parameter. Therefore the algorithm continu-
ously seeks the extremum value without being affected
by the disturbance nor waiting for the transients due to
the disturbances to die out. The problem motivation and
the proposed method are demonstrated through an appli-
cation example of gas lift optimisation using extremum
seeking control, as suggested in Peixoto et al. (2015).

The paper is organised as follows. Section 2 illustrates the
issues with the classical gradient-based extremum seeking
control using the gas lift optimisation example. Section 3
describes the problem formulation. Section 4 describes the
proposed extremum seeking scheme with discussions on
modelling the disturbance rejection block. Section 5 shows
the results of the simulation example, before concluding
the paper in section 6.

2. MOTIVATING EXAMPLE

In many oil production wells, when the reservoir pressure
is not sufficient to lift the oil from the reservoir, artificial
lift methods are employed. One commonly used method is



Fig. 1. Classic extremum seeking scheme

the gas lift method, where compressed gas is injected at the
bottom of the well. As a result the fluid density decreases,
thereby decreasing the hydrostatic pressure drop over the
well. The pressure at the well bottom decreases and the
inflow rate from the reservoir increases thus increasing
the oil flow rate to the surface. However, injecting too
much gas increases the frictional pressure drop which has
an opposite effect on the flow rate. At some point the
frictional drop becomes dominant over reduction of the
hydrostatic pressure drop and causes the flow rate from
the reservoir to decrease. Hence there exists an optimal gas
lift injection rate that maximises the oil rate. The relation
between the oil rate and the lift gas injection rate are called
gas-lift performance curves, which have an optimum, see
Golan and Whitson (1991) and Rashid et al. (2012).

The gas lift performance curves, however, change with
changes in the wellhead pressure, injection gas pressure,
reservoir productivity etc., which can considered as dis-
turbances to the system. For example, the gas lift perfor-
mance curves and their gradients for two different wellhead
pressures are shown in Figure 3(red and blue lines). The
goal of the controller is then to find the optimal gas lift
injection rate (optimising input) that leads to maximum
oil rate (performance function), see Peixoto et al. (2015).

In Figure 1, we show the block diagram of a classical
gradient based extremum seeking scheme in discrete time
with a sampling time Ts that is applied to such a process
as suggested in Peixoto et al. (2015). To briefly explain
the scheme, for the moment, we assume the disturbance
is a constant. The scheme uses a sinusoidal dither signal
a sinωk to perturb the optimising input(gas lift injection
rate), which makes the performance function(oil rate) to
vary according to the gradient of the gas-lift performance
curve around the operating point. In essence, it is from
the oscillating value of the performance function and that
of the dither signal, that we are able to figure out how to
move the value of the optimising input to maximise the
performance function.

In discrete time setting, the gradient information is ex-
tracted in the stated scheme at each time step k via
the following steps: remove the low frequency part of the
output using a high-pass filter as shown in (1); correlate
the outcome with the dither signal; apply a low-pass filter
to the correlated signal as shown in (2). The estimated

gradient is then used to update the optimising variable θ̂k
(3). The filter cut-off time constants Th and Tl, adaptation
gain ka and the dither amplitude a are tuning parameters

Fig. 2. Simulation results showing the effect of disturbance
on the ESC

for the extremum seeking controller. For guidelines on
parameter tuning, see Nesic (2009) and Tan et al. (2010).

zk =
Th

Ts + Th
[zk−1 + yk − yk−1] (1)

ξk =

(
1− Ts

Ts + Tl

)
ξk−1 +

Ts
Ts + Tl

zka sinωk (2)

θ̂k = θ̂k−1 + Tskaξk (3)

So the classic extremum seeking scheme works fine for the
cases in which the disturbance d is constant. However,
when the disturbance changes abruptly and/or frequently
with large magnitudes, the scheme may lead to quite
undesirable outcomes. Briefly speaking, this is because a
change in disturbance causes a change in the performance
function, in addition to the change caused by the dither
signal. Therefore, in this period it is no longer possible to
extract reliably the information of the gradient w.r.t. the
optimising input from the measured performance function.
This results in wrong gradient estimation and hence driv-
ing the optimising input in a wrong direction during the
transient period.

