
Parallel Implementation of Riccati
Recursion for Solving Linear-Quadratic

Control Problems

Gianluca Frison ∗ John Bagterp Jørgensen ∗

∗ Technical University of Denmark, DTU Compute - Department of
Applied Mathematics and Compute Science, DK-2800 Kgs Lyngby,

Denmark. (e-mail: {giaf, jbj} at imm.dtu.dk).

Abstract: In both Active-Set (AS) and Interior-Point (IP) algorithms for Model Predictive
Control (MPC), sub-problems in the form of linear-quadratic (LQ) control problems need to be
solved at each iteration. The solution of these sub-problems is usually the main computational
effort. In this paper an alternative version of the Riccati recursion solver for LQ control problems
is presented. The performance of both the classical and the alternative version is analyzed from
a theoretical as well as a numerical point of view, and the alternative version is found to be
approximately 50% faster than the classical one, for systems with many states. A number of
parallel implementations of the alternative version has been proposed and tested.

Keywords: Riccati recursion, LQ control problem, parallel computation

1. INTRODUCTION

The linear-quadratic (LQ) control problem can be consid-
ered the core problem in Model Predictive Control (MPC).
In its classical formulation, it represents an unconstrained
optimal control problem where the controlled system is
linear time-invariant and the cost function is quadratic.
This problem formulation is especially important because
it arises as a sub-problem in Active-Set (AS) and Interior-
Point (IP) algorithms for MPC (Wright (1997); Rao et al.
(1998); Jørgensen et al. (2004)). The solution of these sub-
problems is typically the main computational effort at each
iteration, and this explains the need for efficient solvers.

From a mathematical point of view, the LQ control prob-
lem is an equality constrained quadratic program, and
it can be solved using general solvers for this class of
problems. The cost of this approach is O(N3(nx + nu)3),
where N is the control horizon length, nx is the number
of states and nu is the number of controls (or inputs).

However, it is well known that the KKT system associated
with the LQ control problem is sparse and highly struc-
tured, and this structure can be exploited to obtain more
efficient solvers. In case of dense controlled systems, the
Riccati recursion based solver is known to be the fastest
among a large class of solvers (Frison et al. (2013)).

In this paper, we present two versions of the Riccati
recursion based solver for an extended formulation of
the LQ control problem. For both the classical and the
alternative (called ’factorized’ in Frison et al. (2013))
version, we state a detailed description of the algorithm,
and we suggest and test the use of numerical libraries for
their parallel implementation on shared memory machines.
The implementation of the classical version scales quite
well with the number of threads, since its key routine
(the matrix-matrix multiplication routine) is particularly

parallel friendly. On the contrary, the key routine of the
factorized version (the Cholesky factorization routine) is
not so parallel friendly, and this affects the scalability
of the factorized version. Therefore, we tested a number
of implementations of the factorized version, aiming at
improving its scalability.

The paper is organized as follows. In section 2 we present
an extended formulation of the LQ control problem, and
we state conditions for its solution. In section 3 we present
a general formulation of the Riccati recursion based solver
for the extended LQ control problem. Efficient implemen-
tation of both the classical and the factorized version of
this Riccati solver are presented in section 4. In section 5
we present the libraries used in our tests, and the result
and the discussion of these tests are reported in section 6.
Finally, section 7 contains the conclusion.

2. THE EXTENDED LQ CONTROL PROBLEM

In this paper we consider an extended version of the
classical LQ control problem: in this formulation, the cost
function has a quadratic, a linear and a constants term,
and the constraint (given by the equation describing the
dynamic system) is affine. Furthermore, all matrices are
time variant. The classical and the extended LQ control
problems can be solved by means of Riccati recursion
based solvers at the same asymptotic cost: the cubic
(dominant) terms in the respective cost functions are
identical. The main advantage of the extended formulation
is that it is flexible enough to describe a wide range of
problems (Jørgensen et al. (2012)): in particular, it can be
used as sub-routine in AS and IP methods.

