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22nd Nordic Process Control Workshop (NPCW) 

Welcome to the 22nd Nordic Process Control Workshop (NPCW22) and Technical University of 
Denmark. The NPCW22 is held this year at the Technical University of Denmark (DTU) and jointly 
organized by DTU Compute and PROSYS research center at DTU Chemical Engineering.   

The Nordic Process Control Workshop has been and continues to be an informal gathering that brings 
together academics and researchers from Nordic universities as well as professionals from industry. The 
workshop offers an excellent opportunity to present recent developments, exchange ideas, to network 
and engage with both academic and industrial communities in the field of process-simulation, process-
control and process-optimization applied across multiple sectors and domains. The workshops are 
organized once every one and half year and the venue alternates between Denmark, Finland, Norway 
and Sweden.  

The workshop is organized by the Nordic Working Group on Process Control currently consisting of 
the following members: Gürkan Sin, DTU, Denmark (2009; 2015) (Chair), Wolfgang Birk, Luleå 
University of technology (2018) (Co-chair), Kurt Erik Häggblom, Åbo Akademi, Finland (1998; 2004; 
2010; 2016) (Past chair), Elling W. Jacobsen, KTH, Sweden (1994; 2000; 2006; 2012, 2018), Sigurd 
Skogestad, NTNU, Norway (1994; 2000; 2012, 2018), Jeno Kovacs, Foster Wheeler Co., Finland 
(2010; 2016), John Bagterp Jørgensen, DTU, Denmark (2009; 2015), Jan Peter Axelsson, Vascaia, 
Sweden (1997; 2003; 2009; 2015), Annika Leonard, Vattenfall, Sweden (2004; 2010; 2016), Alf 
Isaksson, ABB, Sweden (2004; 2010; 2016), Bernt Lie, Telemark Univ. College, Norway (2007; 2013), 
Hans Aalto, Neste Jacobs, Finland (2007; 2013), Bjørn Glemmestad, Yara, Norway (2007; 2013), Tore 
Hägglund, Sweden (2009; 2015), Torsten Wik, CTH, Sweden (2013), Krister Forsman, Perstorp, 
Sweden (2013), Christer Utzen, GEA Process Engineering A/S, Denmark (2015), Iiro Harjunkoski, 
ABB Germany/Aalto Univ., Finland (2016) 
Morten Hovd, NTNU, Norway (2018), Johannes Jäschke, NTNU, Norway (2018), Jakob Kjøbstedt 
Huusom, DTU, Denmark (2018). 

An important event of the workshop is the Nordic Process Control Award given by the Nordic Working 
Group on Process Control. The Award is given to outstanding process control professionals, who have 
made “lasting and significant contributions to the field of process control”. Nordic Process Control 
Award will be given to Prof. Nina Thornhill at NPCW22 in recognition of her lasting and significant 
contributions to the field of process control and automation. We congratulate Prof. Thornhill and look 
forward to her award lecture entitled “Discovery through process data analytics”. 

On behalf of the local organizing committee, we wish to thank many of our PhD and postdoctoral 
students for their help during the organization among others we wish to acknowledge the contribution 
of especially Merve Öner, Nikolaus Vollmer, Emil Krabbe Nielsen, Ergys Pahija and Soonho Hwangbo. 
Moreover, we also would like to thank Mrs. Anja Ninett Jensen for her excellent secretarial support 
during the organization of the event.   

Finally, we hope you will enjoy the workshop which promises to provide a platform for rich scientific 
and social activities together with critical discussions, networking and inspiring ideas for further 
collaboration across the board in the field of process control. 

Lyngby, August 2019 

Gürkan Sin,
DTU Chemical Engineering

Jakob Kjøbsted Huusom,
DTU Chemical Engineering 

John Bagterp Jørgensen 
DTU Compute
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Identification of Low-Order Processes Using Ramp Input 

Pasi Airikka, Mikko Numminen 

Tampere University of Applied Sciences, Kuntokatu 3, 33520 Tampere, 
Finland (Tel: +358 40 587 2730; e-mail: pasi.airikka@tuni.fi, mikko.numminen@tuni.fi). 

Abstract: Step signals are dominant transient inputs used for exciting processes for process 
identification. Several simple graphical methods are available for estimating process model parameters 
that capture the essence of the process dynamics. However, a process can also be excited by a ramp input. 
The resulted ramp response can be equally used for estimating the process model parameters. This paper 
introduces a simple graphical process model identification procedure for some typical low-order single-
input single-output transfer function models. The proposed method requires no data storage or 
computational tools for data analysis but instead allows a fast and straightforward way to access the 
process dynamics. 

Keywords: Identification, process, ramp input, transfer function. 

1. INTRODUCTION

Process model identification is a cornerstone of control 
engineering. Control design and tuning require a process 
model that enables analysis both the identified project and the 
closed-loop system after closing the feedback loop. In most 
cases, for single-input single-output systems, the process 
model is of low-order capturing the essential process 
dynamics for an upper-limited frequency range that is 
adequate for control design (Åström & Hägglund, 1995). 

To excite the process to be identified, there are transient 
inputs such as impulse, step and ramp function that are 
applicable. There are many reasons for selecting an input 
among many candidates (Antoulas & Anderson, 1999). 
Equally, control engineering literature recognises several 
methods for estimating a process model for transient 
responses, in particular for step responses such as those 
presented by Åström and Hägglund (1995) Vilanova and 
Visioli (2012). The known methods, however, typically 
neglect ramp inputs by favouring step or impulse inputs. 
Impulse inputs are primarily recommended for integrating 
systems and step inputs are both non-integrating and 
integrating systems (Visioli & Zhong, 2011). 

Ramp inputs are equally applicable for process identification 
(Ahmed, 2010). The resulted ramp response allows to 
identify key model parameters equally to impulse and step 
responses. For identification, using a ramp input is not nearby 
as common as using a step input. However, there are cases 
when they are applicable. An automation system or a 
controller may have a push button for setting the manual 
control value. By pushing the button for a limited time period 
or several times in a row, it generates a linearly changed 
input signal, that is, a ramp input, for a process. The resulted 
response is a ramp response. 

In some cases, an automation system may filter a step-wise 
input signal in manual mode through an integrator resulting 
in a ramp input. Similarly, it may be safer to excite a process 
by a sequence of small consecutive steps instead of one 
bigger step. Once again, the resulted input is a ramp input 
which eventually generates a ramp response. 

Moving computationally between impulse, step and 
responses is rather solid. By integrating an impulse response 
with respect to time, a step response is generated. By 
integrating it twice, a ramp response is generated. Similarly, 
through derivation of a ramp response with respect to time, a 
step response is obtained. And by repeating that, an impulse 
response is available. Obviously, any ramp response could be 
returned back to a step response allowing to use any of those 
numerous identification methods available in literature. 

However, in this paper, it is shown that a ramp response can 
be used as such for process identification. This saves time 
and effort as there is no need for any computation. And even 
further, it is shown that identifying process model dynamics 
is even simpler with ramp responses than that of step 
responses as the interpretation of the ramp response is more 
straightforward. The purpose of the presented identification 
method is to provide with a simple and a graphical way to 
identify a process model without any further computation or 
data analysis. 

There are sources presenting bits and pieces of applying ramp 
excitation. But the topic is rather scattered among control 
engineering literature and typically rather limited space is 
given to ramp responses resulting in a lack of formal 
identification guidelines. Furthermore, literature typically 
deals with a first-order delay-free model ignoring both dead 
time and other low-order model types. However, the book 
written by Seborg et. al (2011) dedicates a whole page for 
introducing an identification method for a FOPDT (First-
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Order Plus Dead Time) process model. Owing to their 
contribution, this paper expands the very same method for 
some other simple, low-order process models. So far, the 
authors have not come across with other sources treating a 
ramp identification for linear, time-invariant systems and that 
initiated writing this paper. Yet, the authors believe that the 
topic has been treated in detail along the past and therefore 
they would be grateful for receiving information of such a 
source. 

This paper provides with a ramp response -based 
identification procedure for four different low-order, linear, 
time-invariant process model types with no restrictions on the 
model parameters. The paper contains both explicit equations 
but, more importantly, the proposed identification procedures 
with illustration.  

2. RAMP INPUT

A ramp input signal with a rate of change of 
0r determined by a user or a computer is given as 

0 ,)( ttrturamp (1) 

Its Laplace-transformed signal is a double-integrator 

2/)( srsuramp (2) 

For a unit ramp response 1r  but the only requirement for 
its value range is basically 0r . Figure 1 shows ramp input 
signals for different ramp rates. 

R
am

p 
in

pu
t

Fig. 1. Ramp input signals with different ramp rates (r = 0.5, 
1, 2). 

The ramp input signal can be generated from an impulse or a 
step input using an integrator. Figure 2 illustrates generation 
of a ramp input signal using a rate of change with a step input 
and an integrator. Any input, and similarly any response, 
could be translated to any other form by either derivating or 
integrating with respect to time. As this would require 
computational tool and data storage for real identification 

data, this relationship between signals is not used in the 
proposed method by any means. 

Fig. 2. Ramp input signal generation. 

In practice, the ramp input is terminated at a certain point and 
either kept at constant or driven back to the starting level. 
However, in this study, only the linearly changing ramp input 
signal is of significance and the proposed identification 
method does not make use of the information after 
termination of the ramp input experiment.  

3. RAMP RESPONSES TO SELECTED MODEL TYPES

3.1 First-Order Plus Dead Time model 

The most common process model used in both literature and 
practice for presenting the relation between process input and 
output is a First-Order Plus Dead Time (FOPDT) model. It 
contains three model parameters to be identified and it can be 
presented as a transfer function as below 

Dse
Ts

ksP
1

)( (3) 

The process model parameters are static gain k , time 
constant T  and dead time D . The assumption is that the 
parameters satisfy the following requirements 

0 and 0 ,0 DTk . 

The ramp response )(sy of (3) is now given as 

Ds
ramp e

Tss
rksusPsy

)1(
)( )()( 2 (4) 

The Laplace-domain response can be transformed to a time-
domain representation using an inverse Laplace transform 
resulting in an ordinary differential equation 

)()()( Dtrktyty
dt
dT (5) 

The solution of (5) is 

)1()()( /)( TDteTrkDtrkty  (6) 

For processes with a dead time, the time interval Dt0 is 
not of significance as the ramp response is zero during the 
interval. The ramp input being started at 0t as given by 
(3), the take-off time instant Dt where the ramp response 
leaves zero is, however, of most significance for 
identification. 

s
1 )(sP

Change 
rate r 

Integrator Process 

Step input Ramp input Ramp 
response y 

s
1

Integrator 
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In literature, the solution (6) is often given only to a process 
model without dead time ( 0D ) leading to a solution 

)1()( /TtTerktrkty (7) 

which is obviously less applicable for identification as it 
restricts the method only to processes with no dead time. 

Ramp responses for three static process gain values of 0.5, 1 
and 2 are plotted in figure 3 with time constant 10T and 
dead time 5D . The static error remains unchanged if the 
static process gain is 1 but increases for static gain smaller 
than 1 and even crosses with a ramp input signal eventually 
for static gain bigger than 1. This observation serves as a 
classification basis for separating processes with static gain 
smaller or larger than one. However, it will be shown later, 
that the static gain can be estimated more precisely using just 
the same ramp response. 

R
am

p 
re

sp
on

se

Fig. 3. Ramp responses to a FOPDT model for different 
process gain (k = 0.5, 1, 2) with 5D and 10T . 

The ramp response (6) has an interesting property of 
approaching to a straight line btatys )( for large t

)(
   ),()()(

TDrktrk
DTtTDtrktyty s (8) 

The straight line )(tys has a slope of rka and a constant
)( TDrkb  with a zero 0)( ss ty  at TDts .

There is an error signal between input (1) and output (8) as 
given in (9). The error increases with time for 1k . For unit 
gain processes, the error remains stationary.  

)()1()( TDkrtkrte (9) 

For processes with 1k , the ramp response crosses with the 

ramp input at 
1

)(
k

TDkt . Figure 4 shows ramp input (1)

and response for a FOPDT model (7) with a fitted straight 
line (8) for the response. Figure 5 shows how the FOPDT 
model parameters can be graphically estimated through 

reducing the ramp response to a straight line as given in (8). 
The process gain k is calculated as a slope of the ramp 
response as soon as the ramp response shows a constant rate 
of change. The dead time D is determined as a time interval 
between starting the ramp input and a take-off moment for 
the ramp response. The fitted line to the ramp response with a 
crossing point to zero-level (zero of the straight line) yields 

TD allowing separation as soon as the dead time has been 
estimated. 
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Fig. 4. Ramp responses to a FOPDT model with a fitted 
straight line for large t. 
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Fig. 5. Identifying FOPDT model parameters using a ramp 
response. 

Figure 6 illustrates what typically is given for readers 
regarding ramp responses. The figure illustrates a ramp 
response and correctly introduces how time constant T could 
be identified using both the ramp input and the ramp response 
signals. The proposed, rather appealing method, is however, 
applicable only to FOPDT process with a unit process gain 
and with a unit ramp input with no dead time. These 
assumptions make the usage of the proposed method rather 
restricted.  
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Fig. 6. Typical visualisation of ramp response showing how 
time constant can be determined. 

3.2 Second order Plus Dead Time model 

The identifiable process may have two time constants. For 
simplicity, the time constants are assumed to be equal 
resulting in a Second-Order Plus Dead Time (SOPDT) model 

Dse
Ts

ksP 2)1(
)( (10) 

The model involves three parameters: static gain, time 
constant and dead time.  The value ranges of the parameters 
are the same as in the case of the model (1). Now, the ramp 
response is 

Ds
ramp e

Tss
rksusPsy 22 )1(

)( )()( (11) 

And, the time-domain ramp response with a take-off 
condition of 0)(Dy is given as 

)2´()2()( /)( TDterkTDtrkty TDt  (12) 

Figure 7 shows the ramp responses for a SOPDT model with 
three different process gains. Resembling with the ramp 
response of the FOPDT model (6), the ramp response of 
SOPDT also approaches a straight line btatys )(  for 
large t

)2(
   ),2()()(

TDrktrk
DTtTDtrktyty s  (13) 

Now, the straight line has a slope of rka and a constant 
)2( TDrkb  resulting in a zero 0)( ss ty at

TDts 2 . Figure 8 shows ramp input (1) and response for
a FOPDT model (12) with a fitted straight line (13) for the 
response. 
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p 
re
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Fig. 7. Ramp responses to a SOPDT model for different 
process gain (k = 0.5, 1, 2) with 5D and 10T . 
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Fig. 8. Ramp responses to a SOPDT model with a fitted 
straight line for large t. 

Following the principle and visualisation given in figure 5, 
the SOPDT model parameters can be calculated almost 
similarly by replacing the TD in figure 5 by TD 2 and 
solving the time constant accordingly. 

3.3 Integrator plus Dead Time model 

The Integrator Plus Dead Time model (IPDT) only involves 
two model parameters: integrator gain and dead time. 

Dse
s
ksP )( (14) 

Its ramp response can be given as 

Ds
ramp e

s
rksusPsy 3)( )()( (15)

7

Proceedings of the 22nd Nordic Process Control Workshop 
August 2019, Kgs. Lyngby, Denmark   



which results in a time-domain expression with an initial 
condition of 0)(Dy  

2)(
2
1)( Dtrkty (16) 

The ramp response is of the second order with respect to time 
and it has a zero 0)( sty at Dts .
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p 
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se

Fig. 9. Ramp responses to an IPDT model for different 
process gain (k = 0.5, 1, 2) with 5D . 

Now, the identification procedure visualised in figure 5, 
significantly simplifies as only process gain and dead time 
are to be calculated using the ramp response.  

3.4 Integrator plus First-Order Plus Dead Time model 

An IPDT model can be extended to cover a time constant 
resulting in an Integrating First-Order Plus Dead Time 
(IFOPDT) model. The model has three parameters: integrator 
gain, time constant and dead time. 

Dse
Tss

ksP
)1(

)( (17) 

Similar to other model types, the ramp response can be 
formulated in terms of the model parameters being 

TDtTrkDtrkTety TDt )()(
2
1)( 2/)( (18) 

Now, the ramp response approaches to a second-order 
polynomial with respect to time 

TDtTrkDtrkty )()(
2
1)( 2 (19) 

The resulted equation (19) is of the second degree with 
respect to time. By drawing a tangent for the ramp response 
in (18) for large t , equals to derivation of (19) with respect 
to time 

TrkDtrkty
dt
d )()( (20) 

The resulted equation (20) could be used for fitting 
estimating the zero-level crossing point and computing the 
parameters exactly as visualised in figure. However, the 
proposed method contains uncertainty as it requires 
approximating the response of the second degree for large 
time value. 

4. IDENTIFICATION PROCEDURE

4.1 Identification of low-order process models 

In previous chapter, four different low-order process model 
types (FOPTD, SOPTD, IPDT, IFOPDT) were presented 
with their explicit ramp responses and approximations for 
large values of time. The approximations for large values of 
time can be effectively used for identifying model parameters 
of every model type introduced. 

For real identification, it is not of use to expect the ramp 
response to carry on infinitely after applying a ramp input. 
Instead, it is adequate to follow the ramp response up to a 
point where the ramp clearly increases linearly. At this point, 
the ramp response experiment can be interrupted by e.g.  
freezing the ramp input or returning back to the starting level 
(zero-level). 

As illustrated in figure 5, a straight line can be drawn along 
with the linearly changing ramp response. The slope of the 
straight line is then to be calculated and used for determining 
process gain k

r
ty

r
tyslopek y/)( (21) 

If for any reason the ramp rate of the ramp input signal is 
unknown, as )(trsloper , the process gain can be equally
computed by determining the slope of the ramp 

r

y

tr
ty

trslope
tyslopek

/
/

)(
)( (22) 

An estimate for the dead time is obtained by determining the 
take-off time instant where the ramp response starts to 
deviate from the level it had at the time of the starting the 
ramp experiment. Measurement noise or any other 
unmodeled high-order dynamics or process disturbances 
might corrupt interpretation of the take-off point but 
otherwise, it is the most straightforward parameters to be 
estimated graphically. 

Estimation of a time constant for the model types excluding 
an IPDT model requires determination of the crossing point 
with the drawn straight line along the ramp response and the 
starting level of the ramp response. The estimated crossing 
point st , that is, a zero or a root of the straight line, is 
essential for estimating the time constant. It is a function of 
the time-based model parameters, e.g. for a FOPDT model it 
is DTts  and for SOPDT model it is DTts 2 . After
solving the dead time as explained before, it is then 
straightforward to solve the time constant using the estimated 
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crossing point st . Table 1 lists simple equations for 
computing the time constant for all the given model types 
with the other model parameters, also. 

Table 1.  Process model parameters for typical process model 
types ( st is a zero of the fitted straight line along the ramp 
response) 

Model 
type 

Dead 
time D

Process gain 
k

Time constant 
T

FOPDT 
Take-off 

time 
instant 

or /
r

tyk

ryk /

DtT s

SOPDT 2/)( DtT s

NOPDT NDtT s /)(
IPDT - 

IFOPDT DtT s

Although it has not been proven here, it could be shown, that 
for a Nth-Order Plus Dead Time (NOPDT) model with 
multiple equal time constants, the ramp response for large 
values of t can be formulated as 

)(
   ),()()(

TNDrktrk
DTtTNDtrktyty s (22) 

Now, the fitted straight line has a slope of rka and a 
constant )( TNDrkb  resulting in a zero 

0)( ss ty at TNDts  allowing to compute the time 
constant as given in Table 1. 

4.2 Identification procedure step by step 

The identification method introduced in the previous sub-
section can be given as a step-by-step recipe starting with 
ramp response experiment preparations. 

Preparing step 

Set a process to be identified in an open loop by setting a 
feedback controller (if it exists) in manual. Make sure that the 
process is in steady state and that all the disturbances 
affecting the process output are as steady as possible. Record 
an initial level of the process output. 

Step 1 

Start a ramp response experiment by injecting a ramp input to 
the process and set clock to zero. Record a ramp rate r  
(slope of the ramp input). 

Step 2 

Allow the ramp response (of the process output) to take off 
its initial recorded level. At the earliest, stop the experiment 
as soon as linear progression can be seen. Otherwise, 
continue with the experiment as long as it is safe. 

Step 3 

After stopping the experiment, record the slope of the ramp 
response ty / and its take-off time instant D from the 
initial level. Then, fit a straight line graphically to the last 
points of the ramp response and determine the crossing point 

st of the fitted line with the initial starting level of the 
response. 

Step 4 

Using the calculated variables r , ty / , st and D calculate
the model parameters of the selected model type as given in 
table 1.  

5. PRACTICAL HINTS

As with any other identification procedure, a strong 
assumption of having the process in steady state before 
conducting a ramp response experiment is made. The steady 
state level of the process output is crucial for determining the 
crossing point of the fitted straight line to the ramp response.  