This point is further demonstrated using the simulation
results from the gas-lift process mentioned above. The
optimising parameter here is gas injection rate qGL, the
performance function (output) is oil production rate qo
and disturbance is wellhead pressure pwh. Figure 3 shows
the gas-lift performance curves for d = d1 and d = d2
with d1 > d2. When the disturbance changes from d1 to
d2 abruptly, a steep rise in the oil rate occurs, i.e., the
value of the performance function increases sharply. At
the same time, if it happens that the dither signal a sinωt
is positive, the extremum seeking scheme ”thinks” that the
small magnitude of increase in the optimising parameter
could lead to large increase in the output. Therefore, the
scheme increases the value of qGL drastically making it
deviate far away from where it should be. This transition
is simulated in Figure 2. Note that the direction and the
magnitude of the deviation in the optimising input qGL



Fig. 3. input-output static map and the corresponding
gradient for d = d1 (blue curve), d = d2 (red curve)
and transition between d1 to d2 with the proposed
method(green dotted curve)

depends on the phase of the sinusoidal perturbation at
the time of the disturbance occurrence.

We do note that in the example the optimising parameter
qGL eventually converges to the new optimal value. This is
because the disturbance stabilises at d2 after the transition
and the effect of the foregoing disturbance variation then
dies out asymptotically due to the high-pass filtering. In
other words, the classical extremum seeking scheme, by
itself, is robust to slow-varying disturbance, see Krstic
(2000). Although some may argue that the effect of the
disturbance can be reduced by adjusting the tuning, this
comes at the cost of affecting the convergence rate of the
ES scheme. This would also require apriori knowledge of all
expected disturbances inorder tune the ES scheme which
may be overly conservative.

The transition issue due to disturbance variation described
above is the main problem we will address in this work.

3. PROBLEM FORMULATION

Before introducing the proposed method, we first formu-
late the problem and set forth the assumptions that we
consider in this paper. A process such as the gas-lift oil
production may be represented by a general nonlinear
dynamic system, which will be called the plant model:

ẋ = f(x, u, d),

y = g(x, d),
(4)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, d ∈ Rl is the disturbance signal, and y ∈ R is the
system output. For convenience of presentation, we simply

assume enough smoothness of the functions f : Rn×Rm×
Rl → Rn and g : Rn × Rl → R.

In the gas-lift process, the input u includes the gas in-
jection rate and some other controlled variables, the dis-
turbance d may include wellhead pressure, injection gas
pressure and reservoir productivity, and the output y is
the produced oil rate.

Now suppose that we have a smooth state-feedback control
law u = α(x, θ), parameterized by θ; then the closed loop
system becomes

ẋ = f(x, α(x, θ), d),

y = g(x, d).
(5)

The parameter θ is called the optimising parameter; and
a static map (defined below) relating the parameter θ to
the system output y is the key to our goal of maximizing
the output y by continuously updating the value of θ. In
the gas-lift process, θ should be chosen as the gas injection
rate.

The following assumption says that the system has an
equilibrium point for each given pair of θ and d.

Assumption 1. There exists a smooth function l : R→ Rn
such that f(x, α(x, θ), d) = 0 if and only if x = l(θ, d).

When the system state is sitting at the equilibrium point
l(θ, d), we have

y = g(l(θ, d), d) := Ψ(θ, d). (6)

The static map Ψ is called the output equilibrium map and
is the gas-lift performance curve in the gas-lift process. The
following assumption says that for each given disturbance
d, it is possible to manipulate the value of θ to achieve a
maximum system output.

Assumption 2. There exists a smooth function z(·) : Rl →
R such that, for each d the output equilibrium map Ψ has
a maximum at θ∗ = z(d); and hence

∂Ψ

∂θ
(θ∗, d) = 0

∂2Ψ

∂θ2
(θ∗, d) < 0

(7)

A typical map Ψ for the gas-lift process is illustrated in
Figure 3. To save space, we will use Ψ′θ and Ψ′′θ to denote
the first and second partial derivatives of the map Ψ w.r.t
its first argument respectively.