Problem 1. The extended LQ control problem is the equal-
ity constrained quadratic program



min
un,xn+1

φ =

N−1∑
n=0

ln(xn, un) + lN (xN )

s.t. xn+1 = Anxn +Bnun + bn

(1)

where n ∈ {0, 1, . . . , N − 1} and

ln(xn, un) =
1

2

[
x′n u′n

][Qn S′n
Sn Rn

][
xn
un

]
+
[
q′n s′n

][xn
un

]
+ρn

lN (xN ) =
1

2
x′NPxN + p′xN + ρN

The state vector xn has size nx, the input vector un has
size nu, and N is the control horizon length.

Problem (1) can be rewritten in a more compact form as

min
x

φ =
1

2
x′Hx+ g′x

s.t. Ax = b
(2)

where (in the case of N = 3)

x =


u0
x1
u1
x2
u2
x3

 , H =


R0

Q1 S′1
S1 R1

Q2 S′2
S2 R2

P

 , g =


s̃0
q1
s1
q2
s2
p



A =

[−B0 I
−A1 −B1 I

−A2 −B2 I

]
, b =

b̃0b1
b2


where s̃0 = S0x0 + s0 and b̃0 = A0x0 + b0. The matrices
H and A are large and sparse; in particular, H is block
diagonal.

Theorem 1. (KKT (necessary) conditions). If x∗ is a solu-
tion of problem (2), then there exists a vector π∗ of size
N · nx such that[

H −A′
−A 0

] [
x∗

π∗

]
= −

[
g
b

]
(3)

System (3) is the KKT system associated with problem
(2), and in the case of the extended LQ control problem the
KKT matrix is large (of size (2nx +nu)N × (2nx +nu)N)
and sparse.

Sufficient conditions for existence and uniqueness of the
solution of problem (2) are given in the following theorem.

Theorem 2. (Sufficient conditions). Let the matrices P

and

[
Qn S′n
Sn Rn

]
be positive semi-definite, and the matrices

Rn be positive definite for all n ∈ {0, 1, . . . , N − 1}, then
problem (2) has one and only one solution, given by the
solution of the KKT system (3).

The proof of both theorems can be found in Frison (2012).

If the hypothesis of theorem 2 are satisfied and if the ma-
trices Qn, Rn and P are symmetric, then the KKT system
(3) is a symmetric indefinite system of linear equations. In
the following we assume that these hypothesis hold.

3. RICCATI RECURSION FOR SOLVING LQ
CONTROL PROBLEMS

As shown in Wright (1997), the KKT system (3) can be
rewritten in band diagonal form as

R0 B
′
0

B0 −I
−I Q1 S

′
1 A
′
1

S1 R1 B
′
1

A1 B1 −I
−I Q2 S

′
2 A
′
2

S2 R2 B
′
2

A2 B2 −I
−I P





u0
π1
x1
u1
π2
x2
u2
π3
x3


=



−s̃0
−b̃0
−q1
−s1
−b1
−q2
−s2
−b2
−p


(4)

and solved in time O(N(nx + nu)3) by using the Riccati
recursion to factorize the KKT system. A Riccati recursion
based solver for problem (1) is summarized in Algorithm
1 (see Frison (2012); Jørgensen (2005)).

Algorithm 1 Riccati recursion based solver for the ex-
tended LQ control problem (1)

PN ← P
pN ← p
for n = N − 1→ 0 do

Re,n ← Rn +B′nPn+1Bn

Kn ← −R−1e,n(Sn +B′nPn+1An)
Pn ← Qn +A′nPn+1An −K ′nRe,nKn

kn ← −R−1e,n(sn +B′n(Pn+1bn + pn+1))
pn ← qn +A′n(Pn+1bn + pn+1)−K ′nRe,nkn

end for
π0 ← P0x0 + p0
for n = 0→ N − 1 do

un ← Knxn + kn
xn+1 ← Anxn +Bnun + bn
πn+1 ← Pn+1xn+1 + pn+1

end for

4. EFFICIENT IMPLEMENTATION OF THE
RICCATI RECURSION BASED SOLVER

In this section we present a detailed description of two
different implementations of the Riccati recursion based
solver.