Although being rather obvious, also a strong assumption of 
having no process disturbances corrupting the ramp response 
is made. There may be both measurable and non-measurable 
variables affecting the process while the test and, therefore, 
one should secure that they remain as unchanged as possible 
throughout the experiment. 

The ramp response experiment needs to be continued up to a 
time instant when the response has been changing linearly for 
some time. To secure a successful experiment, it is clearly 
beneficial to allow the ramp response change as much as 
possible. There is no thumb rule given for a perfect timing of 
interruption as it would obviously require a priori knowledge 
of the process dynamics. Therefore, the recommendation is to 
allow the ramp experiment to continue as far as possible 
without compromising safety or production.  

In terms of identification, it is not of any significance what 
happens after interrupting the ramp response experiment. The 
ramp may be frozen to a constant level or it can be driven or 
set back to its starting level. This has no impact and, 
therefore, relevance to the given identification procedure. 
However, it is advised to consider the ramp experiment 
beforehand by considering also necessary actions after 
ceasing the experiment. 

Ramp input signal can also be decreasing, that is negative by 
sign. Equally, the process can have a negative process gain. 
The negative values result in a different orientation of the 
ramp response but they have no effect what so ever on the 
identification procedure as long as the negative sign is 
considered in computation. 

The ramp response rate is a user-specific or a computer-
determined parameter. It also has no deteriorating impact on 
the identification procedure but it has to be known for 
securing successful identification results. 
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6. CONCLUSIONS

Process model identification based on ramp response is by no 
means a new topic in control literature. Ramp input excitation 
is an option to other simple transients such as impulse and 
step signals. Therefore, it should equally have space when 
teaching transient-based identification methods. 

This paper introduced a graphical method to identify model 
parameters for some typical low-order transfer function 
models. The method has been earlier introduced in control 
literature but, to the knowledge of the authors, has not been 
wider covered. Hence, this paper expanded the simple 
graphical method to some other low-order model types than 
that of the first-order plus dead time model. 

The authors are now considering taking the method in use for 
bachelor-level control engineering studies as an expansion to 
the conventional teaching of process model identification.  
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The Symbiosis within the Control Hierarchy: On Application for Enterprise Wide Decision Making

Marcel Stenevang1, Emma S. Grønkjær1, Laila Bering Larsen2, Deenesh K. Babi1*
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The control hierarchy consists of, at the lower bound, regulatory control (time scale typically seconds) and, 
at the upper bound, production planning – scheduling (time scale typically weeks to months). For the design 
of new and retrofit of existing flowsheets, the quantification of the impact of design decisions/changes is of 
importance in order to feasibly analyze, evaluate and generate the best investment portfolio for the 
multiscale, that is, from flowsheet to unit operations. To do so, production planning-scheduling (PPS) can be 
used to model the flowsheet of the process and facility. Here, the process limitations and bottlenecks related 
to unit operations are identified for a deeper dive, for example, application of regulatory control (RC). The
models are of low fidelity (mass balance models) however, solution complexity of the flowsheet model 
requires the solution of a high number of equations subject to constraints (superstructure optimization). Such 
problems can be formulated as a mixed integer non-linear programming (MI[N]LP) problem because of the 
decision making (for example, equipment selection) using integer variables and the models for the unit
operations can be non-linear [1]. This problem can either be solved using optimization or discrete event 
algorithms or a combination of both [2].
For an automated flowsheet, the mass balance profiles of the RC and PPS model, in principle, should
correspond because the latter models the so-called recipe of the process and the former executes the recipe. 
As an analogy, the PPS is the brain sending signals to the fingers, the RC to perform a task. Therefore, for an 
unautomated flowsheet the PPS model can assist in identifying manual interventions and the need for RC 
when benchmarked against data from a data historian. As an example, consider the filling levels estimated 
from the PPS and those measured in an existing flowsheet.
The objective of this presentation is to present the approach used in Novo Nordisk for enterprise wide 
decision making for improvement-optimization. The method will be presented, and its application 
expounded through an example of an existing flowsheet. First, PPS is used for providing information for 
decision making and portfolio investment through the evaluation of current capacity, and the identification of 
process limitations/bottlenecks. Second, a RC problem is defined and solved based on the PPS output in 
order to automate a sub-process within the flowsheet.
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Simulating Batch Process Plants in
MATLAB Simulink / StateFlow �
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∗∗ Departamento de Ingenieŕıa Qúımica, Universidad Nacional de
Colombia, Campus La Nubia Manizales, Caldas, Colombia

Abstract: Optimisation of batch-operated process plants is an inherently complex task.
Therefore, modelling constitutes an auspicious tool in batch process systems engineering.
Discrete-event simulators are increasingly popular also in industry. To this end, a number of
specialised vendors (e.g. ExtendSimTM, INOSIMTM, ScheduleProTM) offer customised solutions.
Continuous simulators are shun both for the risk of numerical error from time-based rather
than event-based discretization as well as unnecessary computation steps. However, this work
indicates that MATLAB SimulinkTM’s variable-step solvers, in combination with the MATLAB
StateFlowTM framework for state machine models, allow building and solving hybrid systems
accurately and performant. This implementation offers advantages such as

• Vast flexibility in modelling scope due to Simulink’s extensive libraries and the facile
inclusion of native MATLAB functions

• Fast routing of data to/from root workspace enables advanced function calls
• Powerful tools available for post-hoc visualisation and analysis of simulated data-sets
• The potential to simulate continuous states during periods of semi-continuous operation
• Familiarity of many engineering graduates with MATLAB and Simulink

The cost is on the one hand a higher computational burden, but this is not necessarily a
problem given today’s computing resources. However, implementation and debugging of complex
systems in the current frame is tedious. This is specifically due to the restrictions in object-
oriented modelling that arise when solving StateFlow models within continuous flowsheets.
Yet, this framework allows the efficient generation of data sets containing both continuous
and discrete states and thus enables simulation-based process optimisation for this class of
processes. Secondly, these data sets may have potential as benchmarks for advanced data
analytics including machine learning and artificial intelligence in the context of batch process
plants.

� The authors would like to acknowledge the Technical University
of Denmark (DTU) and BIOPRO2. The project received financial
support from Innovation Fund Denmark through the BIOPRO2
strategic research center (Grant number 4105-00020B).
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Finding sparse control structures using
gramian based interaction measures

(Extended abstract)

Fredrik Bengtsson ∗ Torsten Wik ∗
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Technology, SE 412 96 Göteborg, Sweden, (email:fredben@chalmers.se,

torsten.wik@chalmers.se)

Abstract: A common control structure is a sparse control scheme, in which a decentralized
controller is expanded to include feed-forward or MIMO blocks. In this paper, use of the
gramian based interaction measures to determine a sparse control structure with feed-forward
is examined. The method suggested today is examined, and a modification is proposed. It is
demonstrated that this modification provides a considerable improvement. Furthermore, newly
proposed modifications to scaling the gramian based measures are expanded to also cover sparse
control structure. We show that the method that yields the best result is when two different
scaling methods are combined , using one to design a decentralized controller and another to
find elements for feedforward.

Keywords: Feedforward, Sparse Control, Control configuration selection, Gramian based
interaction measures, input-output pairing.

INTRODUCTION

A common issue in industrial process control systems is
that interaction between different parts of the plant gives
rise to a multiple input multiple output (MIMO) system,
where the same input may affect multiple outputs, or
conversely, the same output is affected by multiple inputs.
One method to control a MIMO system is to divide it into
subsystems of one input and one output and implement
SISO controllers for each of the subsystems. This control
strategy is called decentralized control and remains widely
used in industry (Khaki-Sedigh and Moaveni [2009]). It has
several advantages compared to implementing a MIMO
controller for the entire system, as it allows the use
of relatively easy to design low dimensional controllers.
Moreover, it is less vulnerable to sensor and actuator
failures than more complex control schemes that try to
control the entire system with one overarching control
scheme.

However, sometimes interactions between the different
inputs on the output results in a decentralized control
scheme yielding a poor result. One solution to this is
to expand the decentralized control structure to include
decoupling feedforward to remove the most problematic
interactions. This yields what is called a sparse controller
structure. However, this requires determining which inter-
actions that are appropriate to remove with feedforward,
and which ones where implementing feedforward may cre-
ate interactions that result in a poorer control outcome.

One group of measures which can be used to device a
sparse controller structure are the gramian based mea-
sures. This group includes the Σ2 method (Birk and
Medvedev [2003]), the participation matrix (PM) (Conley

and Salgado [2000]) and the Hankel interaction index array
(HIIA) (Wittenmark and Salgado [2002]). These methods
use the controllability and observability gramians to create
an interaction matrix which gives a gauge of how much
each input affects each output. The interaction matricies
(IMs) can then be used to device both decentralized and
sparse control structure.

While a rule of thumb on how to select a sparse control
structure from the gramian based measures has been
presented in Conley and Salgado [2000], no deeper analysis
on the subject has been presented. Here we will further
examine how to best derive a sparse controller structure
when using the HIIA and propose a new method for
determining which signals are appropriate for feedforward.

A new method of scaling the gramian based measures have
been proposed, and it has been demonstrated that it yields
improved results (Bengtsson et al. [2019]). We will here
further examine the scaling of the IMs and see how it can
best be adapted when designing sparse control structures.

1. THE GRAMIAN BASED MEASURES

1.1 Gramian based measures

The gramian based measures (PM, HIIA and Σ2) can be
calculated from a system’s transfer function matrix (TFM)
(Birk and Medvedev [2003], Conley and Salgado [2000],
Wittenmark and Salgado [2002]). Given a TFM

G(s) =

⎡
⎢⎢⎣
g11(s) g12(s) · · · g1n(s)
g21(s) g22(s)

...
. . .

gn1(s) gnn(s)

⎤
⎥⎥⎦

13

Proceedings of the 22nd Nordic Process Control Workshop
August 2019, Kgs. Lyngby, Denmark   



each measure generates an interaction matrix (IM). For
the HIIA and Σ2 it is generated by

[Γ]ij =
||gij(s)||∑
kl ||gkl(s)||

using the Hankel norm and 2-norm for the HIIA and Σ2

respectively. The PM is derived in a similar fashion, but
it uses the squared Hilbert-Schmidt norm, i.e. the IM is
generated by:

[Γ]ij =
||gij(s)||2HS∑
kl ||gkl(s)||2HS

.

Once an IM is generated, a decentralized pairing is gener-
ated by choosing the pairing that yields the largest sum
of elements from the IM. For efficient implementation in
finding which pairing yields the largest sum of elements
one can for example use the Hungarian algorithm as in
Fatehi [2011].

1.2 Sparse control

Once a decentralized control structure has been found
it can be expanded to include feedforward blocks. To
understand how this works, we begin by examining a 3
by 3 system, i.e.

[
y1
y2
y3

]
=

[
G11(s) G12(s) G13(s)
G21(s) G22(s) G23(s)
G31(s) G32(s) G33(s)

][
u1

u2

u3

]
.

Let us assume that the inputs and outputs have been or-
dered such that our decentralized controller design decided
on a diagonal pairing where yi is controlled by ui for ∀i.
Now, u1 will also affect y2 and y3 by G21(s) and G31(s),
respectively. If u1 affects y3 to such an extent that it poses
a problem, this can ideally be resolved by using the feed-
forward

u3 = u∗
3 −

G31(s)

G33(s)
u1, (1)

where u∗
3 is the control signal from the decentralized

controller and we assume G31(s)
G33(s)

is stable and proper. If

we implement this feed-forward loop we will have removed
the direct effect of u1 on y3. However, there are other
consequences of this implementation since the change of
u3 will also affect y1 and y2. If these interactions are
significant the feed-forward loop might do more harm
than good. Having this in mind, we examine how the
IM can be used to determine when feed-forward might be
appropriate. Consider an interaction matrix

Γ =

⎡
⎢⎣
γ11 · · · γ1N
...

. . .
...

γN1 · · · γNN

⎤
⎥⎦ .

First we choose the elements for the decentralized pairing
as described previously and assume, without loss of gener-
ality, that the pairing elements are on the diagonal. After
this, we look in the interaction matrix for large elements
not yet selected for pairing. The current method for deter-
mining feedforward is simply to use the largest elements

not selected for pairing. However, doing this means that
other potential interactions are not taken into account.
For example, assume that γN1 is a large value and thus
u1 is a potential candidate for feed-forward. However, as
described in the example, this will impact uN , which will
not only impact yN , but also the other outputs. A gauge

of the size of this impact is
∑N−1

i=1 γiN . If these values are
very large then the IM indicates that adding the described
feed-forward on u1 is unwise. To determine the use of
feed-forward in the general case we therefore create a new
matrix IM∗, whose elements are defined by

γ∗
ij = γij − ρ

N∑
k=1
k �=i

γki,

where ρ is a tuning parameter. With this new IM, the
largest elements where i �= j are chosen for feed-forward
until the sum of elements chosen (both for control and
feedforward) is larger than 0.7, a rule of thumb for gramian
based measures (Salgado and Conley [2004]). However,
as feed-forward increases controller complexity it is only
implemented if it seems likely that it will have a positive
impact. This is determined by checking if γ∗

ij > 0 in which
case feed-forward is considered appropriate, and otherwise
it is not implemented. Further precautions also have to be
taken to avoid implementing an unstable or non-proper
feed-forward block. Note that if ρ = 0 the largest elements
of the IM are chosen without taking into account other
interactions.

1.3 Scaling of the IMs

An issue with these three methods is that the interaction
matrix will be affected by the scaling of the inputs and
outputs such that different scalings may yield different
results. Generally, this is resolved by scaling the input and
outputs from 0 to 1, setting zero to the lowest value they
are likely to reach and 1 to the highest value Salgado and
Conley [2004]. However, this scaling is at times insufficient
, and we will present a few ways in which the IMs could
be rescaled for improved results which were discussed in
Bengtsson et al. [2019].

Row or Column scaling Each column in the IM corre-
sponds to the interactions from one input, while each row
corresponds to the interactions affecting one output. If
one column contains significantly less interaction than the
other columns (as may be the case if one input is relatively
poorly suited for control), little importance will be given to
the decision of which output should be controlled by this
input. This may lead to a poor input-output pairing as
will be demonstrated with an example in Section 3. One
way to resolve this would be to normalize the columns,
that is to divide the elements in each column of the IM
by the corresponding column sum. This will ensure that
when conducting the pairing algorithm, equal importance
is given to each input. In the new IM the scaled elements
would become:

[Γc]ij =
[Γ]ij∑N
k=1[Γ]kj

,

where Γc is an interaction matrix with normalized columns.
If we instead wish to ensure that equal importance is given
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to each output, we can instead normalize the rows, which
gives a interaction measure defined by

[Γr]ij =
[Γ]ij∑N
k=1[Γ]ik

.

Choosing between row and column scaling It may be
difficult to determine if it is preferable to scale by rows
or columns. Therefore we have proposed an approach
to scaling that tries to determine which is the most
appropriate for a given IM. In this approach the column
sums and row sums were first calculated. If the smallest
sum is a row sum, then the rows are scaled, and otherwise
the columns are scaled. This approach will be refered to
as Row/column scaling.

Sinkhorn-Knopp algorithm By scaling the columns or
rows we can guarantee that equal importance is given to
either each input or each output when determining pairing.
If we, however, wish to have both the columns and rows
scaled we can use the Sinkhorn-Knopp algorithm. This
algorithm combines row and column scaling by alternat-
ing between normalizing the rows and normalizing the
columns. In cases where the matrix can be made to have
positive elements on the diagonal (as is always the case
with gramian based measures) this algorithm is guaranteed
to converge to a matrix that will have both rows and
columns normalized Sinkhorn and Knopp [1967].

Scaling the IMs with the Sinkhorn-Knopp algorithm has
the additional benefit of removing the impact of input
and output scaling on the IMs. Using the Sinkhorn-Knopp
algorithm to scale the system will yield the same IM,
regardless of what the original scaling of the system was.

Hybrid scaling schemes The Sinkhorn-Knopp scaling al-
gorithm is not entirely well suited for design of sparse sys-
tems systems . The reason for this is that using Sinkhorn-
Knopp scaling may remove information from the IM useful
for when designing a sparse controller, take for example a
3by3 system:

[
y1
y2
y3

]
=

[
G11(s) G12(s) G13(s)

0 G22(s) G23(s)
0 G32(s) G33(s)

][
u1

u2

u3

]
.

If we use one of the gramian based measures to find a IM
it will result in the following:

Γ =

[
γ11 γ12 γ13
0 γ22 γ23
0 γ32 γ33

]
.

Scaling this with the Sinkhorn-Knopp algorithm will en-
sure that both the rows and columns are normalized re-
sulting in the following IM:

ΓSK =

[
γ11 0 0
0 γ∗

22 γ∗
23

0 γ∗
32 γ∗

33

]
.

As can be seen the elements γ12 and γ13 in the interaction
measure become zero. This means that if the Sinkhorn-
Knopp scaled IM is used to find elements for feedforward

it will disregard the possibility of adding feedforward to u1.
However, this is not desirable as γ12 or γ13 may indicate
that feedforward on u1 is appropriate. To resolve this we
propose a hybrid system, where Sinkhorn-Knopp scaling
is used to design a decentralized controller, and one of
the other scaling methods is then used to determine which
elements are appropriate for feedforward.

1.4 Testing the scaling methods for sparse control

To properly evaluate the feedforward methods we use the
MIMO model generator described in Bengtsson and Wik
[2017] to generate 200 linear MIMO-systems. We then
generate sparse control configurations using the HIIA,
with values of ρ ranging from 0 to 5. For each control
configuration lambda tuned controllers are implemented,
along with decoupling feedforward. The TFM was then
tested for both reference step as well as disturbances. For
disturbances we tested a step disturbance on u for only
one of the outputs, for example:

y1 = G11(s)(u1 + d1) +G12(s)u2 + ...+G1N (s)uN

y2 = G21(s)u1 +G22(s)u2 + ...+G2N (s)uN

...

where the disturbance henceforth referred to as an individ-
ual disturbance is only on the transfer function from u1 to
y1 in this case. This disturbance was tested on each trans-
fer function in the TFM. Once the tests were conducted we
evaluated how well the different scaling methods worked
for reference steps and for disturbances. We defined a cost
being the squared deviation from the reference for 2000
time units after the reference step or the input disturbance.
Having calculated this cost for each IM, each IM is given
a score defined as

S =
cmin

c

where S is the score of the IM, c is it’s cost, and cmin is
the lowest cost of all IMs for the system. The score was
set to zero if the control scheme yielded unstable results.
This measure was chosen to normalize the scores for each
system between 0 and 1, to ensure that the results on
different systems are comparable. This was done with each
method given a score depending on how much it deviated
from the set point compared to the other methods.

The average score for each method for each ρ is shown in
Figure 1. Note that ρ = −1 is used to denote the system
without any feedforward.

As can be seen in Figure 1 the hybrid scheme with
Sinkhorn-Knopp scaling to design a decentralized con-
trollers, and then column scaling to find feedforward el-
ements yields the best result, at least for reference fol-
lowing. For individual disturbances, most of the hybrid
methods seem to yield comparable results, with no method
of scaling clearly preferable when finding elements for
feedforward.
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Fig. 1. Scores for different ρ and for difference reference steps and disturbances

2. CONCLUSION

We have examined implementing feedforward using the
HIIA interaction measure, and found that the best results
were found when using Sinkhorn-Knopp scaling to find the
decentralized control scheme, and then use column scaling
to find elements for feedforward.

Furthermore, we also found that in general values of ρ
ranging from 0.5−1 seemed to yield the best results when
implementing feedforward. It is noteworthy that ρ = 0
yielded comparably poor result, demonstrating the need
to take into account the entire interaction matrix when
choosing elements for feedforward, not only choosing the
element representing the largest interaction.
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Nonlinear Model Predictive Control-Based
Algorithms for the Artificial Pancreas
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Abstract: People with type 1 diabetes (T1D) can benefit from an automated system to
administer the optimal dosage of diabetes-related drugs (insulin, and in some cases glucagon),
also referred to as the artificial pancreas (AP). We present a prototype of AP developed at
the Technical University of Denmark (DTU). The optimal drug dosage is based on continuous
measurements of interstitial glucose concentration (and possibly other signals), previous drug
administrations and a control algorithm using nonlinear model predictive control (NMPC).
We build a nonlinear T1D model including the effects of insulin, glucagon, meal absorption
and physical activity on the blood glucose concentration. We identify the T1D model using
maximum likelihood estimation (MLE). Our algorithm for MLE is based on a continuous-
discrete Kalman filter (CDEKF) for filtering and prediction, and the same filter is used in
our NMPC algorithm. We use a local sequential quadratic programming algorithm to solve
the optimal control problem. We present the outcomes of numerical simulations using virtual
patients, and we show the implementation of our platform on an Android platform for clinical
studies. We also discuss future possible improvements of our system.