An extremum seeking scheme here is meant to be a
feedback mechanism of updating the parameter θ such that
it will eventually reach θ∗, without the knowledge of θ∗ and
the static map Ψ.

4. PROPOSED METHOD

In section 2, we have seen that abruptly changing distur-
bance may lead to undesirable output when applying a
classic extremum seeking scheme. To tackle this issue, we
propose a simple yet effective extension to the classical ex-
tremum seeking scheme where the effect of the disturbance
on the output y is approximated and mostly removed. For
this purpose, in this work, we assume that the disturbance
can be accurately measured or observed.



The proposed scheme is shown in Figure 4, in which one
sees a block that maps the disturbance d to a quantity esti-
mating the effect of the disturbance in the output y. This is
called the disturbance rejection model. Unlike the classical
extremum seeking scheme, in which the system output y is
directly used as the feedback signal, the proposed scheme
removes the estimated effect of the disturbance on the
output and uses the resultant signal as the feedback.

We now elaborate how the disturbance rejection works
in discrete time. By doing this, we are not only able
to avoid issues in dealing with discontinuous disturbance
but also directly addressing the implementation in digital
computers. The subscripts of y, d, θ below denote discrete
time steps.

In this process, we assume that the dynamics of the plant
system is sufficiently fast such that x = l(θ, d). Then we
can write the output y1 using Taylor series expansion as

y1 ≈Ψ(θ1, d1)

= Ψ(θ0, d0) + Ψ′θ(θ0, d0)∆θ0 +

Ψ′d(θ0, d0)∆d0 + o(∆θ0,∆d0)

= Ψ(θ0, d0) + ∆yθ0 + ∆yd0 + o(∆θ0,∆d0)

≈ y0 + ∆yθ0 + ∆yd0 + o(∆θ0,∆d0). (8)

where we have defined

∆yθ0 = Ψ′θ(θ0, d0)∆θ0 ∆yd0 = Ψ′d(θ0, d0)∆d0,

∆θ0 = θ1 − θ0 ∆d0 = d1 − d0,
with Ψ′d being the partial derivative of Ψ with respect to
its second argument d.

It is clear from (8) that the term ∆yd0 accounts for the
main part of the unwanted effect of disturbance in the
output y. Hence naturally we may reject most of the effect
of disturbance by subtracting ∆yd0 from y1.

From (8) we have

y1 −∆yd0 ≈ y0 + ∆yθ0 + o(∆θ0,∆d0) (9)

Let us proceed one time step further. Similar to the
derivation in (8), one obtains

y2 ≈ y1 + ∆yθ1 + ∆yd1 + o(∆θ1,∆d1). (10)

It follows that

y2 − (∆yd1 + ∆yd0) ≈
(y1 −∆yd0) + ∆yθ1 + o(∆θ1,∆d1). (11)

Following this patten of derivation, we have that if a new
signal yes is defined as

yes0 = y0,

yesk = yk −
k−1∑
i=0

∆ydi , ∀k = 1, 2, ...,
(12)

then yes (approximately) follows the recursive update: for
k = 0, 1, 2, ...,

yesk+1 ≈ yesk + ∆yθk + o(∆θk,∆dk). (13)

Note that if we ignore the higher-order term in (13) then
the change of yes (almost) only contains the response of

Fig. 4. Modified Extremum seeking scheme applied to
system (4) with the disturbance rejection block

the actual output y to the dither signal which manipulates
the optimising parameter θ. It is for this reason that we
can use the signal yes to replace the output y in the
classical extremum seeking scheme as the feedback signal.
In other words, in view of (12), we remove the accumulated

effect of the change of the disturbance
∑k−1
i=0 ∆ydi from

yk. The direct consequence is that the actual gradient
w.r.t. θ can be recovered even with the presence of abrupt
changes in the disturbance d. In fact, the statement holds
if the higher-order term o(∆θk,∆dk) is negligible or can
be mostly ”filtered out” by the series of blocks of high-
pass filter, dither correlation, and low-pass filter in the
extremum seeking scheme.