We will focus our attention to the case nx > nu: this
means that, at each iteration, the most expensive part is
the computation of the term A′nPn+1An. This expression
has some structure: the left matrix A′n is equal to the
transpose of the right matrix An; furthermore, the central
matrix Pn+1 is symmetric and positive semi-definite (proof
in Frison (2012)). It is possible to exploit this structure,
as shown in the following.

We assume that all matrices are stored in memory in
column-major (Fortran-like) order, and we make use of
optimized BLAS and LAPACK routines for linear algebra
operations. The following discussion can be easily adapted
to the case of row-major (C-like) order, using C wrappers
to BLAS and LAPACK.

4.1 Classical version

In this version, the term A′nPn+1An is implemented as



A′n · (P ′n+1 ·An)

by exploiting the symmetry of the Pn+1 matrix: since the
matrices are stored in column-major order, the best per-
formance in the matrix-matrix multiplication is obtained
if the left matrix is transposed and the right is not. The
two matrix-matrix multiplications are performed using the
BLAS general matrix-matrix multiplication routine dgemm.
The computation of the expression requires roughly 4n3x
flops.

The expressions B′nPn+1Bn and B′nPn+1An are computed
in a similar way, as B′n · (P ′n+1 ·B′n) (cost 2n2xnu + 2nxn

2
u

flops) and (P ′n+1Bn)′ · An (cost 2n2xnu flops, re-using the
already computed expression P ′n+1Bn).

The matrix Re,n is symmetric positive definite (since Rn is
symmetric positive definite, and B′nPn+1Bn is symmetric
positive semi-definite): it can be factorized using the LA-
PACK Cholesky factorization routine dpotrf, obtaining
the lower triangular factor Λn. This costs 1

3n
3
u flops.

About the computation of the term K ′nRe,nKn, we have

K ′nRe,nKn = M ′nR
−1
e,nRe,nR

−1
e,nMn = M ′nR

−1
e,nMn =

= M ′n(Λ′n)−1Λ−1n Mn = (Λ−1n Mn)′(Λ−1n Mn) = L′nLn

where Mn = Sn + B′nPn+1An, and Ln = Λ−1n Mn. The
operation Λ−1n Mn is performed using the BLAS routine
dtrsm, requiring nxn

2
u flops.

The equations for updating vectors are implemented in
a similar way, even if their contribution to the total
computation time is negligible.

In case of unstable systems, numerical evidence shows that
the stability of the algorithm is improved by ensuring
the symmetry of matrix Pn by means of the term Pn ←
0.5(Pn + P ′n) (Jørgensen (2005)). There is not a BLAS
or LAPACK routine implementing this operation, and we
suggest to implement a blocked version in order to reduce
cache misses, with block size equal to the cache line size.

The overall algorithm requires

N
(
4n3x + 6n2xnu + 3nxn

2
u + 1

3n
3
u

)
flops. The algorithm is summarized in Algorithm 2.

Algorithm 2 Efficient implementation of Riccati recur-
sion based solver solver, classical version

PN ← P
pN ← p
for n = N − 1→ 0 do

Re,n ← Rn +B′n · (P ′n+1 ·Bn)
Λn ← chol(Re,n,

′lower′)
Ln ← Λ−1n (Sn + (P ′n+1Bn)′ ·An)
Pn ← Qn +A′n · (P ′n+1 ·An)− L′n · Ln

Pn ← 0.5(Pn + P ′n)
ln ← Λ−1n (sn +B′n · (Pn+1 · bn + pn+1))
pn ← qn +A′n · (Pn+1bn + pn+1)− L′n · ln

end for
π0 ← P0 · x0 + p0
for n = 0→ N − 1 do

un ← −(λ′n)−1(Ln · xn + ln)
xn+1 ← An · xn +Bn · un + bn
πn+1 ← Pn+1 · xn+1 + pn+1

end for

4.2 Factorized version

This version requires all matrices Pn to be positive definite:
a sufficient condition for this is the further hypothesis that
all matrices Qn and P are positive definite Frison (2012).