Keywords: Closed-loop control, Nonlinear model predictive control, diabetes technology
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(a) Illustration of an AP system. A continuous glucose
monitor provides frequent measurements of the intersti-
tial glucose concentration. A control algorithm computes
the optimal insulin (and possibly glucagon) dose and
sends it to a pump.

(b) Blood glucose concentration profiles (top), bolus in-
sulin administration profile (middle) and basal insulin
administration profile (bottom) for the 10 virtual pa-
tients.

(c) Illustration of the AP prototype used in clinical stud-
ies. The glucose sensor is a Dexcom G6. Two Dana RS
pumps are used to administer insulin and glucagon. The
smartphone (Samsung Galaxy A5) is used to monitor
the blood glucose concentration and previous injections
of insulin/glucagon, to announce meals and to announce
physical activity.

Fig. 1. The AP system.
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A note on communicating vessels dynamics
and controllability

Claes Breitholtz ∗

∗ Chalmers University of Technology, Division of Systems and Control
(e-mail: claesbr@chalmers.se).

Abstract: Some hydrodynamical properties, static as well as dynamic, of communicating
liquid vessels are considered in this article. It is shown how the back-stepping approach can
be applied to control an arbitrary number of communicating vessels, hence indirectly showing
local controllability of such a nonlinear system. Also, linearized models are investigated and
compared to mathematically similar electrical networks. The analysis is extended to include a
study on an infinite number of linearized communicating vessels, for which the passivity property
is established.

Keywords: Communicating vessels, nonlinear model, steady states, back-stepping nonlinear
control, linear model, electrical analogy, passivity property.

1. INTRODUCTION

There are a very large number of obvious applications of
communicating vessels. They are to be found in nature
such as biological systems (for example inside of human
bodies), or geological formations (where water is fed into
one cavity and further on into the next and so on). Also
man-made systems, for example technologies for chemical
plants as well as medical engineering make use of the
communicating vessels principle. Two examples of the
latter are the papers [1], [2]. Yet another example is the
distribution of water over an agricultural plant.

A practical definition of the communicating vessels prin-
ciple might be that the stored fluid in one vessel interacts
mutually with the stored fluid of its closest neighbors.
Communicating vessels constitutes a special case of tank
systems. Such are investigated in the literature very early.
As an example of general tank system investigation, could
be mensioned the report [3]. Here the dynamics of sub-
stance propagation in hydrodynamical steady state is em-
phasized, implying the analysis of a time-invariant linear
system, using impulse responses and transfer functions.

The use of tank systems as a way of demonstrating
particular approaches to control is frequently seen. This
is to a large extent due to that a suitable experimental
setup most often is not too hard or expensive to realize
in a laboratory environment. One (out of many) recent
example is the article [4]. Here a three-tank system is
used to demonstrate a modelling approach using neural
networks to approximate coefficients in a state dependent
ARX-model. This model is then used in MPC-control.

A recent paper [5] deals with the model analysis of two
coupled communicating vessels for an ideal fluid. Here
an autonomous system (without external flow), assuming
ignorable dissipation, is studied. The system oscillatory
properties is analyzed using a perturbation method and
demonstrated in phase plane.

This work emphasizes some hydrodynamical aspects on
communicating vessels. One such aspect is which steady
states that are possible, assuming one external source of
liquid flow to the system. Another aspect is how pertur-
bations in a neighborhood of steady state relates to this
steady state. The control of a sequence of communicating
vessels is considered, using the back-stepping approach on
the nonlinear system model. See [6].

Attention to the corresponding linearized systems is made
as well. Particularly the mathematical analogy between
linearized tank-systems and electrical RC-networks, as
described by [7], is applied to communicating vessels. For
example, the external liquid flow entering a tank system
corresponds to an ideal current source entering a network
of resistors and capacitors and the stored liquid volumes
correspond to voltages. Finally, one example is given on
the dynamics of a countably infinite number of vessels, for
which the passivity property is shown.

2. PRELIMINARY ASSUMPTIONS

The model system is depicted in figure 1. The treatment is
here restricted to one external input flow. There is no par-
ticular difficulty in adding more external inputs. However,
some detailed results are then due to which vessels having
an external input and which have not. The same thing
can be said of exactly how a pipe connecting two vessels
is positioned. Here it is assumed that all connections are
positioned at the vessel bottom, vertically if the fluid is
departing the system or horizontally if transported to a
neighboring vessel. All vessels are assumed cylindrical in
the sense that their volumes are given by the product of
vessel cross sectional area and surface level related to vessel
bottom. Channel volumes are assumed to be ignorable
compared to vessel volumes. Consequently, communicating
channel dynamics is ignored in the following. Furthermore,
stored as well as flowing fluid is assumed to be in the
incompressible liquid phase.
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Fig. 1. The communicating vessels system

The external liquid flow [m3/s] is denoted by q and
the dynamical liquid levels by h1, h2, ..., hn, respectively.
Vessel cross sectional areas are denoted by A1, A2, ...An.
Vessel bottom outlet areas are denoted by a1, a2, ...an and
communicating channel areas by b1, b2, ...bn−1. g denotes
the acceleration of gravity, here assumed a constant.

3. SYSTEM MODEL AND STEADY STATES

Based on the Bernoulli law, see [6], and provided the above
system assumptions hold, the following ordinary differen-
tial equation model describes the system sufficiently well:

d

dt
(A1h1(t)) = q(t)− a1

√
2gh1(t)−

b1
√
2g(h1(t)− h2(t))

d

dt
(A2h2(t)) = b1

√
2g(h1(t)− h2(t))−

a2
√

2gh2(t)− b2
√
2g(h2(t)− h3(t))

... (1)

d

dt
(An−1hn−1(t)) = bn−2

√
2g(hn−2(t)− hn−1(t))−

an−1

√
2ghn−1(t)− bn−1

√
2g(hn−1(t)− hn(t))

d

dt
(Anhn(t)) = bn−1

√
2g(hn−1(t)− hn(t))−

an
√
2ghn(t)

To secure a well defined model, obviously it must hold
that hk(t) ≥ hk+1(t) for all integer k and real t. This
is intuitively correct assuming that the external inlet flow
enters from one side (here the left) and the internal channel
flow is driven by a positive level difference between one
vessel and its right neighbor. The possible steady states
h1,0, ..., hn,0 corresponding to a constant external input q0
are given by the following system of equations. The extra
index 0, denoting steady state, is temporarily dropped for
the sake of simplicity.

q/
√

2g = a1
√
h1 + b1

√
h1 − h2

0 = b1
√
h1 − h2 − a2

√
h2 − b2

√
h2 − h3

... (2)

0 = bn−2

√
hn−2 − hn−1 − an−1

√
hn−1

− bn−1

√
hn−1 − hn

0 = bn−1

√
hn−1 − hn − an

√
hn

Using the last equation, hn−1 can be expressed as function
of hn:

hn−1 = [1 + (
an
bn−1

)2]hn = (ψn−1)
2hn (3)

ψn−1 =

√
1 + (

an
bn−1

)2 (4)

The next step is to express hn−2 as function of hn:

bn−2

√
hn−2 − hn−1 = an−1

√
hn−1 + bn−1

√
hn−1 − hn =

an−1ψn−1

√
hn + an

√
hn

hn−2 = [(ψn−1)
2 + (an−1ψn−1+an

bn−2
)2]hn = (ψn−2)

2hn

In the last step we can express

hn−k = (ψn−k)
2hn (5)

ψn−k =

√√√√(ψn−k+1)2 + (bn−k)−2(

n−k+1∑
i=n

aiψi)2 (6)

ψn = 1 (7)

Using equations 5,6 and 7, all vessel levels can be expressed
as function of hn and piping cross sectional areas. hn,
finally, can then be directly related to the external input
flow using the upper line of equation (2):
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hn =
q2

2g[a1ψ1 + b1
√
ψ2
1 − ψ2

2 ]
(8)

It is then concluded that the steady state liquid levels
decrease, to guarantee a one-direction steady state liquid
flow. Obviously, the sequence of coefficients ψk is mono-
tonically decreasing, having a lower bound ψn = 1.

The steady state output flow from vessel k (leaving the
system) is obviously qk = ak

√
2ghk. Assume that equal

steady state output flows are requested in, for the sake of
simplicity, a system of two vessels. Then, a21h1 = a22h2

must hold, resulting in the geometrically interpretable
condition: (a1

a2
)2 + (a1

b1
)2 = 1.

Lets, still without introducing dynamics, consider small
perturbations in neighborhoods of the steady states. Start-
ing by linerizing equation 2, we get

Δq = a1

√
g

2h1
Δh1 + b1

√
g

2(h1 − h2)
(Δh1 −Δh2)

0 = b1

√
g

2(h1 − h2)
(Δh1 −Δh2)− a2

√
g

2h2
Δh2−

b2

√
g

2(h2 − h3)
(Δh2 −Δh3)

... (9)

0 = bn−2

√
g

2(hn−2 − hn−1)
(Δhn−2 −Δhn−1)−

an−1

√
g

2hn−1
Δhn−1 − bn−1

√
g

2(hn−1 − hn)
(Δhn−1 −Δhn)

0 = bn−1

√
g

2(hn−1 − hn)
(Δhn−1 −Δhn)− an

√
g

2hn
Δhn

Let us introduce the flow conductances (inverses of flow
resistances), ϑk and ηk,k+1, where

ϑk = ak

√
g

2hk
(10)

ηk = bk

√
g

2(hk − hk+1)
(11)

Using equations 10 and 11, the linearized model 9 can be
rewritten as

Δq − (ϑ1 + η1)Δh1 + η1Δh2 = 0

η1Δh1 − (ϑ2 + η1 + η2)Δh2 + η2Δh3 = 0

... (12)

ηn−2Δhn−2 − (ϑn−1 + ηn−2 + ηn−1)Δhn−1+

ηn−1Δhn = 0

ηn−1Δhn−1 − (ϑn + ηn−1)Δhn = 0

Suppose it is desirable that all ϑk and all ηk were indepen-
dent of k. If so, equation (13) would be modified into

Δq − (ϑ+ η)Δh1 + ηΔh2 = 0

ηΔh1 − (ϑ+ 2η)Δh2 + ηΔh3 = 0

... (13)

ηΔhn−2 − (ϑ+ 2η)Δhn−1 + ηΔhn = 0

ηΔhn−1 − (ϑ+ η)Δhn = 0

This is indeed possible. The implication from equations
(5) and (11) would be that

an−k+1

an−k
=

ψn−k+1

ψn−k
, k = 1, 2, ..., n− 1 (14)

which is an under determined system of equations. If, for
example n=2, we would obtain: (a1

a2
)2 − (a2

b1
)2 = 1.

From this simple example, we can also conclude that equal
flow conductances and equal stationary flows implies a
contradiction: (a1

a2
)2 = 1 + (a2

b1
)2 = 1− (a1

b1
)2.

Suppose that, again for n=2, equal flow conductances
ϑ1, ϑ2 are required and the possible ranges of stationary
outlet flows q1, q2 are to be determined. Assume that 0 <
θ < 1 and that q1 = θq, q2 = (1− θ)q. Simple calculations

show that b1
a2

=
√

1−θ
2θ−1 , implying that 1/2 < θ < 1. One

might ask if ϑ = η would be possible. This is only possible
if θ = 2/3, implying that q1 = 2q2.

An extended version of equation (1) can serve as a basis for
nonlinear dynamic simulation. A few comments are given
in appendix A.

4. CONTROLLABILITY OF THE NONLINEAR
DYNAMICAL SYSTEM

We now return to the dynamical system, described by
equation (1). The purpose is not to investigate the best
possible control strategy for the communicating vessel
system (model predictive control, distributed PID-control,
H-infinity control or some other approach to control),
but rather to find out if this nonlinear system is at
least possible to stabilize locally around the steady states
h1,0, ..., hn,0. Let us change state and control variables:

hk(t) = hk,0 + zk(t), k = 1, ..., n (15)

q(t) = q0 + u(t) (16)

Also introduce the positive coefficients

dk = hk,0, k = 1, ..., n (17)

ek = hk,0 − hk+1,0, k = 1, ..., n− 1 (18)

αk = (ak/Ak)
√

2g, k = 1, ..., n (19)

βk = (bk/Ak)
√
2g, k = 1, ..., n− 1 (20)

βk−1,k = (bk−1/Ak)
√

2g, k = 1, ..., n− 1 (21)

We can now rewrite equation (1) as
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d

dt
z1(t) = (u(t) + q0)/A1 − α1

√
z1(t) + d1−

β1

√
z1(t)− z2(t) + e1

d

dt
z2(t) = β1,2

√
z1(t)− z2(t) + e1−

α2

√
z2(t) + d2 − β2

√
z2(t)− z3(t) + e2

... (22)

d

dt
zn−1(t) = βn−2,n−1

√
zn−2(t)− zn−1(t) + en−2−

αn−1

√
zn−1(t) + dn−1−

βn−1

√
zn−1(t)− zn(t) + en−1

d

dt
zn(t) = βn−1,n

√
zn−1(t)− zn(t)) + en−1−

αn

√
zn(t) + dn

Equation (22) has an input affine structure, d
dtz = f(z) +

g(z)u, where z is the state vector. The vector fields f
and g are both continuous functions of state (but not
time explicitly). In our application the vector field g is a
constant column vector, having the first component 1/A1

and the rest being zeros. It is, due to the definition of
state and control variables, obvious that z = 0, u = 0
constitutes an equilibrium point for the nonlinear system.
The conditions for the vector field f to be well defined is:

zk > −dk, 1 ≤ k ≤ n (23)

zk < zk−1 + ek−1, 2 ≤ k ≤ n (24)

Denoting the subset of Rn where inequalities (23),(24)
hold by Ω, the local controllability in Ω of the system (22)
will be showed. One way to do so is to show that the
vector fields [g, adfg, ..., ad

n−1
f g] are linearily independent

in Ω. Here, adfg = [f, g] = (∇g)f − (∇f)g, is the
Lie bracket of f and g (∇f denotes the Jacobian of

f) and adkfg = [f, adk−1
f g]. See [8]. An indirect way

of showing local controllability is directly to design a
stabilizing controller for the nonlinear system, a controller
that not necessarily has to be (in some sense) the best
possible controller for the system. The structure of the
communicating vessel system implies that, for row k, as
most the states corresponding to k−1, k, k+1 are involved.
This situation promotes the approach to control, known as
back-stepping. See [7]. As back-stepping constitutes a well
known control method for control input affine nonlinear
systems, having this structure, it is sufficient to explain
how the method will work. To further promote simplicity,
suppose n = 3. The system is for n = 3 described by the
three differential equations:

d

dt
z1(t) = (u(t) + q0)/A1 − α1

√
z1(t) + d1−

β1

√
z1(t)− z2(t) + e1 (25)

d

dt
z2(t) = β1,2

√
z1(t)− z2(t) + e1−

α2

√
z2(t) + d2 − β2

√
z2(t)− z3(t) + e2 (26)

d

dt
z3(t) = β2,3

√
z2(t)− z3(t)) + e2−

α3

√
z3(t) + d3 (27)

If in equation (27), z2 is formally considered as the control
input, a control policy is to be derived that results in the
feedback system ż3(t) = −ν3z3(t) where νk > 0, k =
1, 2, 3. This implies that

√
z2 − z3 + e2 = β−1

2,3 [−ν3z3 +

α3

√
z3 + d3] or more explicitly z2 = z3−e2+[β−2

2,3 [−ν3z3+

α3

√
z3(t) + d3]

2, which expressions can be inserted in
equation (26):

ż2 = β1,2
√
z1 − z2 + e1 − α2

√
z2 + d2 − β2

√
z2 − z3 + e2

The right hand side is a function of z1, z2, z3, where z3
already is secured to exponentially approach zero. Again,
assuming that z1 is the control input, a control policy is
to be derived that results in the feedback system ż2(t) =
−ν2z2(t). Then we have an expression for z1 in terms of
z2, z3, both approaching zero exponentially, to be inserted
into equation (25). Finally, the real control input u is found
to result in the feedback system ż1(t) = −ν1z1(t). The
resulting feedback system is hence

ż1(t) = −ν1z1(t) (28)

ż2(t) = −ν2z2(t) (29)

ż3(t) = −ν3z3(t) (30)

where ν1, ν2, ν3 are positive design parameters, free of
choice. Exactly the same approach can obviously be ap-
plied for n = 4 or any arbitrary order, resulting in, using
matrix/vector notation,

ż(t) = −Nz(t) (31)

N = diag[ν1, ..., νn] (32)

As N is a positive definite matrix, the feedback state equa-
tion is exponentially stable. In other words, the nonlinear
communicating vessels system is locally controllable in Ω.

Remark 1: Assume that an input affine nonlinear system
is locally controllable in a set Ω. The corresponding
linearized system in the neighborhood of an operating
point in Ω is in general not controllable in the linear sense.

Remark 2: An assumption of major importance made, not
previously commented on, is that the state vector z is
assumed to be known at every time t. The practical impli-
cation of this assumption is either that every component
of the state vector can be accurately measured, or that
from more restricted measurements, for example the scalar
output y = z1, the state vector z can be reconstructed by
an observer. The design of nonlinear observers is, however,
outside the scope of this paper.

5. PHYSICAL ANALOGY TO THE LINEARIZED
DYNAMICAL COMMUNICATING VESSELS SYSTEM

The linearized dynamical model, corresponding to the
nonlinear model of equation (1), can be written as equa-
tion (12), but with the right hand zeros replaced by
d
dt (A1Δh1(t)), ...,

d
dt (AnΔhn(t)). The ϑk, k = 1, ..., n and

the ηk, k = 1, ..., n−1, defined be equations (10) and (11),
again represent the flow conductances. For example in the
case n = 3 we get:

dt(A1Δh1) = Δq − (ϑ1 + η1)Δh1 + η1Δh2 (33)

dt(A2Δh2) = η1Δh1 − (ϑ2 + η1 + η2)Δh2 + η2Δh3 (34)

dt(A3Δh3) = η2Δh2 − (ϑ3 + η2)Δh3 (35)
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Fig. 2. The electric network corresponding to the communicating vessels system

Now, consider the time-invariant linear system from an-
other physical area than fluid mechanics, lumped electrical
networks or more specifically the RC-type circuit depicted
in figure 2. To promote comparison, a circuit with three
capacitors (dynamic elements) is chosen as an example.

The ideal current source i is an external system input
and the voltages v1, v2, v3 over the capacitors are possible
state variables. The system model is directly a consequence
of the well known laws of Kirchoff and Ohm. See for
example [9], or numerous other books on basic electric
circuit theory.

0 = i− v1/R1 − C1v̇1 − (v1 − v2)/R12 (36)

0 = (v1 − v2)/R12 − v2/R2 − C2v̇2 − (v2 − v3)/R23 (37)

0 = (v2 − v3)/R23 − v3/R3 − C2v̇2 (38)

If resistances are replaced by conductances, G1 = 1/R1, ...,
we get the resulting circuit model:

dt(C1v1) = i− (G1 +G12)v1 +G12v2 (39)

dt(C2v2) = G12v1 − (G2 +G12 +G23)v2 +G23v3 (40)

dt(C3v3) = G23v2 − (G3 +G23)v3 (41)

Obviously the models (33)-(35) and (39)-(41) coincide
exactly with respect to mathematical structure. The dif-
ferences are due to the choices of parameter notation only.
For example the vessel cross sectional areas A1, A2, ... cor-
respond to capacitances C1, C2, .... The conclusion is that
analysis of linearized dynamical models of communicating
vessels can alternatively be carried out by analysis of the
above kind of electric circuits. For example, the transfer
function from a small input flow perturbation Δq to the
perturbation in the first vessel level Δh1, can be exactly
interpreted as the transfer function from external input
current i to voltage v1. In the electrical case the transfer
function is the network input impedance Z(s).

ΔH1(s) = G(s)ΔQ(s) (42)

V1(s) = Z(s)I(s) (43)

6. SOME BASIC PROPERTIES OF LINEARIZED
COMMUNICATING VESSELS SYSTEMS

In section 4 it was pointed out that local stability of a
nonlinear system does not in general guarantee stability for
the linearized system, having the structure ẋ(t) = Ax(t)+
Bu(t), where x and u denotes the state vector and the
control input of the linearized system. Controllability of

a time-invariant linear system of order n is secured if the
matrix S = [B,AB, ..., An−1B] has full rank. For a scalar
u, this is the case, if the determinant of S is non-zero. See
[10] or [11].

Consider an n-dimensional extension of the model (33)-
(35), it is obvious that the A-matrix will have a banded
structure, resulting in an upper triangular controllability
matrix S, which is full rank as all diagonal elements
are non-zero. Hence the linearized communicating vessel
system is controllable.

Consider the same state space model as above, but having
an output. For example, choose the first vessel liquid level
Δh1 as the output. In the electric analogy this output
corresponds to the first capacitor voltage v1. From an
applicative perspective, this choice can be justified as the
level closest to the liquid source is likely to be easily
measured.