As mentioned, yes is the output seen by the extremum
seeking controller. Let us define the corresponding output
equilibrium map seen by the extremum controller as

Ψes(θ, d) := yes(θ, d) (14)

In (12), by removing the effect of the change of the

disturbance
∑k−1
i=0 ∆ydi from yk, we essentially shift the

output equilibrium map seen by the extremum seeking
controller by the same quantity

Ψes(θk, dk) = Ψ(θk, dk)−
k−1∑
i=0

∆ydi , ∀k = 1, 2, ..., (15)

Taking the partial derivative of (15) w.r.t. θ,

Ψes′

θ (θk, dk) = Ψ′θ(θk, dk), ∀k = 1, 2, ..., (16)

This shows that, by shifting the output equilibrium map,
the optimal value z(dk) (see Assumption 2) remains un-
changed. This is schematically represented in Figure 3,
where the shifted map Ψes(θ, d2) and the corresponding
gradient are shown in green dotted curves.

According to the diagram of the extended extremum-
seeking scheme (Figure 4), the disturbance rejection model

is supposed to give out the value
∑k−1
i=0 ∆ydi at time k.

This requires the knowledge about the partial derivative
Ψ′d, which we will address in Section 4.1.

Also note that the proposed extension of the extremum
seeking scheme reduces to the classical one if the distur-
bance is constant as in this case we would have yes = y.



4.1 On modelling the disturbance rejection block

As mentioned earlier, in principle, the disturbance rejec-
tion model shall output the accumulated values of ∆yd.
However, this can be realized only when the partial deriva-
tive Ψ′d is precisely known. It is clear that Ψ′d describes
how the (steady-state) output changes due to the change
of the disturbance. Sometimes, this relationship can be
modeled quite accurately by certain physical laws. When
this cannot be easily achieved, we may identify the model
using the measured disturbance and its response in the
output y. Many system identification methods are avail-
able in literature for this purpose. Step response modelling
is one of the simplest and easiest methods to identify such
models and are common in most Model Predictive Control
(MPC) applications, see Zhu (2001), Maciejowski (2002),
Zhu et al. (1991) etc. Here, a step change is induced in the
disturbance variable and the corresponding change in the
performance function y is recorded. The empirical model is
then identified using SISO, finite impulse response (FIR)
or autoregressive (ARX) methods as described in Strand
and Sagli (2003).

The simplest way would be to carry out the model iden-
tification when the optimising parameter θ is fixed. This
would, however, suspend the extremum seeking process.
Alternatively, we may identify the disturbance rejection
model online while the extremum seeking scheme is ongo-
ing using closed loop identification methods as described
in Zhu and van den Bosch (2000). For this purpose, we
can either design the disturbance to have a special form
such that its response in the output y can be distinguished
from that of the dither signal, or utilize the fact that,
for relatively large disturbance d, it would be the case
that ∆yd >> ∆yθ (since the dither signal has very small
magnitude) and the change of y is then roughly ∆yd. More
details about this online identification/adaptation will be
presented in future work.

4.2 Disturbance rejection for constrained extremum seeking

As described earlier, the method proposed in this paper
shifts the static map Ψ when an abrupt change in the
disturbance occurs (15). If not properly addressed, this
can cause problems when handling constraints. Consider
a constrained extremum seeking problem of the form,

θ∗ = arg max y (17)

s.t.
y < ymax (18)

where constraints are imposed on the output y. The con-
straints are handled by converting it to an unconstrained
problem as shown in Tan et al. (2013)

θ∗ = arg max J = [y −max(0, y − ymax)] (19)

In such cases, to preserve the constraint fulfillment, the
effect of the disturbance on the performance function
must be subtracted from the modified performance cost
J instead of the measured performance function y,

∆ŷθ = ∆J −∆ŷd (20)

By enforcing the constraints before shifting the static map,
we can ensure that the constraint handling will not be
affected by the disturbance rejection scheme.