The term A′nPn+1An is implemented as

(L′n ·An)′ · (L′nAn)

where L is the lower triangular factor of the Cholesky fac-
torization of Pn+1. The advantage of this implementation
is that the product L′n · An can be computed using the
BLAS routine dtrmm, requiring n3x flops, and the product
(L′nAn)′ · (L′nAn) of a matrix and its transposed can
be computed using the BLAS routine dsyrk, requiring
n3x flops. Since the cost of the Cholesky factorization is
roughly 1

3n
3
x flops, the total complexity is roughly 7

3n
3
x

flops.

Using the LAPACK routine dpotrf, the computation of
the lower factor is slightly less efficient than the compu-
tation of the upper factor; on the other hand, the lower
factor gives the advantage that in each matrix-matrix
multiplication the left matrix factor is transposed and the
right matrix factor is not, exploiting the data order in
memory.

In a similar way, the term B′nPn+1Bn is computed as
(L′n · Bn)′ · (L′nBn), at the cost of n2xnu + nxn

2
u (re-using

the factorization of Pn+1), and the term B′nPn+1An is
computed as (L′nBn)′ · (L′nAn), at the cost of 2n2xnu flops
(re-using the products (L′nAn) and (L′nBn)).

The term K ′nRe,nKn is computed again as in the classical
version, except that the term L′n ·Ln is computed using the
BLAS routine dsyrk instead of dgemm. The use of dsyrk
implies that only the lower triangular part of Pn+1 can be
referenced: the terms Pn+1 · bn and Pn+1 · xn+1 are then
computed using the BLAS routine dsymv instead of dgemv.

The total cost of the algorithm is

N
(
7
3n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u

)
flops, lower than the cost of the classical version. In the
case of nx large and nx � nu, the theoretical cost of the
classical version is approximately 12

7 = 1.71 times the cost
of the factorized version. The algorithm is summarized in
Algorithm 3.

5. LIBRARIES

In this section we want to briefly describe the libraries used
in the code to perform linear algebra operations.

5.1 OpenBLAS

The BLAS (Basic Linear Algebra Subprograms) and LA-
PACK (Linear Algebra PACKage) libraries are provided
by OpenBLAS 1 , version 0.2.6. OpenBLAS is an open-
source project (BSD license) that aims to extend Goto-
BLAS to the most recent architectures (e.g. Intel Sandy-
Bridge with AVX instruction set). It provides an optimized
implementation of all BLAS and part of LAPACK rou-
tines: in particular, it provides an optimized implemen-
tation of the Cholesky factorization routine dpotrf. The

1 see http://xianyi.github.com/OpenBLAS/



Algorithm 3 Efficient implementation of Riccati recur-
sion based solver, factorized version

PN ← P
pN ← p
for n = N − 1→ 0 do
L ← chol(Pn+1,

′lower′)
Re,n ← Rn + (L′ ·Bn)′ · (L′Bn)
Λn ← chol(Re,n,

′lower′)
Ln ← Λ−1n (Sn + (L′Bn)′ · (L′ ·An))
Pn ← Qn + (L′An)′ · (L′An)− L′n · Ln

ln ← Λ−1n (sn +B′n · (Pn+1 · bn + pn+1))
pn ← qn +A′n · (Pn+1bn + pn+1)− L′n · ln

end for
π0 ← P0 · x0 + p0
for n = 0→ N − 1 do

un ← −(λ′n)−1(Ln · xn + ln)
xn+1 ← An · xn +Bn · un + bn
πn+1 ← Pn+1 · xn+1 + pn+1

end for

remaining part of LAPACK is the library version 3.4.2
build using OpenBLAS as BLAS library.

OpenBLAS provides a parallel implementation of BLAS
for shared memory machines, and makes use of Pthreads
by default. The number of threads can be chosen by means
of the environment variable OPENBLAS NUM THREADS, or at
run time by using the function openblas set num threads()
in the code. This second option has the advantage to allow
different number of threads in different parts of the code.
Alternatively, it is possible to directly build a sequential
library (without support for multi-threading): if possible,
this second option should be preferred, since it avoids the
overhead associated with the creation and destruction of
threads at run-time.

LAPACK relies upon BLAS for parallelization: in fact,
the LAPACK libraries has been written having in mind
sequential machines, and can exploit parallelism only by
calling parallel implementations of BLAS. This approach,
however, limits the scalability of the code with the number
of threads, especially for medium size problems.