The question to be answered is if the full state vector can
be reconstructed from this output, or in other words if the
system is observable. The equation relating the output y
to the state x and the input u is y = Cx +Du, where in
our application C = [1, 0, ..., 0], D = 0. Observability of
a time-invariant linear system of order n is secured if the
matrix OT = [CT , ATCT , ..., (AT )n−1CT ] has full rank.
Again, see [10] or [11].

It turns out that the observability matrix O is lower
triangular, which is full rank as all diagonal elements
are non-zero. Hence the linearized communicating vessel
system, having the first state as the output, is observable.
This means that, having accurate knowledge of the first
state vector component, the other components can be
estimated by an observer such as a Kalman filter. See,
for example, [12].

It is then concluded that the linearized communicating
vessel system as well as the corresponding electric circuit,
are both controllable and observable. Hence these systems
are minimal order, implying that the corresponding trans-
fer function G(s) = C(sI − A)−1B + D has no common
pole or zero factors to be canceled.

It can also be noted that the transfer function is strictly
proper as the matrix D is zero (the output is not directly
dependent of the input). See [10].
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7. AN ASYMPTOTIC STUDY OF LINEARIZED
COMMUNICATING VESSELS SYSTEMS

In this section the following additional assumptions are
made to promote further analysis:

1. The conductances ϑk = ϑ, ηk = η are k-independent.

2. The vessel areas Ak = A are equal and k-independent.

3. The corresponding electric parameters are k-independent.
It is assumed that all capacitances are C, the resistors
shunting them are all R1 and the resistors connecting two
neighboring parallel circuits are all R2.

Consider the input impedance Zn in the Laplace domain,
where n is the system order, equal to the number of
capacitors (exactly corresponding to the number of tanks
in the linearized communicating vessels system).

For n = 1 and n = 2 we have:

Z1(s) =
R1

1+sCR1
, Z2(s) =

R1(R1+R2+sCR1R2)
(1+sCR1)(2R1+R2+sCR1R2)

For two communicating vessels (n = 2) we have:

G2(s) =
ϑ+η+sA

(ϑ+sA)(ϑ+2η+sA)

For reasonably low orders, transfer functions are not
too cumbersome to give. For larger numbers, they are
impractical to use. For simulations, state-space models
are more practical to use. However, for very large orders
this will also fail. One might ask if the sets of transfer
functions [G1, G2, ..., Gn], [Z1, Z2, ..., Zn] will converge to
transfer functions G or Z as n approaches infinity. Consider
the electrical case. Assuming the existence of such an
input impedance, nothing would change if yet another sub
system, R1, R2, C was similarly connected to the already
countably infinite order system. The input impedance
would remain to be Z, resulting in the equality

Z(s) =
R1

1+sCR1
(R2 + Z(s))

R1

1+sCR1
+R2 + Z(s)

(44)

Solving for Z, we obtain the expression

Z(s) =
R2

2
[

√
1 +

4R2/R1

sCR1 + 1
− 1] (45)

In the communicating vessels case the transfer function
can then be written

G(s) =
1

2η
[

√
s+ (ϑ/A)(1 + 4ϑ/η)

s+ ϑ/A
− 1] (46)

The corresponding impulse response can directly be ob-
tained from tables of Laplace transform pairs. See for
example [13].

g(t) =
ϑ2

Aη2
e−[ ϑA+ 2ϑ2

ηA ]t[I0(
2ϑ2t

ηA
) + I1(

2ϑ2t

ηA
)] (47)

Here I0(x), I1(x) denotes the modified Bessel functions of
the first kind and of orders zero and one, respectively.
It can be shown that the function e−x(I0(x) + I1(x)) is
lower and upper bounded and hence g(t), due to the extra
factor e−(ϑ/A)t, is an exponentially decreasing function.
This implies that the step response is bounded and the
system is input to output stable. However, we would as
well establish passivity of the linear time-invariant (LTR)
systems (45) and (46), differing only in parametrization.

It is well known that electric lumped linear RC-networks
(RL- and RLC-networks as well) are passive and actually
dissipative. See for example the book [14], where the
concepts of positive realness and strictly positive realness
are used, concepts that for LTR-systems largely coincide
with passive and dissipative. See [7], [8].

Consider the sequence of impedances [Z1(s), Z2(s), ..., Zn(s)],
where each element represents a dissipative or strictly pos-
itive real rational transfer function. Letting n approach in-
finity, the sequence approaches a non-rational limit trans-
fer function, which is obviously outside the sequence. We
will now show that it is strictly positive real or dissipative.

Theorem: A transfer function h(s) is strictly positive real
(SPR) if and only if

(1) h(s) is an input to output stable transfer function

(2) the real part of h(s) is strictly positive along the
imaginary jω-axis: Re[h(jω)] > 0, ∀ω≥0

For proof, see [8].

We have already showed (1) input to output stability of
the transfer function, but (2) remains to be shown. The

transfer function has the structure g(s) =
√

s+a+b
s+a − 1,

where a and b are positive constants. Instead of analyzing
g(jω), we analyse g with respect to the scaled frequency
ν = ω/a. Introducing μ = b/a and γ = ν2+1+μ, we have

g(jν) =
√

jν+1+μ
jν+1 − 1 =

√√
γ2+μ2ν2

ν2+1 e−jarctan(μν
γ ) − 1

Letting θ = −arctan(μνγ ), we have to show that

Re[g(jν)] =

√√
γ2+μ2ν2

ν2+1 cos(θ/2)− 1 > 0 implying that

√
γ2+μ2ν2

ν2+1 (1 + cosθ) > 2

As |θ| < π/2 we can use that cosθ = 1/
√
1 + tan2θ:

1 + cosθ = 1 + 1/
√
1 + (μνγ )2 =

γ+
√

γ2+μ2ν2√
γ2+μ2ν2

Inserting this expression into the inequality and multiply-
ing by ν2 + 1 we get

γ +
√
γ2 + μ2ν2 > 2(ν2 + 1)

However 2γ is a lower bound of the left hand side and
an upper bound of the right hand side of the inequality.
Consequently it holds that Re[g(jν)] > 0, implying that
g(s) is strictly positive real and the limit transfer function
hence dissipative.
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8. CONCLUSIONS

A sequence of cylindrical vessels is assumed to be fed
by an external liquid flow from one end, where each
vessel communicates with its left and right neighbor as
well as having its own outlet. The system states are the
liquid levels of each vessel. A system model based on the
Bernoulli equation is given. A systematic way of obtaining
the steady states for an arbitrary long sequence of such
vessels is presented, based on fractions between channel
cross sectional areas. Conditions for equal output flows
and for equal differential flow conductances are given and
found to exclude each other.

The controllability of this nonlinear system, using the
external flow as the control input and assuming the state
to be known, is discussed. Controllability is established
by the design of a nonlinear controller, based on the
back-stepping approach. The resulting feedback system is
locally exponentially stable.

The linearized system model (with respect to the steady
state) is shown to be mathematically analogue to an elec-
trical RC-network, having exactly the same state equation
structure. The transfer function from small perturbations
in the input flow to the corresponding variations in, for
example, the first vessel liquid level, is mathematically
identical to the electrical input impedance relating the
input current to the input voltage. Controllability and
observability of the linearized system is shown as well.

It is a fact that impedances made up by finite R and
C combinations, not only are input to output stable
but also strictly positive real functions. In the special
case of equal shunt resistances, series resistances and
capacitances in each link (corresponding to each vessel)
the resulting impedance, as the number of links (vessels)
approaches infinity, is obtained. This impedance function
is not possible to describe on state-space form, but is
shown to be input to output stable and moreover strictly
positive real.
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Appendix A. SIMULATION ASPECTS

Consider the nonlinear communicating vessels model given
by equation (1). Letting q = q1 in the first equation,
adding of a new external input q2 in the second, q3 in the
third and so on, will result in a multi input system. It is
from now on not secured that, for example,

√
hn−1 − hn is

well defined. Instead, replace all terms having square roots
operating on differences between variables by, for example,
δn−1,n

√|hn−1 − hn|, where δn−1,n = 1 for hn−1 > hn,
δn−1,n = −1 for hn−1 < hn and δn−1,n = 0 for hn−1 = hn.
All factors δn−1,n have to be decided on in each step of
numerical integration. One or more external inflows may
in addition be negative, due to liquid being pumped out
of vessels.
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Abstract: Chemical processes are complex, coupled systems, and it is not obvious how to operate them 
optimally. High competitiveness and strict safety laws encourage the use of intelligent methods to assure 
safety and improve operational efficiency and profit. The controlled variable (CV) selection step is 
important and directly affect the operational performance. It is usually calculated only once and remains 
constant over longer periods of the operation. 

Self-optimizing control (Skogestad, 2000) is a framework for finding controlled variables that result in a
near-optimal operation with acceptable loss. Typically, the self-optimizing CV selection is based on a 
process model to evaluate the optimal solution of the operation. The CV is obtained either selecting 
single measurements or using a linear combination of measured process variables that drives the process 
to near the optimum when kept at a constant setpoint, and maintains it there, even in presence of 
disturbances.

However, sometimes a reliable model of the process may not be available. More recently new proposals 
have appeared in the literature presenting alternative solutions based on measurement data instead a 
model. We present and compare different methods for finding self-optimizing controlled variables, that 
are based on partial least squares regression and artificial neural networks, and apply them on the Van de 
Vusse reactor as a case study.

Keywords: Self-optimizing control, Economical optimal operation, Artificial neural networks, Partial 
least squares regression, Controlled variables selection.
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CONTROL STRATEGIES TO SLUGGING SUPPRESSION IN DEEP AND ULTRA-DEEPWATER WELLS 

Diehl F.C., Machado T.O., Campos M.C.M.M., Farenzena M., Trierweiler J.O. 

In the petroleum industry, a brownfield is a production stage of maturity where the production 
plateau has been reached and starts to slowly decline. At this phase of the field depletion it is 
common to face multiphase flow problems such as limit cycles which causes undesirable 
oscillations in the well’s flowrate and pressure. This phenomenon, called slugging, might be still 
worse when the wells are located in deep and ultra-deepwater areas once this installations 
require longer pipelines to transport the reservoir fluids to the surface facilities. In this work 
three control strategies are tested in OLGA simulator in order to maximize oil production 
without slugging: (1) linear PID; (2) nonlinear PID; and (3) linear MPC-PID. All these strategies 
can be used to suppress slugging, however while the nonlinear PID allowed reaching lower 
pressures in the well, which means more oil produced, the MPC-PID allowed more smooth acting 
and transitions toward low pressures. Finally, the MPC-PID strategy was applied in a real ultra-
deepwater well resulting in 10% of oil increasing.      
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Title:  Practical control of a Four-Product Dividing Wall Column 
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In the search for improved energy efficiency, the Dividing Wall Column (DWC) is an attractive technical 
solution for separation by distillation. There are now over 300 DWC-installations world-wide and there 
are savings in the range from 15-30% in both heat consumption and capital costs. Most of these are 
three-product columns.  However, the concept can also be applied for more products, and the 
potential savings are even higher, up to 50%. There is still reluctance in the industry and uncertainty 
in design and control are the usual explanations. The general four-product DWC is more complex 
internally, as there may be required with up to three extra liquid and vapor splits. However, for a 
certain class of feed compositions it is possible to simplify the internals structure and obtain four-
product separation without compromising the overall energy savings (Halvorsen et.al. 2011). 

do the full hydraulic design. 

This presentation focuses on a simulation study of control performance 
for the column in Figure 1 in a practical industrial setting. That is, using 
conventional controllers with feedback mainly from temperature 
measurements  2019). The input data and product 
specifications were based on a real industrial case of a reformate 
fractionation complex. Three control structures were proposed, and their 
performance analysed regarding maintaining product specifications, settle 
times after introduction of disturbances and energy demand. Results show 
that the controllers can effectively maintain all four product qualities 
within their limits in all cases, having relatively quick response and settle 
times. The temperature points must be selected with some care and it 
must be ensured that all internal sub-column profiles are stabilized. There 
are two vapor splits in this column, however, as in most industrial three-
product installations, these can be left at design values and do not need to 
be actively manipulated for the expected feed property variations. 

The key result is that control is feasible with the standard type of controllers that are available in all 
commercial process control systems. This should contribute to reduced uncertainty on how to operate 
a four-product DWC in practice. It is not too complex, but it must be done right. 

-product dividing wall columns:
a simple and effective assessment and conceptual design procedure, Chem. Eng. Trans., 25 (2011),
pp. 611-616, 10.3303/CET1125102

, Designing a packed dividing wall column for an
aromatics processing plant. Ind. Eng. Chem. Res., 50 (9) (2011), pp. 5680-5692

 d four-
product dividing wall column, Chemical Engineering Research and Design, Volume 147, 2019, Pages
367-377, https://doi.org/10.1016/j.cherd.2019.04.041.

Figure 1. Four-product DWC 
with two partition walls. 
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Combining Data Analytics and Scheduling 
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Abstract: There is a lot of hype ongoing on big data analytics (Qin, 2014) and machine learning. Among 
others, AIChE conference has also arranged topical conferences on the topic, and for a good reason. Most 
companies collect continuously data from sensors that is stored for a certain time but never actually used, 
unless there is a need for post analytics as part of trouble shooting (Yidan et al., 2016). One attempt to 
create true value from the data is to use it proactively to improve the quality and actuality of planning. 
Nevertheless, often a schedule that is based on statistical average data is outdated already by the time it 
gets sent to the plant floor and due to the hierarchical planning structures, it is very difficult to quickly 
adapt a schedule to changing conditions. This is a challenge that has also been looked into in integration of 
scheduling and control studies (Touretzky et al., 2017). The presented project SINGPRO will merge Big 
Data platforms, machine learning and data analytics methods with process planning and scheduling 
optimization. The goal is to create online, reactive and anticipative tools for more sustainable and efficient 
operation. 
Keywords: Scheduling, analytics, machine learning, optimization 

The currently employed classical mathematical optimization 
models (Harjunkoski et al., 2014) are often limited by fixed 
parameter sets, which are commonly updated off-line and 
represent only statistical averages. Such parameters could be 
estimated much more precisely in an on-line fashion using Big 
Data technologies. By creating collaboration interfaces 
between scheduling optimization, big data analytics and 
machine learning, the process related decision-making loop 
will become much more agile, self-aware and flexible. 
With sophisticated data analytics methods, one can embed to 
the overall key performance indicators (KPI) also all 
information about the process, e.g., tracking abnormal 
situations (anomaly detection), individual process equipment 
performance degradations (predictive maintenance), 
anticipated process timings (prediction of process behavior) 
and scenario simulation (e.g., artificial intelligence AI 
planning). Such an approach will help to select the best 
production strategies in order to maintain, e.g., production and 
energy efficiency as well as sustainability in rapidly changing 
market situations through data-driven self-adaptive scheduling 
models. The topic of data-driven models has already been 
investigated in other domains (Van der Aalst et al., 2004) and 
tools become available for the process industry (Wilson and 
Sahinidis, 2017). A good perspective on this topic is given in 
Venkatasubmaranian (2019). It can be expected that Industrial 
Internet of Things (IIoT) provides the needed seamless 
connectivity, cloud computing infrastructure and service-
based business models to realize this vision. 
In this presentation, we aim at using available data proactively 
to improve the quality and actuality of planning instead of 
relying on static data that do not reflect current operation 
conditions. This can be seen as a way of supporting the 
integration of scheduling and control. However, instead of 
defining workflows between the levels, we aim to provide 

more accurate estimates in advance to reduce the mismatch 
between planning and online operations. We have studied 
cases of merging Big Data platforms, machine learning and 
data analytics methods with process planning and scheduling 
optimization and will provide an overview of the first 
promising results. We will also show results that can improve 
the estimation of processing times, leading to more robust 
schedules and examples where using historical operational 
data allows us to exclude some decisions leading to smaller 
scheduling problems. Finally, the process data can also be used 
in estimating equipment conditions leading to better 
approaches that combine operational and maintenance 
scheduling optimization. The examples show that by creating 
collaboration interfaces between scheduling optimization, big 
data analytics and machine learning the process related 
decision-making loop can become more agile, self-aware and 
flexible.  
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1. MID-RANGING CONTROL

Mid-ranging control is a control strategy that is used when
there are more than one manipulated variable available
to control a process variable. Mid-ranging control handles
the redundancy by coordinating the roles of the different
manipulated variables. The most common approach is to
introduce valve position controllers (VPC) that control
the steady-state position of manipulated variables. In this
presentation, some drawbacks of the VPC approach are
pointed out, and a new control structure that lacks these
drawbacks is presented. Instead of using valve position
controllers, the new strategy uses feedforward control to
obtain the desired steady-state values of the manipulated
variables.

2. VALVE POSITION CONTROL (VPC)

The mid-ranging control problem and the valve position
control solution are illustrated by the block diagram in
Figure 1. For simplicity, we restrict the presentation to the
case of two manipulated variables, u1 and u2, that control
one process variable, y.

The goal of the control is that process output y should
follow a setpoint ysp, and that control signal u1 should
be close to a setpoint usp in steady-state. Since the main
goal is the control of y, process P1 and controller C1 are
chosen so that they form a fast and precise feedback loop.
Controller C2 is the valve position controller that controls
u1 to its setpoint usp.

Controller C1 is normally a PI controller and it can be
tuned in standard ways. Controller C2 must, however, be
tuned conservatively so that it does not disturb the other
loop too much. The idea is that the VPC controller should
adjust the output from C1 slowly in the background.

The VPC approach is a simple and the most common way
to treat the mid-ranging control problem, and it works well

ysp

usp

u1

u2

y1

y2

y

P1

P2

C1

C2

+

Fig. 1. The valve position control approach.

in many applications. There are, however, some drawbacks
associated with the approach that limits its use, namely

(1) It is common that there is a relatively large pump or
valve in P2. In these cases, it is likely that stick-slip
motion that destroys the control precision occurs.

(2) usp is often chosen to be close to a saturation limit of
u1. In these cases, the control error in the VPC loop
may become small, leading to sluggish control.

(3) There are two controllers that influences y, but still
no redundancy since C2 controls u1 and not y.

3. THE FEEDFORWARD MID-RANGING CONTROL
STRATEGY

The new mid-ranging control structure is presented in
Figure 2. As for the VPC approach, given in Figure 1,
process P1 and controller C1 form the fast and precise
feedback loop. Controller C2 is no longer a VPC, but also
this controller takes y as input and ysp as setpoint. Thus,
both controllers act on the same signals. To avoid stick-slip
motion, integral action is not introduced in this controller.

The mid-ranging of u1 is obtained by adding a feedforward
signal to C2. Feedforward signal u3 is obtained in the
following way. Control signal u1 is first passed through
a deadzone, where the user has to specify parameters
ulow and uhigh, that define an acceptable region for the
stationary value of u1. The deadzone is introduced to avoid
stick-slip motion. The output from the deadzone is fed to
a third controller, C3, with setpoint equal to zero. The
output from C3, u3, is the feedforward signal that is added
to controller C2. Controller C3 is a PI controller.

In the presentation it is shown that the new mid-ranging
control strategy lacks the three drawbacks associated with
the VPC approach. Design methods for the controllers and
simulation results are also presented.

ysp

ysp

ulow

uhigh

u1

u2

u3

y1

y2

ydz y

P1

P2

C1

C2

C3 +

+

Fig. 2. The feedforward mid-ranging control approach.
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Abstract: The algorithm for state estimation in the form of filtering and prediction is central to
the performance of a model predictive control system. In the paper, the filtering and prediction
algorithms are based on a continuous-discrete stochastic system. In this representation, the
dynamics is described by stochastic differential equations with a diffusion term that is affected by
standard Wiener processes, and the observations are nonlinear mappings of the state corrupted
by Gaussian noise. The model parameters, as well as the hyper parameters that describe the
distribution, are estimated using a prediction-error-method based on maximum likelihood (ML)
and maximum a posteriori (MAP) criteria and gradient based numerical optimization routines.
The experimental conditions for estimating the parameters are determined by solution of an
experimental design optimization problem. The filtering and prediction algorithm obtained by
systematic experimental design and parameter estimation is used for predictive control. We
use this method for nonlinear model predictive control of 1) the temperature in an adiabatic
continuous-stirred tank reactor with exothermic reaction, 2) the glucose concentration in people
with type 1 diabetes, and 3) for the biomass, substrate, and dissolved oxygen concentration in
a U-loop reactor that is used for single cell protein production.

Keywords: Stochastic differential equations, Model predictive control, State estimation,
Parameter estimation, Prediction-error-method, Experimental design
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Process modelling knowledge plays an important role in the planning and safe execution 
of process operations. When mishaps do occur model knowledge again is important for 
development of an understanding of the causes behind the events. The model knowledge 
is seemingly applied in many different ways as illustrated by the different names of the 
different model types and analysis tools. Consequently, it could be worthwhile to 
understand how these different representations of model knowledge are related. Thereby 
it could become possible to develop the different representations from a common base to 
ensure consistency between the applied knowledge in the different aspects of process 
operations. 

