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1. INTRODUCTION

Economic model predictive control (EMPC) is a recent
development of MPC where the usual quadratic objective
is replaced by an economic objective reflecting the real
cost of operation (Ellis et al., 2014). The target in EMPC
is hence to directly minimize the cost of operation whereas
the usual target in MPC is to keep the process close
to a predetermined steady-state or trajectory (sometimes
determined by a supervisory economic optimization layer).
A benefit of this approach is that the controller itself is
economically aware, which may lead to better economic
performance during transient modes of operation (Ellis
et al., 2014). In this work we consider the use of EMPC
to utilize the extra degrees of freedom that exist in
fat systems and also address the problem of handling
unmeasured disturbances.

A fat system has more inputs than outputs and hence pro-
vides the controller with extra degrees of freedom. These
degrees of freedom may be appropriately utilized in EMPC
where economic optimization is used to determine which
combination of inputs is currently the most beneficial. In
standard MPC, the extra degrees of freedom may instead
cause problems with uniqueness, and systems are therefore
frequently squared where some potential control inputs
are locked at so called design values, thereby reducing the
available actuation power to deal with e.g., large distur-
bances.

A complicating factor in EMPC is that the EMPC objec-
tive is likely to be monotone in some of the control inputs
(decision variables). For example, costs of energy and raw
materials typically scale linearly with usage. Therefore
EMPC may be expected to often operate with active con-
straints, which makes it sensitive to disturbances and noise
since even small disturbances may move the plant into an
infeasible region. To ensure feasibility, it will in general
be necessary to back away from the constraints. In robust
MPC, a set-based disturbance model is introduced and
the constraints are required to be fulfilled for all possible
disturbance realizations in the set. This corresponds to a
worst case approach and may as such be very conservative
(Bemporad and Morari, 1999; Mayne, 2014). An arguably
more general but also more complex framework is pro-
vided by stochastic MPC in which a stochastic disturbance
model is employed. In stochastic MPC the constraints are
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frequently interpreted as probabilistic and only required
to be fulfilled with a specified probability (Mayne, 2014).
However, both the robust and the stochastic approach are
computationally expensive and may be difficult to scale
for larger applications.

Here we consider an adaptive approach where instead of
introducing a disturbance model we adapt the constraints
in the EMPC optimization problem based on feedback
from the actual closed loop cost. The desired back off is
achieved by adding a bias to the true constraints when
solving the EMPC optimization problem. To locate the
economically best constraint bias, we close an outer loop
where the method of simultaneous perturbation stochastic
approximation (SPSA) is used to minimize the achieved
closed loop stage cost with respect to the constraint bias.

We hence consider two sets of constraints: the true con-
straints relevant for the problem, and an adapted set of
constraints used in the optimization problem solved at
each iteration. Assume that the relevant constraints are
soft such that they may be added to the problem as a large
term in the stage cost whenever they are violated. We may
then express the optimization problem to be solved at each
sampling instant as:

min
u

Np∑
k=0

`(xk, uk, c)

Subject to:

x+ = f(x, u)

umin ≤ uk ≤ umax, k = 0, . . . , Np

The stage cost ` : Rnx × Rnu × Rnc → R includes the
soft constraints with terms like C max(0, xmin + c − x),
where C is a large multiplier and c is the bias added to the
constraint. A cost is incurred only if the biased constraint
is violated, i.e., x < xmin + c, otherwise the cost is zero.

We define the closed loop stage cost as the real cost of
operating the system, i.e., the stage cost evaluated for the
measured states xm with the original constraints:

J(c) = `(xm(c), u(c), 0).

The cost function J will be stochastic in nature due to
the disturbances present in the process, however, it will
also depend on the constraint bias c which affects the
closed loop trajectory of the states and inputs through
the optimization problem above. We now want solve the
problem



min
c

∞∑
i=0

J(ci),

by adapting c. Here we perform the adaptation with SPSA
(Spall, 1998).

2. EXAMPLE: REGULATION OF HOT WATER
TANK

Consider the heater-tank system illustrated in Fig. 1. The
aim is to keep the level h and temperature T of the tank
within bounds (see Tab. 1) at minimum cost. The control
inputs are the inflow Fin, and the effect of two different
heaters, Pe and P sp

p . Heater Pp is both more powerful and
cheaper to operate, but contains slow first order dynamics
whereas Pe has direct effect. The outflow Fout and the inlet

T0

Tin, Fin

Pp

Burner

P sp
p
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h T Fout

Figure 1. Tank with heated inflow.

temperature T0 acts as stochastic disturbances. The exact
nature of these disturbances is assumed unknown, i.e., no
disturbance model is available.

Table 1. Bounds and costs for CVs and MVs.

T h Pp Pe Fin

LB 19.5 ◦C 0.95 m 0 kW 0 kW 0.6 l/min
UB 20.5 ◦C 1.05 m 60 kW 20 kW 24 l/min
Cost - - 0.5kr/kW 1.5kr/kW 20 kr/m3

The heater-tank system may be modeled as

A
dh

dt
= Fin − Fout

dT

dt
=
Fin(Tin − T )

Ah
, Tin = T0 + (Pe + Pp)/(CFin)

dPp

dt
=

−Pp + P sp
p

τp

where C is the specific heat of water and A is the cross-
section of the tank. The EMPC prediction model is a
linearized and discretized version of the above. The stage
cost is defined as

l(x, u, c) =Wxx+Wuu+ Cxmin max(0, xmin + c− x)

+ Cxmax max(0, x− xmax)

where x = [h T Pp]T , u = [Fin P sp
p Pe]

T , Wu = [20 0 1.5],

Wx = [0 0 0.5], and Cxmin
= Cxmin

= [104 103 103].

Figure 2 relates the achieved closed loop cost to the bias
added to the lower bound of the level and temperature.
Each colored dot represents the average cost during a
simulation with a constant bias added to the EMPC
problem. The nominal problem, corresponding to the
origin where no bias is added, is clearly associated with
large closed loop cost which is due to frequent constraint
violations. It is hence clearly necessary to back off from

the nominal constraints when disturbances are present.
How much to back off is difficult to see from the figure.
However, a closer examination shows that operating in the
upper right corner is more expensive than operating near
the center of the plot. The solid red line in the figure shows
the path of the constraints during a simulation where the
constraints are adapted using SPSA. As can be seen in the
figure, SPSA moves the constraints to a region of low cost.
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Figure 2. The dots correspond to a Monte Carlo simulation
with different constant constraint biases over a fixed
simulation horizon. The dot colors correspond to the
normalized average closed loop cost. The red solid
line shows the constraints during a simulation where
SPSA is used to adapt the constraints online. The
black cross shows the initial constraints and the
black circle shows the constraints at the end of the
simulation.

3. CONCLUSIONS

EMPC will frequently operate with constraints active
and is thus sensitive to disturbances. We here show how
constraint adaptation can be used to improve closed loop
performance for such cases. The adaptation introduces
negligible overhead compared to standard MPC and is
hence computationally attractive as compared to robust
and stochastic EMPC. Since the adaptation is based
on online measurements, it does not require a priori
knowledge of the disturbances. However, such information
may be incorporated in terms of a more accurate initial
guess, for example as calculated by off-line simulations.
Future work includes investigating different methods of
adaptation, analysis of stability and convergence, and also
tuning considerations.
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