5.2 PLASMA

PLASMA 2 (Parallel Linear Algebra for Scalable Multi-
core Architectures) is a project that aims to provide
efficient parallel implementation of linear algebra routines
on shared memory machines. It is released with BSD
license. We tested the version 2.5.0 of the library. The
approach is completely different compared to LAPACK’s
one: the parallelization is not hidden in the BLAS, but
it is performed to an higher level. PLASMA needs a
sequential implementation of BLAS, and explicitly takes
care of parallelization, making use of Pthreads.

The main features are: tile matrix layout (the matrices are
stored in memory in sub-matrices of contiguous elements),
tile algorithms (exploiting the tale matrix layout, reducing
the cache and TLB misses, and optimizing reuse of data
in cache), dynamic scheduling (the assignment of the
parallel tasks to the processors is made at run time) and
asynchronous algorithms (returning before completion,

2 see http://icl.cs.utk.edu/plasma/

and then allowing a routine to start on the idle processors
even if the previous routine has not completed yet).

PLASMA is under active development and currently pro-
vides many important LAPACK routines (and in partic-
ular the Cholesky factorization routine dpotrf) together
with a tile and asynchronous version of all level 3 BLAS:
this allows us to write the entire Riccati recursion algo-
rithm in tile format.

6. NUMERICAL RESULTS

In this section we consider a number of parallel imple-
mentations of algorithms (2) and (3) on shared memory
machines. We decided to test the following algorithms,
that for simplicity we call v1 to v5:

v1 implementation of algorithm (2), with BLAS and
dpotrf provided by parallel OpenBLAS.

v2 implementation of algorithm (3), with BLAS and
dpotrf provided by parallel OpenBLAS.

v3 implementation of algorithm (3), with BLAS pro-
vided by parallel OpenBLAS and dpotrf provided
by PLASMA (that makes use of sequential Open-
BLAS; in this case sequential and parallel OpenBLAS
are given by the same library, and the switch be-
tween the two is made at run-time by means of
openblas set num threads()).

v4 implementation of algorithm (3), with level 3 BLAS
and dpotrf provided by tile version of PLASMA (that
makes use of sequential OpenBLAS).

v5 implementation of algorithm (3), with level 3 BLAS
and dpotrf provided by tile and asynchronous version
of PLASMA (that makes use of sequential OpenBLAS);
routines working on independent data are gathered
together into sets, and explicit barrier is used among
sets.

The test machine is a HPC node equipped with dual Intel
Xeon X5550 processor (in total 8 cores running at 2.66
GHz, 8 MB level 3 cache per socket) running Scientific
Linux version 6.1. The processor supports the SSE, SSE2,
SSSE3, SSE4 1, SSE4 2 instruction sets.

In figure (1) there are results of numerical tests. About the
test problem, the linear system is a randomly-generated
time-invariant asymptotically-stable one, while the cost
function is strictly quadratic with identity as Hessian: any-
way, the special structure of this test problem has not been
exploited. In all tests only the number of states has been
varied: we investigated the behavior of the proposed algo-
rithms for nx ∈ {4, 8, 16, 32, 64, 128, 256, 1024, 2048, 4096}.
The number of inputs was fixed to nu = 2 (its actual value
does not influence the performance, as long as nu � nx),
and the horizon length to N = 10 (its actual value does
not influence the results of tests since Riccati recursion is
linear in N).

The block size for the tile matrix layout in PLASMA has
been chosen equal to NB = 128: this is a good trade
off between fine-grid parallelism and performance of the
sequential BLAS on matrices of size NB. For values of
nx ≤ NB the PLASMA routines clearly will reduce to a
call to the sequential BLAS, with some overhead. Anyway
the largest matrices, of size 4096, are decomposed into
16·16 = 256 blocks, enough to have a fine-grid parallelism.