This presentation addresses functional modelling for the purpose of the object system 
under investigation, where the purpose of functional modelling is to represent the relations 
between the system goal and the underlying phenomena. The object under investigation 
in this presentation is process operation. The role of different aspects of functional 
modelling within process operation is analyzed. The fundamental principles of functional 
modelling for the object under investigation are presented leading to:  

The concept of Functional modelling hermeneutics defined as 

1. translating the modelling goal into desired system properties,
2. identifying the needed theory to model the system to represent these properties
3. identifying the criteria for evaluation of system purpose and performance.

Different types of functional models are illustrated with a discussion of their relations to 
quantitative computational physicochemical models. It is demonstrated that functional 
modelling hermeneutics can be viewed as a common foundation for many different 
functional process model types applied in as diverse areas as monitoring, alarm handling, 
fault detection and consequence reasoning as well as for traditional simulation with 
computational physicochemical models.
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The primary objective of online process optimization, also known as real-time optimization (RTO), is
to optimize the economic performance subject to satisfying constraints such as product specifications and
operational limits. Online process optimization is traditionally based on rigorous steady-state mathematical
models of the process that are used in a numerical optimization solver to compute the optimal inputs and
setpoints. However, the main challenge with this approach is the need for mathematical models. Mathemat-
ical models are generally expensive to obtain and maintain. In addition, the required computation may be
difficult to implement and may not converge to the optimal solution. Moreover, there is always plant-model
mismatch due to lack of knowledge and/or model simplification. This may lead to suboptimal operation.
Addressing the plant-model mismatch has been one of the main focus areas of RTO in the past four decades
or so.

Online process measurements are used to cope with plant-model mismatch.The most obvious and common
approach in traditional RTO is to update the model using the so-called two-step approach, where deviations
between the model predictions and the measurements are used in the first step to update the model param-
eters. In the second step, the updated steady-state model is used to re-optimize the setpoints. The RTO
layer generally has as degrees of freedom, the setpoints for the controlled variables (CV sp) which is given
to the control layer below. The control layer has degrees of freedom u, which are the physical manipulated
variables (MV), and in addition to achieving feasible operation, its main objective is to keep the outputs y
or controlled variables (CV) at the optimal values computed by the RTO layer.

The main purpose of this presentation is to show how we can eliminate the RTO layer, even for the case
when the set of constraints that are optimally active, changes with changing operating conditions. In other
words, the objective is to indirectly move the optimization into the control layer.

For many simple processes, online steady-state process optimization with changes in active CV constraint
regions can indeed be achieved by using simple feedback control structures, without having a separate online
optimization layer. In particular, we show that changes in active constraint regions can be handled using
simple logics such as selectors, without needing to identify the exact location of the active constraint regions
a priori, nor using a detailed model online. When we have one manipulated variable (MV) controlling two
controlled variable (CV), i.e. CV-CV switching, then minimum/maximum selectors can be used. Alterna-
tively, when we have more than one candidate MV to control one controlled variable (CV), then split-range
logic can be used. Split range control may also be used when MV-CV pairings need to be changed when a
MV saturates. This presentation will particularly focus on CV-CV switching.

Some well known case studies are presented that demonstrate the effectiveness of the proposed control
structures and how changes in the active constraint regions can be handled using simple control logics such
as selectors.
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Figure 1: Schematic representation showing a minimum selector block used to switch between two constraints
that are active in two different regions.
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Abstract: We consider the thermal management problem of provisioning the cooling airflow
to data center rooms. Building on a virtual plant capturing the thermal behaviour of both
the cooling equipment and the room-side heat load, we evaluate a 2D phasor-based Extremum
Seeking Control (ESC) strategy that strives to satisfy the cooling demand while minimizing the
cooling provisioning cost.

Keywords: Data center cooling, Phasor extremum seeking control.

1. INTRODUCTION

We consider an environmental control application em-
ploying a data center Indirect Adiabatic Cooling (IAC)
unit [1,2]. The objective is to minimize the cooling power
consumption, while letting the data-processing equipment
operate within a safe temperature envelope. To this set-
ting, we apply a two-dimensional phasor-based Extremum
Seeking Control (ESC) strategy that manipulates the flow
rates of the process-side air and water to optimize the
overall cooling efficiency.

Toward faster convergence to the optimum, we propose
a Newton-like acceleration of the phasor-based ESC [3].
The scheme is inspired by the work in [4], in which
the steepest descent strategy of the classical perturbation
based ESC is substituted by a Newton-like descent. Here,
we make use of a phasor-based strategy by the first and
second order derivatives of the plant’s index are filtered
from its representation on truncated Fourier basis. The
proposed controller enjoys several desirable properties: i)
it is adaptive with respect to changes in the environmental
and workload conditions; ii) it is plug-in, since it requires
updates to software only components; iii) it is simple to
implement, since the optimal controls are learned on-line
without the requirement of a detailed knowledge of the
plant.

Statement of contributions. The contribution of this study
is twofold:

• the analysis of a Newton-like ESC aimed at multi-
variable problems that builds on the phasor-based
derivative estimator;

• the in silico validation of our approach in a relevant
data center cooling application.

� This work is partially funded by ProcessIT Innovations.

Organization of this manuscript. Section 2 introduces rel-
evant background material. Section 3 discusses the estima-
tion step in the phasor based ESC. Section 4 describes the
proposed Newton-like approach. Section 5 demonstrates
our design in simulation. Finally, Section 6 collects con-
cluding remarks and future directions.

2. BACKGROUND MATERIAL

We consider a nonlinear control systems of the form

Σ =̇
{

ẋ = f(x, θ)
yo = h(x) (1)

where x ∈ R
n is the state, θ ∈ R

m is the control value,
yo ∈ R is the scalar measured output, and the vector fields
f, h are sufficiently smooth. In this context, the plant index
yo has the meaning of either a cost or a utility.
Assumption 1. There exists a sufficiently smooth function
� : Rm → R

n such that
f (x, θ) = 0 ⇔ x = �(θ). (2)

Assumption 2. For each θ ∈ R
m, the equilibrium point

�(θ) is locally exponentially stable for the autonomous
dynamics ẋ = f (x, θ) with constants uniform in θ.

Let Q : Rm → R, Q =̇h ◦ �, denote the steady state value
of the plant’s index given the parameter. To ensure global
convergence, we require the following characterization.
Assumption 3. The index Q is strongly convex with posi-
tive definite Hessian.

We stress that f, h in (1), � in (2), and the steady state in-
dex Q are otherwise unknown. The control task is to opti-
mize the plant operation by steering Σ along the profitable
directions inferred from the continuous measurement of yo.
This entails to learn the optimal parameters online,

θ∗ ∈ argmin
θ∈Rm

Q(θ), (3)
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and then to bring the system operation near this optimum.

Here, we take an ESC controller to be a new dynamical
system of the form⎧⎪⎨⎪⎩

ζ̇(t) = fesc (t, ζ(t), yo(t))
˙̂
θ(t) = diag (k)hesc (ζ(t), yo(t))
θ(t) = θ̂(t) + diag (a) s(t)

(4)

where:

• fesc is the dynamics of the direction finder and hesc a
mapping of the internal state to the estimated descent
direction;

• θ̂ is the estimated minimizer of (3) and k ∈ R
m
>0 a

vector of integration gains affecting the convergence
speed;

• s = s(t) ∈ R
m is a vector of additive sine waves

sk(t) = sin(ωkt), k = 1, . . . , m (5)
with ω1 < ω2 < . . . < ωm, while a ∈ R

m
>0 is a vector

of perturbation amplitudes such that, for any choice
of distinct indeces k, v, z = 1, . . . , m, there holds [5].:
i) ωk �= 2ωj , ii) ωk ±ωv �= ωz, and iii) ωk ±ωv �= 2ωz.

3. DERIVATIVE ESTIMATOR

Following [3], we approximate yo(t) by projecting the
signal onto a truncated Fourier basis:

yo(t) ≈ χ(t)�ζ, (6)
where χ(t) is obtained by stacking the sine and cosine
basis functions 1 , and ζ collects the corresponding Fourier
coefficients. By assimilating ζ(t) to a vector of state
variables, we introduce the dynamical observer

˙̂
ζ(t) = L(t)

(
yo(t)− χ�(t)ζ̂(t)

)
, (8)

where the entries of the gain are phase-shifted versions of
the entries of χ(t). Under the following noise modeling,
L(t) can be chosen as the unique, periodic, stabilizing,
Kalman-Bucy gain associated to the dynamics [3]{

ζ̇(t) = ε1(t)
yo(t) = χ(t)�ζ(t) + ε2(t)

(9)

where ε1, ε2 are zero mean Gaussian random processes
with covariances V =̇ var (ε1) and r =̇ var (ε2). In particu-
lar, the optimal gain in the Kalman sense can be evaluated
by solving a periodic Riccati Differential Equation (RDE):

Ṗ (t) = V − rL(t)L�(t), L(t) = r−1P (t)χ(t). (10)

The state (8) can be shown to capture the derivatives’
estimates up to fixed but unknown multiplicative factors.
In particular the derivatives of Q can be estimated using:

(∇̂Q)k =̇
ζ̂sk
ak

√√√√1 +(
ζ̂ck

ζ̂sk

)2

≈ (∇Q)k,

(∇̂Q)k =̇
ζ̂sk
ak

√√√√1 +(
ζ̂ck

ζ̂sk

)2

≈ (∇Q)k�oωk
,

1 For example, in the case m = 1:

χ(t) =̇
[
1 sin(ωt) cos(ωt) sin(2ωt) cos(2ωt)

]�
. (7)

Primary sideSecondary side

xr

xe

ẇ

Computer
room

Heat
exchanger

Adiabatic
humidifier

ṁ

q

Figure 1. Overview of the indirect cooling setup: a sec-
ondary airflow (in light blue) transits through a cross-
flow heat exchanger to recover thermal energy from an
independent primary airflow (in red). A humidifier is
used to enhance the recovery rate.

(ĤQ)kk =̇ − 4 ζ̂c+kk

a2k

√√√√1 +(
ζ̂s+kk

ζ̂c+kk

)2

≈ (HQ)kk,

(ĤQ)kv =̇ (ĤQ)vk =̇ − 2 ζ̂c+kv

akav

√√√√1 +(
ζ̂c+kv

ζ̂s+kv

)2

≈ (HQ)kv.

4. THE NEWTON-LIKE ESC

The Newton-like acceleration for the phasor ESC is derived
by specializing the general scheme in (4). Specifically, we
let:

• fesc be the state-update law in (8), augmented with
a Hessian inversion dynamics

fesc

(
t,

[
ζ̂

Γ

]
, yo

)
=̇

⎡⎣L(t)
(

yo(t)− χ�(t)ζ̂(t)
)

ωΓ

(
Γ − ΓĤQΓ

) ⎤⎦
(11)

where the state Γ of the RDE correspods to an
estimate of (HQ)−1, and ωΓ ∈ R>0 is a tuning
gain [6];

• hesc as the Newton-like direction
hesc(ζ̂) =̇ − Γ∇̂Q. (12)

It can be shown that the proposed Newton-like ESC
enjoys staiblity properties similar to those of the classical
perturbation-based multi-variable ESC. See [?] for details.

5. EXAMPLE: ON-LINE OPTIMIZATION OF AN
INDIRECT ADIABATIC COOLING UNIT

We aim to minimze the power consumption of the Indirect
Adiabatic Cooling (IAC) unit schematized in Figure 1. The
system operates as follows. A stream of primary cooling air
is supplied to the computer room where it absorbs the heat
load produced by the electronic equipment before being
recirculated through the hot-side of a main heat exchanger.
An independent stream of air, known as secondary air, is
circulated across the cold-side of the heat exchanger and
then exhausted back to the environment. To enhance the
unit’s capacity, a humidifier injects pulverized water in
the secondary airflow, translating its thermo-hygrometric
properties across isenthalpic lines to lower temperatures.
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The corresponding control problem considers two indepen-
dent manipulable variables:

• ṁ, the volumetric flow rate of secondary air produced
by the secondary fans;

• ẇ, the volumetric flow rate of water processed by the
humidifier.

Therefore, θ(t) = [ṁ(t) ẇ(t)]�. Moreover, operating
the room-side equipment safely induces a temperature
requirement on the supply temperature xr,

xr(t) ≤ xr, (13)
where xr is a constant threshold. Seeking the minimum
power consumption, we consider the following smooth,
convex, absorption index

piac (ṁ, ẇ) =̇ pfan (ṁ) + phum (ẇ) , (14)
and account for (13) by including a one-sided barrier in
the final plant index:

yo(t) =̇ piac (ṁ(t), ẇ(t)) + λ (max{0, xr(t)− xr})2 . (15)
We task the Newton-like ESC of Section 4 to optimize the
cooling operations over a period of 9 hours. To evaluate
the dynamic behavior, we design a numerical scenario
including changes in the outdoor temperature and the
room-side heat load. Specifically, at time t1 ≈ 2 hours
we inject a sudden step in the heat load q, increasing it
from 75 kW to 85 kW. At time t2 ≈ 5 hours we inject an
additive ramp term in the outdoor temperature xe which
goes from 25 ◦C to 26 ◦C. The model used for simulation
was developed for and calibrated on commercial IAC
unit, using a First-Principle Data-Driven methodology [1]
(and references therein). Moreover, we consider ω1 =
0.0762 rad s−1, ω2 = 0.0967 rad s−1, a1 = 150m3 h−1,
a2 = 10Lh−1, k = −10−5 · [1 6]�, λ = 25 kW ◦C−2, and
xr = 21 ◦C.

The simulation results are summarized in Figure 2. We
observe significant differences between the optimization
objective (14) and the actual power consumption (15)
when the temperature constraint (13) is active. Since the
dynamics of the supply temperature induces higher phase-
lags than the actuator dynamics, the barrier term in (15)
injects significant harmonic distortions, affecting the ac-
curacy of the derivative estimation. Moreover, the barrier
renders a non-convex index, with an optimal θ∗ different
from that of (14), and potentially multiple optimizers.
Nevertheless, throughout the testing, the controller is able
to update the manipulable variables, adaptively with the
operating conditions, bringing the system’s operation near
the optimal settings.

6. CONCLUSIONS

We propose a multi-variable Newton-like implementation
of the phasor ESC, and demonstrate its effectiveness a
calibrated model of a data center IAC unit.

We stress that Newton-like strategies come with strict re-
quirements that in practice are not easily satisfied (for in-
stance, strict convexity or concavity of the index). On the
one hand, Newton-like strategies enable faster convergence
rates compared to simpler schemes. On the other hand,
slow variations in the parameters are typically required
to moderate any estimation errors, making the potential
benefits generally hard to achieve.

Figure 2. Simulated optimization scenario involving the
IAC unit and the proposed Newton-like ESC. The
manipulable inputs (in the top panel) are updated on-
line to minimize the plant index (in the middle panel).
The supply temperature (bottom panel) is regulated
in a neighborhood of xr. The ESC starts operating at
time t0. Changes in the room-side heat load q and the
outdoor temperature xe are injected at times t1 and
t2 (see the text for the details).

As highlighted by our numerical example, future directions
of prominent interest include a formal address of problems
with output constraints.
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Abstract: In this work, virtual sensing methods for estimation of unknown inputs and states of
a ship propulsion system is presented. Dynamical models of the propulsion system together with
indirect measurements are used to estimate torque and angular velocities at various locations
of the system. A case study where a simulation model of the propulsion system of a hybrid ship
is used to demonstrate the performance of the proposed methods.

Keywords: Virtual sensor, input-and-state estimation, marine systems

Energy efficient and reliable operation of modern ships
relies heavily on the availability of high-quality data. Tasks
such as automatic control, predictive maintenance and
fault diagnostics on ships are all dependent on sensing
data. However, obtaining the required data by installing
sensors in all desired locations is not only impractical due
to the high installation cost, but sometimes also impossible
due to the physical constraints of the system. Virtual
sensing techniques, which rely on indirect measurements
and dynamical models of the system, have thus been used
as additions to physical sensors (Hsieh, 2009, 2006; Gillijns
and De Moor, 2007; Manng̊ard et al., 2019).

In this work, the virtual sensing problem is formulated as a
simultaneous input-and-state estimation problem. A fixed-
lag Kalman-type smoother for estimating the unknown
inputs and states in have been derived. Furthermore, by
relying on real-time convex optimization, we have shown
that robustness can be enforced on the estimates. We
� This work is was done withing the Business Finland funded
projects Reboot IoT Factory and Integrated Energy Solutions to
Smart and Green Shipping (INTENS).

present a case study where torque contributions from the
propellers and engine-generator sets, as well as angular
velocities from different components on the driveline, are
estimated.
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Abstract

In pharmaceutical manufacturing, crystallization is the most preferred technique in downstream
processing to recover crystal products. Crystal quality attributes such as crystal size distribution, 
purity, and polymorphic form, which are critical for not only following unit operations, but also
therapeutic properties of the formulated product, are determined by the operating conditions of 
crystallizers. Therefore, control of a crystallization process is critically and essentially the control 
of quality attributes. Traditionally, crystallization processes are operated based on a pre-defined
recipe of a process variable such as a temperature trajectory for a cooling crystallization system, 
and the quality of the crystal product is tested only at the end of the process. Quality by testing 
(QbT) approach leads to high profit loss since batch-to-batch variations of crystal quality attributes
are unavoidable, due to the absence of control actions taken during the process in order to avoid 
effects of any disturbances available in the system through e.g. feedback signals coming from 
solid-state attributes or supersaturation. However, consistency of a process outcome is highly 
dependent on a robust process control strategy. In literature, emergence of the latest generation of
process analytical technology (PAT) tools, mechanistic understanding and modeling of underlying 
mechanism of crystallization process and incentives by regulatory mechanism have accelerated 
the efforts on the development of advanced process control strategies in order to achieve desired
product quality, so called quality by control (QbC). State of the art crystallization control strategies 
can be classified into two main groups as model free and model based. Model free methods such 
as direct nucleation control (DNC) or supersaturation control (SSC) are simple and found many 
applications, they might require some investigations on the determination of a robust set point as
well as some efforts on online sensor calibration. Model based control strategies utilize real time 
crystallization process simulations to predict the effects of inputs and disturbances on the process 
output, whose performance is strictly dependent on the complexity and accuracy of the 
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implemented model as well as speed of solution time. However, often a simple but reliable control 
strategy is required in the pharmaceutical industries to achieve a fast and successful transition from 
laboratory to pilot scale crystallization operation. Therefore, in this work we developed a Radial
Basis Functions Network (RBF) based control strategy and showed experimental application on a
pharmaceutical batch cooling crystallization process. A reference trajectory of particle counts 
measured by FBRM is followed by manipulating and updating the temperature profile during the 
experiment time. Performance of the proposed control strategy based on RBF was evaluated with 
different training data techniques and in the presence of disturbances in the system such as initial 
concentration and seed specifications. 
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Abstract: The pharmaceutical industry is increasing its use of continuous manufacturing, which enables 
easier scale-up, faster time-to-market, and tighter control over product quality [Plumb, 2005]. Continuous 
operation is well suited for the application of plantwide control approaches such as self-optimizing 
control (SOC), where the goal is to find a set of controlled variables (CVs) which, when kept at constant 
setpoints, indirectly lead to near-optimal operation [Skogestad, 2000, Jaschke et al., 2017].

The main idea of SOC is to control optimal invariants, which are process variables whose optimal 
setpoints are insensitive to disturbances and measurement noise. The ideal SOC variable would be the 
gradient of the objective function, where the necessary condition for optimality is enforced by controlling 
the gradient to zero. In real processes, where the gradient cannot be measured directly, selecting self-
optimizing controlled variables is equivalent to finding good approximations of the gradient using single 
measurements or combinations, often linear, of measurements.

An SOC structure is able to track the optimal steady-state operating point of the plant closely in the
presence of uncertainty, without the need for re-optimization. In hierarchical control structures which 
have time-scale separation between the supervisory control and optimization layers, SOC at the 
supervisory layer can ensure optimal operation when disturbances impact the process, without waiting for 
setpoint updates given by the upper level optimization layer. Only in the presence of unmodeled 
disturbances or when large disturbances move the process far away from the nominal operating point, a 
new setpoint is computed from the optimizer to correct for the steady-state loss of optimality.

This work explores how self-optimizing control can be applied to the continuous-flow synthesis of 
atropine, and appears to be the first application of self-optimizing control (SOC) to a continuous 
pharmaceutical manufacturing plant reported in the literature.

This study employs an improved version of a recently published first-principles model of the continuous
flow synthesis of atropine [Nikolakopoulou et al., 2019], which is an active pharmaceutical ingredient 
(API) with a variety of therapeutic uses, including the treatment of heart rhythm problems. The model
was constructed from the process flowsheet and experimental results reported by [Bedard et al., 2017]. 
The Environmental factor (E-factor, defined by the ratio of the mass of waste per mass of product) is 
used as the objective function to find the optimal operating point of the plant. The main sources of 
uncertainty considered when designing the control structure include perturbations in the process variables
(disturbances), parametric model uncertainty, and sensor noise.