5. SIMULATION RESULTS

The proposed method was tested using an application
example of gas lift optimisation. Modelling a gas lifted
well is not the focus of this paper and many gas lifted
well models are available in literature, see Peixoto et al.
(2015) and Aamo et al. (2005). The partial derivative Ψ′d
was identified using step response models.

In the first simulation, the wellhead pressure decreases
from 30bar to 20bar (∆dk = −10bar) at sampling instant
k = 200, when the dither signal a sinωt is positive.
This disturbance changes the gas lift performance and
causes an abrupt change in the oil rate (∆ydk = 21).
The increase in the oil rate when correlated with the
sinusoidal perturbation causes the estimated gradient ξ
to increase sharply. This causes an undesirable overshoot
in the optimal gas lift rate set by the extremum seeking
controller. This is shown in Figure 5 in blue.

The same scenario was then tested with the method
proposed in this paper, where the model from the wellhead
pressure to the oil rate is assumed to have almost no model
error. In this case, when the change in the disturbance
∆dk = −10bar occurs at k = 200, the estimated effect
of the disturbance on the performance function ∆ydk is
subtracted from the measured oil rate yk. This is shown in
Figure 5, where the pre-conditioned cost yes has no abrupt
changes. Therefore, the output yesk given to the extremum
seeking scheme is shifted to cancel out (almost) entirely
the abrupt change in the measured oil rate. Thus the pre-
conditioned cost yes only contains the sinusoidal changes
caused by the input perturbation, and the optimal gas lift
rate set by the extremum seeking scheme converges to the
optimal point without causing any undesired deviation.
This is shown in Figure 5 in red.

To test the method where the model from the disturbance
to the performance function is not very accurate, the same
scenario was simulated with a model error ε = ±20%. In
the case with ε = 20%, when the change in the disturbance
∆dk = −10bar occurs at k = 200, the disturbance
rejection model overestimates the effect of the disturbance
on the performance function. The performance function
yesk given to the extremum seeking scheme is overcorrected.
The relatively small abrupt increase in the performance
cost seen by the extremum seeking controller , causes the
optimal gas lift rate to increase slightly before converging
to the optimal point. This is shown in Figure 5 in yellow.

In the case with ε = −20%, the disturbance rejection
model underestimates the effect of the disturbance, which
causes the optimal input to undershoot slightly before
converging to the optimal point. This is shown in Figure 5
in purple. Although, due to model error, the effect of the
disturbance is not entirely nullified, most of the abrupt
change in the performance function is compensated and
the undesired oscillations in the gas lift rate set by the
extremum seeking controller have significantly reduced.

In an other scenario, shown in Figure 6, the same dis-
turbance (∆dk = −10bar) occurs at k = 150, when the
dither signal a sinωt is negative. In this scenario, the
increase in the oil rate when correlated with the input
perturbation causes the estimated gradient ξ to decrease
rapidly contrary to the previous case. This causes an



Fig. 5. simulation results 1. The classical extremum seek-
ing scheme is shown in blue, the proposed method is
shown in red, the proposed method with 20% model
error in yellow and -20% model error in purple.

Fig. 6. Simulation results 2 where the same disturbance
causes an undesired oscillation in the opposite direc-
tion

undesirable undershoot in the optimal gas lift rate set by
the extremum seeking controller. The proposed method
was then tested when the disturbance rejection model is
near accurate (ε ≈ 0%), overestimates (ε = 20%) and
underestimates (ε = −20%). As seen from Figure 6, in
this case the proposed method also allows one to avoid
the large transient deviations observed in classic ESC.

6. CONCLUSION

In this paper, we presented a simple extension to the clas-
sical extremum seeking scheme to improve its robustness
to abrupt changes in the disturbance. The preliminary
results of the proposed method tested on the gas-lift sys-
tem example show the improvement in the performance
of the extremum seeking controller. A brief overview of
model identification for the disturbance rejection block
was discussed. The effect of the model error and possible
directions to improve the robustness were also discussed.

Although we understand that the proposed method might
be restrictive due to the requirement of the disturbance
model to be known, the methods described in section 4.1
are commonly used in many MPC applications. However,
work on developing a method that removes this restriction
is ongoing and is for future work.
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