-4

-3

-2

-1

0

1

2

1 1.5 2 2.5 3 3.5

lo
g 1

0(
tim

e[
s]

)

log10(nx)

N=10, nu=2, 1 thread

v1
v2
v3
v4
v5

(a) 1 thread

-4

-3

-2

-1

0

1

2

1 1.5 2 2.5 3 3.5

lo
g 1

0(
tim

e[
s]

)

log10(nx)

N=10, nu=2, 2 threads

v1
v2
v3
v4
v5

(b) 2 threads

-4

-3

-2

-1

0

1

2

1 1.5 2 2.5 3 3.5

lo
g 1

0(
tim

e[
s]

)

log10(nx)

N=10, nu=2, 4 threads

v1
v2
v3
v4
v5

(c) 4 threads

-4

-3

-2

-1

0

1

2

1 1.5 2 2.5 3 3.5

lo
g 1

0(
tim

e[
s]

)

log10(nx)

N=10, nu=2, 8 threads

v1
v2
v3
v4
v5

(d) 8 threads

Fig. 1. Comparison of the different implementations of the Riccati recursion based solver, for the solution of problem
(1), for 1,2,4 or 8 threads. Problem size: N = 10, nx varied, nu = 2.

In the test in figure (1a) 1 thread was used. As expected,
the implementations making use of PLASMA (i.e. v3,
v4, v5) suffer a certain overhead for small matrices. For
large matrices, all implementations of algorithm 3 (i.e.
v2, v3, v4, v5) behave in a very similar way, and are
faster than the implementation of algorithm 2 (i.e. v1),
as expected from the theoretical complexity. Anyway, for
very small problems, the latter is the fastest, due to the
better performance of dgemm on small matrices compared
to the others level 3 BLAS and dpotrf routines. The tile
asynchronous implementation v5 is always slightly faster
than the tile synchronous one v4, and this is true also for
a larger number of threads.

As the number of threads increases to 2, in figure (1b),
the overhead associated with implementations making use
of PLASMA (i.e. v3, v4, v5) increases of an order of
magnitude, and it seems proportional to the number of
PLASMA routines used per iteration (1 for v3, 9 for v4 and
v5). For nx ∈ {256, 512} the tile implementations v4 and

v5 are slightly faster than the implementation v2 making
use of parallel OpenBLAS. Anyway for larger systems their
performance is almost identical.

As the number of threads further increases to 4 (figure
(1c)) and 8 (figure (1d)), the trend remains unchanged.
In fact, the overhead associated with the use of PLASMA
routines increases, and then they become competitive with
respect to parallel OpenBLAS only for increasingly larger
systems. For large nx the performance of v4 and v5 is
almost identical to the one of v2, while v3 is slightly
slower. Also the cross-over point between the parallel
OpenBLAS implementations of algorithm 2 and algorithm
3 (respectively v1 and v2) moves toward larger values of
nx, since dgemm (the key routine in v1) is particularly
parallel friendly, while dpotrf (the key routine in v2) is
not.

As a result, on the tested machine implementation v2
making use of OpenBLAS and implementations v4, v5
making use of PLASMA shows an almost identical per-



number of threads
nx 1 2 4 8

4 0.89 0.58 0.58 0.56
8 0.81 0.82 0.83 0.84
16 0.85 0.92 0.81 0.78
32 0.92 0.88 0.86 0.81
64 1.13 0.78 0.69 0.70
128 1.34 0.94 0.83 0.72
256 1.48 1.08 1.00 0.90
512 1.58 1.28 1.18 1.09
1024 1.64 1.55 1.48 1.34
2048 1.68 1.55 1.60 1.52
4096 1.69 1.67 1.64 1.54

Fig. 2. Speed-up of v2 with respect to v1, computed as
timev1/timev2. Problem size: N = 10, nu = 2.

formance. Anyway the result can be different on shared
memory machines with more cores (e.g. PLASMA docu-
mentation reports test on machines with 16 or 32 cores).
We also notice that, in case of loaded machine, PLASMA
shows a smaller decrease in performance compared to
OpenBLAS.

In the following we thus analyze more deeply the per-
formance of implementations v1 (implementing the clas-
sical version in algorithm 2) and v2 (implementing the
factorized version in algorithm 3), both making use of
OpenBLAS.