The controlled variables are selected in two steps. First, local methods [Halvorsen et al., 2003, Kariwala 
et al., 2008, Alstad et al., 2009, Kariwala and Cao, 2009] are used to screen promising candidate 
controlled variables around the nominal operating point, where the plant is expected to operate most of 
the time. These local methods rely on a linearized model of the plant and a quadratic approximation of 
the objective function. The performance of a given control structure is quantified in terms of the loss of 
optimality, i.e., the difference between the value of the objective function resulting from constant setpoint 
control using that particular control structure and the value of the objective function resulting from truly 
optimal operation [Halvorsen et al., 2003]. The sets of controlled variables are selected by systematically 
minimizing the average loss of optimality with respect to the given objective function (in this case, the E-
factor). In a second step, these preliminary candidate controlled variables are then validated over the 
entire operating envelope using the original nonlinear model of the plant and Monte Carlo simulations for 
independent and normally distributed scenarios of disturbances and measurement noise realizations.
It was found that near-optimal operation can be achieved by controlling a linear combination of flow rate
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and concentration measurements to constant setpoints, with only small losses of optimality for all of the
model parametric uncertainties, disturbances, and measurement noise considered in this case study.

Keywords: Self-Optimizing Control, Control Structure Design, Plantwide Control, Pharmaceutical 
Manufacturing
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Model -based monitoring of pH gradients in a pilot-scale lactic acid bacteria fermentation 

Robert Spann1, Krist V. Gernaey2, Gürkan Sin2  

1 Chr. Hansen, Boege Allé 10-12, 2970 Hoersholm, Denmark 
2 Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical 

Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs. Lyngby, Denmark 

Abstract 

There is an increasing interest in process analytical technology (PAT) tools for on-line monitoring and 
control of bioprocesses. In large-scale bioprocesses, heterogeneous process conditions occur due to 
imperfect mixing. An aerotolerant Streptococcus thermophilus batch cultivation in a 700-L bioreactor was 
employed as a case study. These cells are used in the dairy industry as starter cultures, e.g., for cheese 
and yoghurt production. The production target of the cultivation is thus the cells, which needs to be 
optimized. However, pH gradients that occur in large vessels affect the biomass growth and modelling 
them is key for the understanding and improvement of the production process. A mechanistic bioprocess 
model describing the biomass growth and lactate production is coupled with a chemical model that 
predicts the pH in the cultivation broth and a compartment model that accounts for the mixing in the 
bioreactor. Utilizing these models in a soft sensor enabled the monitoring of the critical quality 
attributes and critical process parameters, such as the biomass growth and the pH gradients respectively. A 
Monte Carlo simulation within the soft sensor considering model parameters’ and measurements’ 
uncertainties was utilized to quantify the risk of not achieving the target biomass production in real 
time. Such tools will help biotechnological companies to optimize the process, e.g., by model-based 
control of the agitation or model-based design of the bioreactor to minimize pH gradients and maximize 
productivity. 

Keywords: lactic acid bacteria (LAB) fermentation, modelling, soft sensor, risk assessment, pH gradient 
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Nonlinear Model Predictive Control of Wastewater Treatment for Smart, Cost 
Efficient Aeration 

P. A. Stentoft*,**, A.K. Vangsgaard*, T. Munk-Nielsen* 

*Krüger A/S, Veolia Water Technologies, Søborg, Denmark, (e-mail: akv@kruger.dk, thm@kruger.dk, pas@kruger.dk )
** Department of Applied Mathematics and Computer Science, Technical University of Denmark (e-mail:past@dtu.dk)

Abstract: The Activated Sludge Process (ASP) is essential in municipal wastewater treatment. This is 
because it removes nutrients and carbon from the incoming wastewater before it is discharged back to 
environment. While the ASP is important, it also requires large amounts of electricity. Furthermore the 
discharged nutrients are subject to taxation. This implies that control is crucial to minimize costs and to 
secure satisfactory treatment. This study presents a novel model predictive control strategy to control an 
ASP with alternating operation. This means, that the aeration equipment is switching between on and off 
in controlled cycles to secure good conditions (aerobic/anaerobic) for the nutrient removing bacteria. The 
strategy uses discretely observed stochastic differential equations to predict the effect of control actions 
on the nutrient concentrations. The model parameters and states are estimated using maximum likelihood 
and updated with an Extended Kalman Filter. This is done in real-time with measurements from sensors 
located directly in the process tanks. The setup secures that changes in the biomass, inflow to the plant 
etc. are quickly adapted in the model and hence the model provides reliable predictions on horizons up to 
24 hours ahead. The optimal control is estimated by minimizing an objective function over a 24 hours 
prediction horizon. We investigate one objective function (i) which describes the total costs as nutrient 
taxes and electricity consumption with variable prices. Furthermore we test an objective function (ii) 
which estimates the total environmental impact, here defined as eutrophication related to the discharge of
nutrients and global warming potential related to the electricity production method and emissions from 
the biological processes (in the form of nitrous oxide). The strategy is tested with data from two 
wastewater treatment plants in Denmark and electricity price data from the largest power market in 
Scandinavia (run by Nord Pool a/s). Results from simulations using (i) indicate that costs can be reduced 
by approximately 25% on a small wastewater treatment plant as compared with the currently installed 
rule-based control. The reduction in cost is caused firstly by the ability of the MPC to find the best 
balance between taxes and electricity consumption and, secondly, by the prioritization of electricity 
consumption in periods when electricity prices are low. Results from (ii) show that it is possible to reduce 
environmental impact. However it is sensitive to the weights on the different impacts which must be 
specified in the objective function, and hence these needs to be determined with caution.  
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Energy Savings using MPC on a TES unit

for Heat Exchange in Industrial Clusters �

Mandar Thombre, Johannes Jäschke

Department of Chemical Engineering, Norwegian University of Science
& Technology , NO-7491 Trondheim,
(e-mail: mandar.thombre@ntnu.no).

Abstract: An industrial cluster refers to multiple process plants located in the same
geographical area, facilitating the sharing of utilities, infrastructure and services (Chertow,
2007). Surplus heat recovery is an especially attractive proposition for such industrial clusters
since it presents an opportunity for flexible energy exchange within the cluster, with plants
representing both sources and sinks of surplus heat. A prominent operational challenge
for surplus heat exchange between multiple plants is the temporal decoupling between the
availability of surplus heat and its demand. Thermal energy storage (TES) is a viable option
to resolve this issue (Mir et al., 2016), since it offers operating flexibility to heat recovery by
creating a buffer between the supply and demand of surplus heat, thereby reducing peak energy
requirements.

S

S

SnS

C

CnC
TES

C

Energy Market

In this work, we propose an model predictive control (MPC) scheme for coordinating the heat
exchange in an industrial cluster with a TES unit. We compare this with a corresponding case
without TES, and demonstrate that use of a TES unit along with optimal control leads to
higher energy-efficiency and significant energy savings. An industrial cluster system with a hot
water tank for TES is shown in the figure. The various plants act as sources (S1, . . . , SnS

) or
sinks (C1, . . . , CnC

) of the heat in the TES tank. A common practice in case of excess demand
is to purchase electricity directly from the market, or to burn fossil fuels using boilers, to heat
up the required process streams. Not only are these “peak-heating” sources of energy expensive,
significantly increasing the operating costs in the cluster, but they also lead to higher carbon
emissions. The economic objective then is to minimize this peak-heating while satisfying the
consumer-side heat demand.

We consider that the cumulative surplus heat supply and demand in the cluster are equal over a
24-hour period, but that the supply and demand profiles are asynchronous. In the case without
TES, this leads to large heat wastage in case of excess supply and large peak-heating in case of
excess demand. It is shown that by using the MPC framework along with storage, the surplus
heat in the cluster is used to charge up the TES unit during periods of low demand, and that
this stored energy is subsequently used in a low-supply/high-demand scenario. In addition,
we quantitatively demonstrate the improved energy-savings obtained via the use of TES, by
comparing the total dumped heat and the total peak-heating required in the two cases.

Keywords: model predictive control, thermal energy storage, industrial cluster
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Discovery through process data analytics 

Nina Thornhill1

1ABB/RAEng Professor of Process Automation, Department of Chemical Engineering, Imperial 
College London 

Process plants may have thousands of measurements. They also have intricate connections that mean 
the measurements are not independent of one other. The talk will describe research that has helped with 
the complicated challenges of generating insights from these measurements to improve process 
performance. As an example, I will show how data analytics revealed the widespread consequences of 
slugging flow on a North Sea oil and gas platform. I will give some opinions about how process data 
analytics fit into the wider context of autonomous operation and artificial intelligence, and will 
speculate about research trends in the next few years. I am very grateful to ABB Corporate Research 
for supporting my post at Imperial College from 2007 until now. ABB collaborators and I have also 
worked with other industrial and academic partners in several European Marie Skłodowska-Curie 
projects. 
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Linear-quadratic differential game control:

two ways to ensure solvability

Vladimir Turetsky ∗

∗Ort Braude College of Engineering, Karmiel, Israel
(e-mail: turetsky1@braude.ac.il)

Abstract:
A control, based on the linear-quadratic differential game, is a conventional tool in various
applications. It is well known that this control becomes infeasible for some combinations of
penalty coefficients of the cost functional, because the corresponding differential game does not
satisfy the solvability condition. One way to guarantee the solvability is reducing the control
penalty coefficient. However, in some practical examples, the penalty coefficient is fixed and
cannot be reduced. It is proved that for given penalty coefficients, a sufficiently small control
time interval can be chosen in such a way that the game on this interval is solvable. This allows
employing a receding horizon control scheme. Simulation results are presented.

Keywords: differential game, solvability condition, Riccati equations, receding horizon.

1. INTRODUCTION

Linear-quadratic differential game (LQDG) is formulated
for a linear dynamic system, whereas its cost functional is
quadratic with respect to the state and control variables.
It was solved by Ho et al. (1965) in the case of no state
variable in the integral term of the cost functional. The
solution in more general case was obtained by Zhukovskii
(1970). The LQDG solution is based on the matrix Riccati
differential equation (MRDE). In contrast with the one-
side linear-quadratic optimization problem (Letov (1960);
Kalman (1960)), the MRDE, associated with the LQDG,
can have conjugate points on the game time interval, where
its solution ”blows up” (tends to infinity). As a rule, this
leads to a non-existence of the LQDG solution on the entire
game time interval.

Despite possible non-solvability, an LQDG based control
became a conventional tool in a wide variety of robust
control problems in conditions of uncertainty and conflict,
including missile guidance (Shinar and Shima (2012)),
disturbance rejection (Pachter and Pham (2010)), trajec-
tory tracking (Turetsky et al. (2014); Turetsky (2016a)),
robotics (Gu (2008)), etc. By linearization, the LQDG
control can be applied for non-linear systems (Turetsky
(2016b); Bhargav et al. (2018)).

The verifiable solvability condition for a generalized
LQDG was derived by Shinar et al. (2008). In order to
guarantee the fulfilment of this condition at a prescribed
time interval, one should choose sufficiently small penalty
coefficients in the cost functional. However, the values
of the penalty coefficients can be determined by some
technical constraints and cannot be reduced according to
the solvability condition. In this paper, it is shown that
for given penalty coefficients, a sufficiently small final time
can be chosen in such a way that the game is solvable on
the reduced time interval. It allows exploiting the LQDG

control repeatedly at subsequent time intervals as in the
receding horizon control scheme (Kwon and Han (2006)).

2. PREVIOUS RESULT: SOLVABILITY CONDITION

Let us consider the generalized LQDG for a linear system

ẋ = A(t)x+B(t)u+C(t)v, x(t0) = x0, t0 ≤ t ≤ tf , (1)

where x ∈ R
n is the state vector, u ∈ R

r and v ∈ R
s are

the minimizer’s and the maximizer’s controls, respectively;
t0 and tf are the prescribed initial and final time instants;
the matrix functions A(t), B(t) and C(t) are continuous.
The cost functional is

Jαβ = G(x(·)) + α

tf∫
t0

|u(t)|2dt− β

tf∫
t0

|v(t)|2dt, (2)

where

G(x(·)) �

K∑
i=1

|D(ti)(x(ti)− y(ti))|
2
+

L∑
j=1

bj∫
aj

|D(t)(x(t) − y(t))|
2
dt, (3)

ti ∈ (t0, tf ], i = 1, . . . ,K, are prescribed time instants;
(aj , bj) ⊂ [t0, tf ], j = 1, . . . , L, are non-intersecting
intervals; y(t) and D(t), t ∈ [t0, tf ], are n-vector and n×n-
matrix functions, continuous for t ∈ [aj , bj], j = 1, . . . , L;
α, β > 0 are the control penalty coefficients of the players.
Note that the state term of (2) can be represented as
a Lebesgue-Stilties integral over properly defined mixed
discrete/continuous measure:
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G(x(·)) =

∫
[t0,tf ]

|D(t)(x(t) − y(t))|
2
dm(t). (4)

Remark 1. If G(x(·)) is small, this means that the sys-
tem tracks the function y(t) in the sense of the space
L2([t0, tf ],m). It was proved (see, e.g., Turetsky et al.
(2014); Turetsky (2016a)) that, subject to some additional
conditions, the minimizer’s optimal LQDG control also
guarantees the smallness of G(x(·)).

For t ∈ [t0, tf ], let us define two families of com-
pact, self-adjoint, positive definite operators mapping
Ln
2 [t0, tf ],m(·)] into itself:

Fk(t; t0, tf )f(·) =

∫
[t,tf ]

Fk(t, η, ν)f(ν)dm(ν), k = u, v,

(5)
where

Fu(t, η, ν) =

D(η)

⎛
⎜⎝

min(η,ν)∫
t

Φ(η, τ)B(τ)BT (τ)ΦT (ν, τ)dτ

⎞
⎟⎠DT (ν),

(6)

Fv(t, η, ν) =

D(η)

⎛
⎜⎝

min(η,ν)∫
t

Φ(η, τ)C(τ)CT (τ)ΦT (ν, τ)dτ

⎞
⎟⎠DT (ν),

(7)
Φ(t, τ) is the fundamental matrix of (1), i.e.,

Φ̇(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = In. (8)

Define the operator

Fαβ(t; t0, tf ) =
1

β
Fv(t; t0, tf )−

1

α
Fu(t; t0, tf ). (9)

Let λ
(k)
αβ (t; t0, tf ), k = 1, 2, ..., be the eigenvalues of

Fαβ(t; t0, tf ), and

λ∗ = λ∗(α, β, t0, tf ) � sup
k

sup
t∈[t0,tf ]

λ
(k)
αβ (t; t0, tf ). (10)

Theorem 1. (Shinar et al. (2008)). The LQDG (1) – (2) is
solvable if

λ∗(α, β, t0, tf ) < 1. (11)

Remark 2. If (11) holds, then for any position (t, x) ∈
[t0, tf ]×R

n, the saddle point of the LQDG are given by

u0(t, x) = −
1

α
BT (t)ΦT (tf , t)

(
2Rαβ(t)Φ(tf , t)x+ rαβ(t)

)
,

(12)

v0(t, x) =
1

2β
(t)CT (t)ΦT (tf , t)

(
2Rαβ(t)Φ(tf , t)x+rαβ(t)

)
,

(13)

where the matrix function Rαβ(t) and the vector function
rαβ(t) satisfy some impulsive Riccati and linear differential
equations, respectively. The non-solvability of the LQDG
means that the corresponding Riccati equation does not
have the solution on the entire control interval.

3. SOLVABILITY BY CHOOSING α

The following theorem is, in a sense, inverse to Theorem
1.

Theorem 2. Let t0 ≥ 0, tf > t0 and β > 0 be fixed. Let

KerFu(t; t0, tf ) ⊆ KerFv(t; t0, tf ), t ∈ [t0, tf ]. (14)

Then there exists α∗ = α∗(t0, tf , β) > 0 such that (11)
holds for all α ∈ (0, α∗).

This result implies a common implementation practice
which is to choose a (sufficiently small) α in (2) for given
t0, tf and β which ensures (11) at the prescribed time
interval.

Example 3.1. Scalar system with simple motions.
Consider an LQDG for the scalar system

ẋ = u+ v, (15)

with the pure integral functional

G(x(·)) =

tf∫
t0

x2(t)dt. (16)

The LQDG cost functional is

Jαβ =

tf∫
t0

x2(t)dt+ α

tf∫
t0

u2(t)dt− β

tf∫
t0

v2(t)dt, (17)

In this example,

Fu(t; t0, tf )f(·) = Fv(t; t0, tf )f(·) =
tf∫
t

[min(η, ν)− t] f(ν)dν. (18)

For α ≤ β, the operatorFαβ, given by (9), has non-positive
eigenvalues, thus providing the LQDG solvability. For
α > β, due to Turetsky and Glizer (2016), the eigenvalues
of this operator are

λ
(k)
αβ (t; t0, tf ) =

4(1/β − 1/α)(tf − t)2

(2k − 1)2π2
, k = 1, 2, ..., (19)

yielding

λ∗ =
4(1/β − 1/α)(tf − t0)

2

π2
. (20)
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Fig. 1. Trajectories x(t)

Thus, the critical value α∗ from Theorem 2 is

α∗ =

⎧⎪⎪⎨
⎪⎪⎩

1
1
β
− π2

4(tf−t0)2

, β <
4(tf − t0)

2

π2
,

∞, β ≥
4(tf − t0)

2

π2
.

(21)

In Fig. 1, three trajectories x(t) are depicted for t0 = 0,
tf = 1, β = 0.1, v(t) = 10 sin10t, and for different values
of α < α∗ = 0.1328.

Example 3.2. Inverted pendulum. The inverted pen-
dulum (see, e.g., Åström and Murray (2010)) is described
by the differential equations

ż1 = z2
ż2 = a sin z1 − bz2 + c1 cos z1U + c2 cos z1V,

(22)

where x1 is the pendulum angle, U and V are external
forces playing the roles of the control (minimizer) and
the disturbance (maximizer), respectively. Define for the
system (22) the functional

Gip(z(·)) =

2∫
0

[z1(t)− π/10]2dt+

5∫
3

[z1(t)− π/10]2dt+ [z1(2.5)− π/4]2. (23)

This functional is the particular case of (3) for D = [1, 0],
L = 2, a1 = t0 = 0, b1 = 2, a2 = 3, b2 = tf = 5, K = 1,
t1 = 2.5. It represents the objective of the first player to
keep the pendulum angle constant (π/10) on the intervals
[0, 2] and [3, 5], and to set the angle to π/4 for t = 2.5.

This system is feedback linearizable (Isidori (1989)). The
linearized system is obtained by the trivial transformation
x = z (Turetsky (2016b)):

ẋ1 = x2

ẋ2 = u+ v,
(24)

where

u = a sin z1 − bz2 + c1 cos z1U, v = c2 cos z1V. (25)

Consider the LQDG for (24) with the functional

Jαβ = Gip(x(·)) + α

tf∫
t0

u2(t)dt− β

tf∫
t0

v2(t)dt, (26)

In the LQDG (24), (26),

Fu(t; t0, tf )f(·) = Fv(t; t0, tf )f(·) = F(t; t0, tf )f(·) =∫
[t,tf ]

F (t, η, ν)f(ν)dm(ν), (27)

where

F (t, η, ν) =

min(η,ν)∫
t

(η − τ)(ν − τ)dτ =

ϕ(η, ν,min(η, ν))− ϕ(η, ν, t), (28)

ϕ(η, ν, ξ) =
ξ3

3
−

η + ν

2
ξ2 + ηνξ. (29)

For α ≤ β, the operator Fαβ , given by (9), is non-positive,
i.e., the condition (11) is valid and the LQDG is solvable.

Let λ̄
(k)
αβ (t; t0, tf ), k = 1, 2, ..., be the eigenvalues of the

positive definite operator (27). Then, for α > β, the
condition (11) becomes

(
1

β
−

1

α

)
λ̄∗ < 1, (30)

where

λ̄∗ = λ∗(α, β, t0, tf) = sup
k

sup
t∈[t0,tf ]

λ̄
(k)
αβ (t; t0, tf ). (31)

It can be directly shown that the second supremum in (31)
is attained for t = t0, i.e.,

λ̄∗ = λ∗(α, β, t0, tf ) = sup
k

λ̄
(k)
αβ (t0; t0, tf ). (32)

Thus, the critical value α∗ from Theorem 2 is

α∗ =

⎧⎪⎪⎨
⎪⎪⎩

λ̄∗β

λ̄∗ − β
, β < λ̄∗,

∞, β ≥ λ̄∗.

(33)

The value of λ̄∗ is the maximal solution of the Sturm-
Liouville problem

F(t0; t0, tf )f(·) = λf(·), (34)

which, due to (23) and (27) – (29), becomes for t0 = 0:
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2∫
0

ϕ(η, ν,min(η, ν))f(ν)dν + f(2.5)+

5∫
3

ϕ(η, ν,min(η, ν))f(ν)dν = λf(η), η ∈ [0, 5]. (35)

We treat the problem (35) numerically by replacing the
integrals with their quadrature approximation. To this
end, define the same grids over η ∈ [0, 5] and ν ∈ [0, 5]
consisting of 2N + 1 points: ηi = νi = iΔ, i = 1, ..., N ,
ηN+1 = νN+1 = 2.5, ηN+1+i = νN+1+i = 3 + iΔ,
i = 1, ..., N , where Δ = 2/N . Then, applying the right-
hand rectangles approximation yields

Δ

N∑
j=1

ϕ(ηi, νj ,min(ηi, νj))f(νj)+

ϕ(ηi, νN+1,min(ηi, νN+1))f(νN+1)+

Δ

N∑
j=1

ϕ(ηi, νN+1+j ,min(ηi, νN+1+))f(νN+1+j) =

λf(ηi), i = 1, ..., 2N + 1. (36)

Let us define the vector f̂ = (f(η1), ..., f(η2N+1))
T ∈

R
2N+1, and the (2N + 1) × (2N + 1) matrix H with the

elements

Hij = cjϕ(ηi, νj ,min(ηi, νj)), i, j = 1, ..., 2N + 1, (37)

where

cj =

{
Δ, j �= N + 1,

1, j = N + 1.
(38)

Then the equation (36) becomes

Hf̂ = λf̂ . (39)

Thus, the value λ̄∗ is approximated by the maximal
eigenvalue λ∗N of the matrix H for large N . In Table 1,
the values of λ∗N are shown for N = 5, 10, 50, 100, 500,
1000, 5000, 10000. In the third column of the table, the
differences between the current and the previous values
are shown. The table demonstrates the convergence of λ∗N
for N →∞.

Table 1. Maximal eigenvalues of the matrix H

N λ
∗

N
|Δλ

∗

N
|

5 57.3897

10 53.7866 3.6031

50 51.0031 2.7835

100 50.6613 0.3418

500 50.3889 0.2724

1000 50.3549 0.0340

5000 50.3277 0.0272

10000 50.3243 0.0034

Let us set λ̄∗ ≈ λ∗10000 = 50.3243. Then, for β = 0.1,
α∗ = 0.1002.

In Fig. 2, the trajectories z1(t) are depicted for t0 = 0,
tf = 5, x0 = (0.5, 0)T , a = b = c1 = 1, c2 = 10,
V (t) = sin(5t), and for different values of α < α∗. It is
seen that for smaller values of α, the tracking of y(t) is
more accurate.

t
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z1

0

0.5

1

1.5

2

2.5

y(t)

y(t1)

z1(t): α = 0.10018

z1(t): α = 10−4

z1(t): α = 10−6

Fig. 2. Trajectories z1(t)

4. SOLVABILITY BY CHOOSING CONTROL
INTERVAL

For some technical reasons, the penalty coefficient α can be
fixed in such a way that (11) is not satisfied, and it cannot
be reduced according to Theorem 2. In such a case, one
alternatively can reduce the control interval.

Theorem 3. Let t0 ≥ 0 α > 0 and β > 0 be fixed. Let for
some T > t0,

KerFu(t; t0, tf ) ⊆ KerFv(t; t0, tf ), t ∈ [t0, T ]. (40)

Then there exists t∗f = t∗f (t0, α, β) ∈ (t0, T ] such that (11)

holds for all tf ∈ (t0, t
∗

f ).

This result allows constructing a suboptimal LQDG con-
trol in the receding horizon fashion. Assume that the
LQDG is unsolvable on [t0, tf ] for given values of α and
β. Let us divide the interval into M = M(t0, tf , α, β)
subintervals t0 < t1 < ... < tM = tf satisfying

ti+1 ≤ t∗f (ti, α, β), i = 0, ...,M − 1. (41)

This condition guarantees that the LQDG is solvable on
each subinterval [ti, ti+1], i = 0, ...,M − 1.

In this section, we present two simplified examples of the
implementation of Theorem 3. In both examples, K = 0
(there are no discrete measure points in the functional (3))
and L = 1 ((3) contains a single integral term over the
whole interval [t0, tf ]). Moreover, in these examples (as in
Examples 3.1 – 3.2), Fu(t; t0, tf ) = Fv(t; t0, tf ).

Example 4.1. Scalar system with simple motions.

Due to (20), the critical value t∗f in the LQDG (15), (17),
is

t∗f (t0, α, β) = t0 +
π

2
√
1/β − 1/α

. (42)
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In Fig. 3, the trajectory x(t), generated by a suboptimal
LQDG control for t0 = 0, tf = 5, α = 0.15, β = 0.1,
v(t) = 10 sin10t, M = 8, is depicted. In this example
ti+1 − ti = 0.4 < t∗f − ti = 0.8604, i = 0, ..., 7, and the
LQDG is solvable on each subinterval.

t
0 1 2 3 4 5

x

-2

0

2

4

6

8

10

Fig. 3. Trajectory x(t) by suboptimal LQDG control

Example 4.2. Inverted pendulum.

Consider the problem for the inverted pendulum (22) with
the functional

G0
ip(z(·)) =

tf∫
0

z21(t)dt. (43)

As in Example 3.2, by the feedback linearization, the
problem is reformulated into the LQDG for the system
(24) with the cost functional

Jαβ = G0
ip(x(·)) + α

tf∫
0

u2(t)dt− β

tf∫
0

v2(t)dt. (44)

Similarly to Example 3.1, the maximal eigenvalue λ∗

of Fαβ(t; 0, tf) is equal to the maximal eigenvalue of
Fαβ(0; 0, tf)

Fαβ(0; 0, tf)f(·) =

(
1

β
−

1

α

) tf∫
0

ϕ(η, ν,min(η, ν))dν,

(45)

where the function ϕ(η, ν, ξ) is given by (29). As in Exam-
ple 3.1, we approximate λ∗ by the maximal eigenvalue of
the matrix H0

H0
ij =

(
1

β
−

1

α

)
Δ0ϕ(ηi, νj ,min(ηi, νj)), i, j = 1, ..., N,

(46)

where Δ0 = tf/N , ηi = iΔ0, νj = jΔ0, i, j = 1, ..., N .

In Fig.4, the approximate values of λ∗ for N = 1000 are
depicted as a function of tf ∈ [0.5, 2] for α = 0.15, β = 0.1.
In this example, the critical value t∗f = 1.38.

tf
0.5 1 1.5 2

λ
∗

0

1

2

3

4

5

t∗f

Fig. 4. Approximate values of λ∗ for α = 0.15, β = 0.1

In Fig. 5, the trajectory z1(t), generated by a suboptimal
LQDG control for t0 = 0, tf = 5, α = 0.15, β = 0.1,
v(t) = sin 5t, M = 4, is depicted. It is seen that the LQDG
control is feasible on each of subintervals, but the tracking
is not accurate.

t0 1 2 3 4 5

z1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 5. Trajectory z1(t): suboptimal LQDG control for
α = 0.15, β = 0.1

tf
0.01 0.02 0.03 0.04 0.05

λ
∗

0

0.5

1

1.5

2

t∗f

Fig. 6. Approximate values of λ∗ for α = 1.5 · 10−7,
β = 10−7

In order to improve the tracking accuracy, we consider the
case where α = 1.5 · 10−7, β = 10−7. For these values, the
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LQDG is also unsolvable on the interval [0, 5]. In Fig. 6,
the approximate values of λ∗ for N = 1000 are depicted
as a function of tf ∈ [0.01, 0.05] for these small values of α
and β. In this example, the critical value t∗f = 0.0438. The

resulting trajectory z1(t) for M = 200, is shown in Fig. 7.
It is seen that now, the tracking is accurate enough.

t
0 1 2 3 4 5

z1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Fig. 7. Trajectory z1(t): suboptimal LQDG control for
α = 1.5 · 10−7, β = 10−7

5. CONCLUSIONS

Two approaches are proposed to ensure the solvability of
the linear-quadratic differential game with the generalized
cost functional. The solvability condition was previously
derived in a form of the condition on the maximal eigen-
value of some compact self-adjoint operator in a functional
Hilbert space. In the first approach, the solvability is
guaranteed by choosing a sufficiently small control penalty
coefficient of the LQDG cost functional. In the second
approach, the solvability condition is provided by a small
enough control interval. This yields a suboptimal control
scheme in the fashion of a receding horizon control. Two
examples are presented. The first deals with the scalar
system with simple motions. In this example, the required
operator eigenvalues are calculated analytically and the
corresponding analytical conditions on the penalty coeffi-
cient and on the control interval are derived. In the second
example, the control problem for the inverted pendulum is
considered. After the feedback linearization, the problem
is reformulated as a linear-quadratic differential game.
The solvability condition is treated numerically. In both
examples, the simulation justifies the theoretical results.
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Transformed Manipulated Variables for

Decoupling and Perfect Disturbance

Rejection �
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Abstract: The objective of this work is to find new transformed manipulated variables (MVs)
for nonlinear systems which give decoupling and perfect feedforward control for disturbances
(at least at steady-state). To start, we assume that we can write the model with the outputs,
y, (controlled variables-CVs) separated from the inputs, u, (MVs) and disturbances, d, as in:
g(ẏ) + gss(y) = f(u, d, y). We can now introduce as new transformed input variables (v) the
right hand side (v = f(u, d, y)), where we assume can measure the disturbances. We further
assume that the g-function on the left hand side is independent of u and d, or at least that the
steady-state part gss is independent of u and d. We can then obtain a decoupled system, which
is also independent of disturbances (d).
The key idea is now to use decentralized SISO controllers for y using v as MVs. Then, we
can find the actual input u based on based on given values of the transformed inputs v and
disturbances d by using a calculation block or cascade control (the latter uses feedback as an
indirect calculation block). In the first alternative, SISO controllers give v, and a nonlinear
calculation block solves algebraic equations which explicitly gives u as a function og v and d.
The calculation block also handles the decoupling, and feedforward action from the disturbance
d. The block diagram for this approach is shown in Fig.1.

Σ K(s)
Calculation block

(static) Σ G(s)

−1

ys e v u

d

y

Fig.1. Decoupling and perfect disturbance rejection using a calculation block
This method is similar to feedback linearization, which implies transforming a nonlinear system
into a linear system by changing the inputs or outputs. The difference is that we consider a
system with equal inputs (u) and output (y), we include systems nonlinear in the inputs (u),
and we also measure the disturbance (d).
As an example, we consider controlling the flow and temperature in a mixing process, and we
investigate how this method handles coupling and plant-model mismatch.

Keywords: process control, decoupling, disturbance rejection
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dVG / dt = −(qG + mG + qGover)VX +GinFin −GFout

dVGn / dt = −(qGn + mGn + qGnover)VX +GninFin −GnFout

dVXv / dt = (aqG + cqGn)VXv − μdVXv − XvFout

dVXd / dt = μdVXv − XdFout

dVL / dt = (bqG + 2qGover + 0.5qGnover)− LFout

dVN / dt = (dqGn + qGnover)− NFout

dV / dt = Fin − Fout

qG1(G,Gn) = qG max 1
G

KG +G
Gn

KGn +Gn

qGn1(Gn,N ) = qGn max 1
Gn

KGn +Gn
KN

KN + N

qG = min(qG1,qG max 2)
qGn = min(qGn1,qGn max 2)
qGover = max(0,qG1− qG max 2)
qGover = max(0,qG1− qG max 2)

Ind _ qG _ over = (qG1− qG max 2) / qG max 2

Ind _ qGn _ over = (qGn1− qGn max 2) / qGn max 2

μd = μd max
KGd

KGd +G
KGnd

KGnd +Gn

aqG + cqGn > μd

μ = Y ⋅qS = a c( ) qG (G , Gn)

qGn(Gn, N )

⎛
⎝⎜

⎞
⎠⎟

61

Proceedings of the 22nd Nordic Process Control Workshop 
August 2019, Kgs. Lyngby, Denmark   



μ max = a c( ) qG max 2

qGn max 2

⎛
⎝⎜

⎞
⎠⎟

Xv
0 = a c( ) Gin

Gnin

⎛
⎝⎜

⎞
⎠⎟

Gin Gnin( ) ∼ qG max 2 qGn max 2( )
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Physics-Aware Machine Learning in Multiphase Flow Estimation
Timur Bikmukhametov, Johannes Jäschke

Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway

Abstract
Accurate flowrate estimation in petroleum production is important for optimization, fiscal metering and 
allocation purposes [1]. An attractive solution to this problem is to use a mathematical model of the 
system which describes its behavior and allows to estimate the flowrates. This approach is called Virtual 
Flow Metering. During the last several years, it has become popular to use machine learning techniques 
for this purpose. The advantage of this approach is that it can provide accurate flow estimates at low 
computational cost and relative high accuracy and typically does not require deep understanding of the 
system features. However, due to its black-box nature, it is hard to interpret the algorithm outcomes 
which results in relatively rare usage of the method in the industry.

We propose an approach which allows to incorporate first principles modeling such as momentum 
equations into machine learning models, such that the algorithms become aware of the system physics 
a priori. This is different from the traditional machine learning Virtual Flow Metering where raw 
measurements are used directly [2]. The results show that it improves the accuracy of the algorithms as 
well as gives more explainable behavior which can help to develop more trust and employability in real 
production systems. We test this approach using gradient boosting regression trees [3], feed-forward 
and Long-Short-Term-Memory [4] neural networks. In addition, we propose an approach for tuning 
hyperparameters of the algorithms using Bayesian optimization techniques.

[1] Falcone, G., Hewitt, G. F., & Alimonti, C. (2009). Multiphase Flow Metering: Principles and
Applications. Amsterdam: Elsevier.

[2] Al-Qutami, T., Ibrahim, R., Ismail, I., & Ishak, M. (2017) (Al-Qutami et al. 2017a) Development of
Soft Sensor to Estimate Multiphase Flow Rates Using Neural Networks and Early Stopping.
International Journal on Smart Sensing and Intelligent Systems, 10(1), 199-222. doi:10.21307/ijssis-
2017-209.

[3] Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." In Proceedings of
the 22nd international conference on knowledge discovery and data mining, pp. 785-794. ACM, 2016.

[4] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9, no.
8 (1997): 1735-1780.
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Free-floating sensor devices as a tool for

characterizing mixing performance in

stirred vessels
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Abstract: Process mixing in large-scale bioreactors remains a problem due to the inherent
practical constraints of traditional process scale-up. Quantifying mixing in production scale
quickly becomes a complicated task due to safety reasons and unfit process equipment. In
addition, traditional tracer methods cannot take into account the rheological properties of the
broth. This study presents a tool for data-based mapping of industrial fermentation processes,
both in terms of characterizing mixing performance and measuring spatial gradients directly.
The technology consists of a free-floating sensor device developed by Freesense ApS, which is
robust, steam sterilizable and capable of measuring pH, temperature and pressure with sub-
second response times. In the study, the mean circulation time of the devices has been derived
from the pressure measurements at different conditions in a 600 L pilot vessel. The circulation
times were then correlated to the mixing time determined by addition of pH tracer. The tracer
response was measured with both fixed sensors and the sensor devices. The examined conditions
include: Water agitated by Rushton turbine and pitch blade turbine, and xanthan solutions of
1.25 %wt and 2.5 %wt agitated by Rushton turbine. All cases were examined at four levels of
power input.

Keywords: Free-floating sensor device, Flow follower, Process mixing, Mixing time, Circulation
time, Stirred vessel, Macro-mixing

NPCW22 poster

65

Proceedings of the 22nd Nordic Process Control Workshop 
August 2019, Kgs. Lyngby, Denmark   



Simulation and control of a secondary

crushing circuit �
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Abstract: In this work, we present a simulator and a proposed control strategy for a secondary
crushing circuit. The circuit consists of the basic components; crushers, screens, conveyor belts,
and storage which are all modelled using Simulink. The simulator is based on a validated crusher
model and exhibits a realistic behaviour. The work also includes a control strategy for the
crushing circuit aimed at realtime maximization of the throughput.

Keywords: Cone Crushers, Model validation, Energy Model.

1. INTRODUCTION

Comminution (crushing and grinding) accounts for ap-
proximately 4% of the world’s total energy consumption
according to Pokrajcic (2008). Meanwhile, the environ-
mental and social impacts from the production of tailings
(e.g. due to overgrinding) can be significant and long-
term (Franks et al. (2011)). However, crushing and grind-
ing machinery represents capital intensive equipment and
cannot be quickly replaced, even if more efficient models
would be available. Hence, controlling the comminution
chain to minimize energy consumption and waste, while
maintaining sufficient production rate and quality is a
well-motivated task. For this task, we focus on the cone
crushers as a central component in the comminution chain.
The cone-crusher is endowed with the ability to adjust the
opening of the outlet (Closed Side Setting, CSS) and some-
times also the option of manipulating the eccentric speed.
Hence, the importance of the cone crusher is that these ma-
nipulated variables enables it to control the performance
of the whole comminution chain in order to obtain the
appropriate material size. It can act as a regulator that can
receive a wide range of materials with different properties
and yet provide a consistent material to the later stage
that can produce either a final product with specific sizes
or input material to grinding circuits.

2. PLANT DESCRIPTION

Serra Leste is one of Vale’s iron-ore processing plants
located in the Amazon region in northern Brazil. The flow
diagram of its secondary crushing stage can be seen in Fig.
3. The plant started its operation in 2014 and nowadays
produces 6.0 million tons per year of sinter feed and
natural pellets. The primary ore processed is high-quality

� This work is financed by the program SIP|STRIM from Sweden’s
innovation agency VINNOVA and by Vale S.A. The efforts from Tero
Onnela from Metso Minerals Inc., Finland are highly appreciated in
providing the laboratory data and the discussions.

compact hematite, which reaches 68% of iron content.
Serra Leste does not have concentration equipment so the
crushing circuits constitute the whole plant.

The cone crushers used in Serra Leste are from the
Metso HP400 series. There are 2 cone crushers with fixed
CSS of 38mm in the secondary crushing circuit, and
another 2 cone crushers with fixed CSS of 25mm in the
tertiary crushing circuit. In order to compensate for wear,
maintenance technicians calibrate the CSS of the crushers
once a week and replace mantle and bowl once a month.

One of the main problems of the plant is that, when only
one crusher is active the material starts to overfill the
silo placed before the crushers, and when two crushers
are working, the level of the silo becomes too low and
a security interlock is activated, which causes a series of
more complicated problems. First, the interlock means
that the feeders are stopped and will restart when a certain
level of material in the silos is reached. However, stopping
the feeders risks the crusher to run empty, which causes
wear due to direct contact between bowl and mantle. A
solution to stop the crusher simultaneously with the feeder
is not feasible since the crusher must be empty is order
to stop it which requires it to run in for a while after
the feeder has been stopped, risking wear to occur and
decreasing efficiency while it is being emptied, since it is
not choke fed. In addition, turning off and on the crusher
frequently is not desirable.

3. PLANT SIMULATOR

The plant simulator was developed using Simulink. It
follows the structure of the crushing plant at Serra Leste
and contains the main elements of a secondary crushing
stage (cone crushers, silos, feeders, sieves and conveyor
belts).

The conveyors generate realistic time delay between ele-
ments and have a fixed speed. Each silo has two outputs.
The first silo capacity is 215 m3 and for the second is 117
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m3. The sieve models are ideal, meaning that all material
of 40 mm or less becomes an output of this stage and the
rest is recirculated. The feeders are modelled like conveyors
but with much shorter length and lower speed that can be
changed to control the output of material from the silos.

The input of the simulation is a size distribution vector
with the proportion of each size class. This vector is
multiplied by a rate of mass per time.

The plant simulator can be seen in Fig. 4. It was im-
plemented in Simulink and built by creating the basic
elements of a secondary crushing stage, namely cone crush-
ers, silos, feeders, screens and conveyor belts. The central
element in the simulator is a crusher model (Atta et al.,
2014) that predicts the outflow in terms of its size distribu-
tion given the size distribution and hardness of the input
material and the CSS and rotational speed of the crusher.

The dynamics of the plant simulator are illustrated in
Fig. 1 which shows the simulation results from a constant
input of 110 t/h and the tonnes per hour that pass
through the screen, meaning that are 40 mm or smaller
and the ones that are bigger are recirculated, Note the
drastic changes with approximately 200 s interval that
are due to sudden changes in the size distribution of the
recirculating load which is delivered from a conveyor with
200 s delay. The second part of this plot shows the level
of material in the silos which never exceed the 3% for
the time of the simulation. The plots in Fig. 2 show the
cumulative particle size distribution (CSD) and particle
size distribution (PSD) at time t=1000. In the simulator,
the CSD and PSD plots are updated in real time.
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Fig. 1. Dynamic plant simulation

4. CONTROL STRUCTURE

4.1 Measurements

The objective is to find the best trade-off between through-
put and particle size. What can be measured is the
throughput by weight and level of the silos, but other
negative indicators have to be taken into account, namely
high pressure and high current that would require an
increment in the CSS.
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Fig. 2. Online CSD-PSD plots in the simulator

4.2 Control signals

The main idea is to control the throughput of the crushers.
This can be done by changing the CSS and feeders speed. A
larger CSS increases throughput but also results in larger
particle size. Reducing the CSS has the opposite effect.