In figure 2 there is a table showing the relative speed-
up of implementation v2 compared to v1, as function of
the number of states nx and the number of threads. For
a given number of threads, implementation v1 is more
efficient for small nx, while v2 is more efficient for large
nx. The cross-over points moves toward lager values of nx
as the number of threads increases: this means that v1
scales better with the number of threads compared to v2.
Looking at the rows of the table, we can arrive at the same
conclusion. In particular it is interesting to notice as, for
nx = {64, 128, 256}, implementation v2 is faster in case of
1 thread, but slower in case of 8.

In figure 3 there is a table showing, for both v1 and v2,
the speedup obtained using more threads, with respect to
the sequential code. The parallel code is faster than the
sequential one for nx ≥ 64 for v1, and nx ≥ 128 for v2.
The efficiency in the use of all available cores increases
with the problem size, and again we notice as v1 has a
better scalability than v2.

7. CONCLUSION

In this paper we presented two version of Riccati recursion
based solver for an extended formulation of the LQ control
problems. Algorithm 2 has a worst theoretical complexity
but it performs better for small instances; algorithm 3 has
a better theoretical complexity, that gives it an advantage
for large instances. As the number of threads increases,
implementations of algorithm 2 scale better than imple-
mentations of algorithm 3. This is due to the fact that the
key routine in algorithm 3, the Cholesky factorization, is
not parallel friendly.

We tested a number of implementations of algorithm 3,
one making use of OpenBLAS, 3 making use of PLASMA

v1 v2
number of threads number of threads

nx 2 4 8 2 4 8

4 0.61 0.59 0.61 0.40 0.39 0.39
8 0.25 0.25 0.21 0.26 0.26 0.21
16 0.33 0.31 0.31 0.36 0.30 0.29
32 0.60 0.61 0.50 0.57 0.57 0.44
64 1.24 1.63 1.29 0.86 0.99 0.80
128 1.61 2.53 2.43 1.13 1.58 1.31
256 1.77 3.07 3.36 1.30 2.08 2.04
512 1.88 3.50 5.75 1.53 2.63 3.97
1024 1.91 3.65 6.29 1.81 3.28 5.13
2048 1.96 3.78 7.03 1.81 3.60 6.38
4096 1.95 3.83 7.41 1.92 3.70 6.76

Fig. 3. Speed-up obtained using multiple threads, com-
pared to sequential code. Problem size: N = 10,
nu = 2.

(in the combinations synchronous/asynchronous tile al-
gorithms, and making use or not of the parallel level 3
BLAS provided by PLASMA). On the test machine (with
8 cores), the use of PLASMA does not give significant
advantages with respect to OpenBLAS.

As future work, further tests may be performed on ma-
chines with a larger number of cores.

REFERENCES

Wright, S.J. (1997). Applying new optimization algorithms
to model predictive control. Fifth International Confer-
ence on Chemical Process Control CPC V, 147-155.
CACHE, Tahoe City, California.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of interior-point methods to model predictive
control. Journal of Optimization Theory and Applica-
tions, 99(3), 723-757.

Jørgensen, J.B., Rawlings, J.B., and Jørgensen, S.B.
(2004). Numerical methods for large scale moving hori-
zon estimation and control. In DYCOPS 7. IFAC, Cam-
bridge, MA.

Frison, G. (2012). Numerical Methods for Model Predictive
Control. M.Sc. thesis, Department of Informatics and
Mathematical Modelling, Technical University of Den-
mark, Kgs. Lyngby, Denmark.

Jørgensen, J.B., Frison, G., Gade-Nielsen, N.F., Damman,
B. (2012). Numerical Methods for Solution of the Ex-
tended Linear Quadratic Control Problem. Proc. IFAC
Conf. Nonlinear Model Predictive Control (NMPC’12).
Noordwijkerhout, The Netherlands, 2012, pp. 187-193.

Jørgensen, J.B. (2005). Moving Horizon Estimation and
Control. Ph.D. thesis, Department of Chemical Engi-
neering, Technical University of Denmark, Kgs. Lyngby,
Denmark.

Frison, G., Jørgensen, J.B. (2013). Efficient Implemen-
tation of the Riccati Recursion for Solving Linear-
Quadratic Control Problems. Submitted to IEEE MSC
2013.