The speed of the feeders is controlled between 30 % and
70 % of their maximum value, 0.29 m/s for the screen
feeders and 0.23 m/s for crusher feeders. If the speed were
required to be lower than 30 % this would imply turning
off the feeders as they cannot work below this limit.

If the silo before the crushers has reached an upper limit
and the CSS is optimal, the feeders before the sieves could
be slowed down, which would decrease the throughput of
the stage instantaneously but would use the larger capacity
silos a buffer to accumulate material for later use in the
crusher.

4.3 Control objectives

The best scenario is to work with one crusher as much
of the time possible to reduce energy consumption by
turning off one crusher and controlling the feed rate and
throughput of the other one. Only when the throughput is
required to increase but the crusher has reached a limit for
the CSS, the second crusher would be turned on. In the
opposite case, if CSS is at minimum as well as the feeder
speed, and there is still a warning of low level silos, then it
is required to stop the feeder and later the crusher. Restart
of the crusher would occur when certain level on the silos
has been reached.

When considering online adjustable CSS or crusher speed,
then more advanced control algorithms can be considered,
such as the Finite State Machine. This type of algorithm
has been used successfully to regulate CSS with the
objective of improving the amount of saleable product
while monitoring pressure (Hulthén and Evertsson, 2009).
The objective is to monitor also the current and silo levels
to improve particle size, throughput or finding a good
trade-off between these two. Another option is to employ
Extremum-Seeking Control for throughput maximization
(Atta et al., 2013).
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Fig. 3. Flow chart of the secondary crushing circuit at Serra Leste

Fig. 4. Simulink simulator of the secondary crusher circuit. The figure is only intended to show the structure of the
simulator, as most of the text is unreadable at this zoom level
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Relay feedback excitation for identification of Fuel Cell performance parameters 

Ivar J. Halvorsen and Federico Zenith, SINTEF Digital, Trondheim, Norway 

Fuel cell technology is emerging as a zero-emission power generation alternative.   Durability is a 
critical factor and it is therefore important to monitor degradation parameters that can be used for 
prognostics of remaining useful life and to take precautions to optimize the lifecycle.  The Giantleap 
project is founded by EU through the Horizon 2020 programme and focuses on these issues for 
automotive applications in Fuel-Cell Electric buses. One interesting parameter is the so-called low 
frequency intercept resistance (LFR). From basic studies of performance degradation, it has been 
observed that changes in this parameter correlate well with ageing, making it an interesting indicator 
to measure (Pivac et.al., 2018). A key issue is that dynamic excitation is needed to identify this 
parameter, since it is not observable in steady state. It is simply the low frequency point of the 
Nyquist diagram of the Fuel Cell impedance where the phase crosses through zero while passing from 
positive to negative phase angle.  In a laboratory, this can be measured by performing Electrochemical 
Impedance Spectroscopy (EIS). However, this requires special equipment and is not practical (or 
possible) to do for a fuel cell stack that is an integrated component in an application.   

In the control community, the celebrated relay feedback excitation method (Åström and Hägglund, 
1995) is used to directly identify the ultimate- gain and frequency of an unknown process: the result 
can e.g. be used for tuning of PID controllers. Here, this excitation technique is adapted to obtain 
direct identification of the interesting low frequency intercept point (Halvorsen et. al., 2019). Results 
from simulations and from testing on fuel cell stacks will be presented.  The simple relay excitation 
method can be implemented as a software component in typical fuel cell control systems without any 
extra hardware equipment. 
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Digital Twin platform for pharmaceutical process using deep-learning and reinforcement g p
learning algorithm 

Soonho Hwangbo1 and Gürkan Sin1,* 

1Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical 
Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark 
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Abstract 
This study aims to design an optimal and smart separation process of pharmaceuticals based on y g p p p p
uncertainty analysis and reinforcement learning. Research on the separation of y y g p
pharmaceuticals has been consistently investigated on purpose of a better performance. p y g p p p
However, few studies have implemented uncertainty analysis considering thermodynamic , p y y g y
parameters and operating conditions and conducted an intelligent operating planning. This p p g g p g p g
research precisely suggests two-phase strategy for designing pharmaceutical separation. The p y gg p gy g g p p
first phase encompasses deterministic thermodynamics and transport properties, and p p y p p p ,
uncertainty analysis thereof. The second stage is related to a smart operating planning. Deep y y g p g p g p
reinforcement learning is taken into account based on results from the first stage in order to g g
balance the system flexibility. Liquid-liquid extraction column as a separation process is applied y y q q p p pp
and results show the feasibility of an advanced separation framework of pharmaceuticals. This y p p
study purposes to design a novel extraction process in pharmaceutical industry based on y p p g p p y
uncertainty analysis and reinforcement learning. Thermodynamics property modelling, y y g y p p y g,
solubility modelling, solvent screening, and uncertainty analysis are consecutively examined to y g, g, y y y
design the feasible LLE process of pharmaceuticals. Afterwards reinforcement learning is g p p g
considered to suggest the optimal operating planning based on the results from uncertainty gg p p g p g y
analysis. Moreover, the proposed two-phase framework of the LLE process would be extended y , p p p
to other processes in downstream process.   
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A Python Toolbox for
Model Predictive Control

Marcus Krogh Nielsen, Dimitri Boiroux, Steen Hørsholt,
Jakob Kjøbsted Huusom, John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract: We present a Python toolbox for linear and nonlinear model predictive control. The
toolbox contains methods for realization of transfer function matrices related to deterministic
and stochastic inputs as a discrete time linear state space model with deterministic and
stochastic inputs. The linear model predictive controller consists of a Kalman filter and a
constrained optimal control problem with linear dynamics and constraints. The objective
function may contain �2 as well as �1 weighted output deviation terms, input deviation terms,
rate-of-movement , as well as linear and quadratic economic terms. The toolbox also allows for
nonlinear model predictive control of continuous-discrete stochastic nonlinear systems using a
continuous-discrete extended Kalman filter and an optimal control problem implemented using
the simultaneous method and IPOPT. Real-time implementation is supported using OPC UA.
We demonstrate the toolbox by simulation for a modified four-tank systems and in real-time
for the laboratory scale four-tank system at the Technical University of Denmark.

Keywords: Python, Model predictive control, Four-tank system, Realization, OPC UA
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On the allowable uncertainty in control
configuration selection

Riccardo Lucchese ∗ Wolfgang Birk ∗
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Abstract: We consider Control Configuration Selection (CCS) problems in the presence of
uncertainty. Our analysis focuses nominal plants given as Transfer Functions (TFs) and an
additive perturbation model to capture uncertainty. The discussion is tailored to the Relative
Gain Array (RGA) measure proposed by Bristol in 1966 and later popularized by several authors.
Within this setting, we propose an algorithmic approach to estimate an allowable perturbation
radius for which the nominal control configuration remains the preferred one. We benchmark
our strategy using an example from the literature, demonstrating its effectiveness.

Keywords: Robust control configuration selection, Relative Gain Array.

1. INTRODUCTION

Control Configuration Selection (CCS) is the branch of
automatic control studying the design of distributed and
sparse control structures. A subfield of this larger topic
is concerned with forming decisions on which feedback
loops are needed to attain desired control performance and
closed-loop stability properties. Within this context, Inter-
action Measures (IMs) are formal tools to evaluate channel
interactions and inform the promising configurations start-
ing from a model of the plant. In practice, however, models
are affected from uncertainty which arises from approx-
imations, unaccounted phenomena such as time-varying
environmental conditions, and even part failures. Under-
standing the amount of uncertainty tolerated by a given
configuration is then of paramount importance van de Wal
and de Jager (2001).

Uncertain CCS have been investigated by several authors,
especially in the context of the RGA. Tight bounds on
the RGA elements for 2 × 2 plants are developed in Chen
and Seborg (2002). The authors moreover apply a statis-
tical argument to derive a loose bound addressing higher
dimensional plants. Kariwala et al. (2006) list necessary
and sufficient conditions for detecting sign changes in
the relative gains. However, the algorithm becomes com-
putationally impractical as the plant dimension grows.
Moaveni and Sedigh (2008) bound the entries of the Hankel
interaction matrix for uncertain linear systems in state
space form. Castaño Arranz and Birk (2016) evaluate the
Σ2 and Participation Matrix measures over a worst-case
TF envelope induced by multiplicative uncertainty. Other
works consider non-parametric uncertainty models. For
instance, in Kadhim et al. (2015) the set of perturbed
plants is inferred from experimental trials. We stress that
all the previous strategies offer generally loose bounds that
require a careful interpretation of the results.

Here we propose an algorithmic randomized strategy to
quantify the amount of uncertainty that may be tolerated

by a nominal plant model, providing a quantitative basis
for understanding the robustness of a CCS decision. The
basic intuition is to employ a finite sampling of the CCS
protocol over the set of uncertain plants. Its practical value
lies in both its simplicity and the independence from a
specific CCS protocol.

2. BACKGROUND

Let Lq×m be the set of TFs with m inputs and q outputs.
Throughout this document we focus on a special element,
G ∈ Lq×m, that we refer to as the nominal plant. A generic
element in Lq×m is denoted by G̃ and is referred to as
perturbed plant. The vectorization of the matrix G̃ is the
q · m vector vec

(
G̃

)
. The unvectorization of a q · m vector

into a q×m matrix is denoted using unvec
(
vec

(
G̃

))
=̇ G̃.

A control configuration for G is a q × m matrix ξ with a
“1” in position (i, j) if the j-th input is used to regulate
the i-th output, and a “0” otherwise. The set of all a priori
plausible configurations is

Ξq×m =̇ {0, 1}q×m. (1)

Uncertainty is encoded in the finite-dimensional unit ball

Δw =̇
{

δ ∈ R
h : ‖δ‖w,∞ ≤ 1

}
, (2)

where the norm on the right-hand side is the composition
of a scaling operation with weights w ∈ R

h
>0 and the usual

L∞ norm:
‖δ‖w,∞ =̇ ‖diag (w) δ‖∞ . (3)

Notice that 1/wi, i = 1, . . . , h, wi �= 0, is the maximum
extent along the i-th axis of an arbitrary element δ ∈ Δw.

Our methodology builds on top of three ingredients:

i) a generator function π : Δw → Lq×m that associates
the uncertainty description to the uncertain plant
models;
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ii) a selection protocol S : Lq×m → Ξq×m that gives
the preferred control configuration for a given (per-
turbed) plant;

iii) a sampling strategy that approximates the allowable
uncertainty radius (see Problem 4 and Section 4).

Example 1. Define the following set of perturbed plants
under an additive uncertainty model Grosdidier et al.
(1985); Skogestad and Postlethwaite (2007)

Π(ρ) =̇ {π(ρδ) : δ ∈ Δw} , (4)
where the generator takes the form

π(δ) =̇G + unvec (δ) , (5)
and the scaling factor ρ is interpreted as a normalized
radius, contracting the maximum perturbation amplitude:

Π(ρ′) ⊆ Π(ρ), 0 < ρ′ < ρ ≤ 1. (6)
Example 2. The RGA is an IM operating on gain matrices
sampled from a TF Bristol (1966). For the plant G ∈
Lq×m, the frequency dependent RGA is defined as:(

μ(G(jω))
)

ij
=̇

∥∥∥(
G(jω) ◦ G(jω)−†)

ij

∥∥∥ , (7)

where j is the imaginary unit, ◦ is Hadamard’s entry-
wise product, the q × m matrix G(jω) is required to be
invertible, and ·−† denotes the inverse transpose. Within
the scope of input/output pairing problems, we consider
the RGA-number selection protocol 1 (see Skogestad and
Postlethwaite (2007)):

ξ� = S(G) =̇

⎧⎪⎨⎪⎩
argmin
ξ∈Ξq×m

‖μ(G) − ξ‖1
subject to:
ξ1m = 1m

(8)

where the constraint limits the search space to those ξ for
which exactly one input is paired to each output.

3. PROBLEM STATEMENT

Definition 3. (Robust CCS). Let G ∈ Lq×m be the nomi-
nal plant, S be the selection protocol, ρ a given radius in
]0, 1], and Π(ρ) the set of perturbed plants. We call the
configuration ξ = S(G) robust for Π(ρ) if applying proto-
col S yields the same configuration almost everywhere in
Π(ρ), that is, if

S(G̃) = ξ a.e. in Π(ρ). (9)

Define the following binary property over Δw

P(δ) =̇
{
1 if S(π(δ)) = S(G)
0 otherwise. (10)

and the sets
Ωi =̇ {δ ∈ Δw : P(δ) = i} , i = 0, 1 (11)

Ω(ρ) =̇ ρΔw, 0 < ρ ≤ 1. (12)
Here we are interested in finding the largest radius ρ for
which the nominal configuration is robust (see Figure 1).
Problem 4. (Allowed perturbation radius). Let G, w, π,
and S be given. Find the largest radius ρ� ∈]0, 1] such
that

|Ω(ρ�)| − |Ω(ρ�) ∩ Ω1| = 0. (13)

1 For the sake of a simpler discussion, here we set S(G) = 0q×m

when problem (8) has multiple optimizers.

Figure 1. Graphical depiction of the problem statement in
Section 3.

4. A RANDOM SAMPLING SEARCH

In this section, we sketch a randomized strategy that
iteratively refines an estimate ρ̂ of ρ� to approximate
Problem 4.

We start by pairing the sets {Ω(ρ)} with a family of
Probability Density Functions (PDFs) {Fρ} such that
supp (Fρ) = Ω(ρ). Consider then the simplest scenario in
which ρ is fixed and let x1, . . . , xn ∈ Ω(ρ), with n > 0
generic, be a sequence of i.i.d. samples from Fρ. Let
moreover a corresponding vector of observations be defined
as

y =̇
[
y1 y2 . . . yn

]†
, (14)

where yi = P(xi). Clearly, any realization of (x1, . . . , xn, y)
immediately provides an upper bound ρ̂ on ρ� (that is,
P [ρ� ≤ ρ̂] = 1). Furthermore, y informs on the accuracy
of using ρ̂ to approximate ρ�. Indeed, each yi is by con-
struction a Bernoulli random variable, yi ∼ B (1 − ϑρ),
with success probability dependent on P,

1 − ϑρ =̇Eρ [P] , (15)
where Eρ [·] denotes expectation with respect to Fρ. More-
over, the statistic

ϑ̂ρ =̇
1
n

n∑
i=1

(1 − yi), (16)

is a consistent estimator of the failure probability ϑρ, and
thus an accuracy-like indicator.

At each sample point there are two possible outcomes. If
the preferred configuration at the current perturbed plant
equals the nominal configuration, the sample gives no
new indication on the value of the allowable perturbation
radius. Otherwise, the sample upper-bounds ρ∗ with prob-
ability one. In both cases, new information is accumulated
in (16) providing an indication of the current accuracy of
the radius estimate.

For details on the statistical characterization of the algo-
rithm we refer the reader to Lucchese and Birk (2019).

5. EXAMPLE

Consider the following plant model for a heavy oil frac-
tioner[

y1
y2

]
=

⎡⎢⎣4.05 e−27s

50s + 1
1.77 e−28s

60s + 1
5.39 e−18s

50s + 1
5.72 e−14s

60s + 1

⎤⎥⎦ [
u1
u2

]
+

⎡⎢⎣5.88 e−27s

50s + 1
6.90 e−15s

40s + 1

⎤⎥⎦ d,

(17)

73

Proceedings of the 22nd Nordic Process Control Workshop 
August 2019, Kgs. Lyngby, Denmark   



where [u1 u2]† is the input vector and d is a white gaussian
process. In (Chen and Seborg, 2002, Example 3) a robust
CCS analysis is conducted by simulating an experimental
campaign. Estimates of the plant TF are drawn under two
noise measurement scenarios characterized by Signal-to-
noise Ratios (SNRs) 3 and 10 (see the reference for details).

Case SNR = 3. For this case, Chen and Seborg (2002)
derive the following empirical characterization of the per-
turbed steady state gains

G̃ij ∼ N (
Gij , σ2ij

)
, (18)

with

G =
[
4.35 1.94
5.86 5.93

]
, σ2 =

[
0.09331 0.105
0.129 0.145

]
. (19)

From knowledge of the entry-wise variances σ2, using a
statistical argument, the authors estimate the nominal
RGA

μ =
[

μ11 1 − μ11
1 − μ11 μ11

]
, μ11 = 1.76 (20)

and correspondingly the uncertain RGA bound μ11 ∈
[−0.27, 3.79]. By inspection of this inclusion, it is con-
cluded that no robust CCS decision can be inferred using
the (noisier) data set.

We transport the uncertainty scenario (18) to our frame-
work by observing that three standard deviations from the
mean value are representative for the maximum extents
of the entry-wise perturbations (2),(4). Specifically, we
consider the set (2) with perturbation weights

w =
1
3

[
σ−1
11 σ−1

21 σ−1
12 σ−1

22
]†

. (21)

Applying the randomized search strategy to this setup
yields the allowable perturbation radius estimate ρ̂3 =
0.8447, corresponding to the entry-wise perturbations[

3.6842 1.1276
4.9595 4.9753

]
� G̃ �

[
5.2158 2.7524
6.7605 6.8847

]
. (22)

Differently from the conclusion above, our algorithmic
strategy can inform the allowable uncertainty despite the
noise measurements.

Case SNR = 10. Repeating the in silico campaign with a
higher SNR yields the empirical distribution (18) with

G =
[
4.035 1.64
5.37 5.57

]
, σ2

[
0.0253 0.0272
0.0348 0.0375

]
. (23)

To capture this scenario we define (cf. (21))

w =
[
1.0478 0.8934 1.0106 0.8607

]†
, (24)

With this setup, Chen and Seborg (2002) conclude that
the allowable perturbation ratio is lower bounded as ρ� ≥
0.5. The randomized search strategy yields instead the
allowable perturbation radius ρ̂10 = 0.8073, corresponding
to allowable entry-wise perturbations[

3.2795 0.9711
4.4864 4.7820

]
� G̃ �

[
4.8205 2.5689
6.2936 6.6580

]
. (25)

The proposed strategy provides a more accurate and
overall less conservative estimate (about 40 percent larger)
then in Chen and Seborg (2002). Moreover, the allowable
uncertainty indications overlap significantly with those
of the previous case (cf. (23) and (25)). The proposed

strategy provides more accurate estimates using noisier
measuremnets.

6. CONCLUSIONS

We consider robust CCS problems and devise an algorith-
mic strategy to evaluated the allowable plant uncertainty.
The proposed strategy can be applied to different IMs
while taking into account heterogeneous decision metrics
in the selection protocol. The main requirement is to be
able to sample the protocol at a finite number of perturbed
plants (not known a priori).

Future directions include lifting this methodology to au-
tomatic CCS frameworks for plant control reconfigura-
tion. We moreover foresee addressing applications in eco-
nomic cooling of data centers. In these context, multiple
coolant flow rates (corresponding to inputs) are used to
regulated multiple temperatures (the outputs) at different
levels of the infrastructural hierarchy, from servers to the
computer room Lucchese and Johansson (2019a,b); Lazic
et al. (2018). While the adoption of formal methods could
aid in the development of principled and more efficient
controllers, the existing literature lacks to recognize the
CCS aspect of these problems.
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Optimization of parametric uncertain designs using
a novel stochastic optimization methodology.
Atli Freyr Magnússon, Resul Al, and Gürkan Sin
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ABSTRACT

Stochastic optimization methods are optimization methods that allow for the formulation of stochastic objective functions

using random variables, which makes them more attractive for the optimization of engineering systems under various

uncertainties. Bayesian optimization uses an iterative design strategy to solve global optimization problems of black-box

functions without requiring derivatives. While it has traditionally been used to solve complex deterministic simulations,

Bayesian optimization has recently shown promise for optimization of stochastic simulations with heteroscedastic noise

variances. In this work we present a new methodology for stochastic optimization and explore its applicability to realistic

chemical engineering problems that are subject to parametric uncertainties.

The methodology is an iterative process, where an algorithm suggests new sample points using a explore-exploit strategy on

a Blackbox Stochastic Surrogate model. The optimization problem is treated as a stochastic simulation by calculating the

propagation of uncertainty of the model parameters using Monte Carlo Sampling techniques with a defined error distribution.

While there is a wide array of surrogate models available, the most commonly used and researched one is a Kriging model.

Kriging models are popular surrogates for complex simulations with sparse data due to the inclusion of external uncertainty

based on distance correlation which makes it an ideal candidate for explore-exploit strategies. The main issue with Kriging is

that the parameters are estimated via inversion of a covariance matrix which becomes more computationally intensive as more

data is fed into the algorithm. To overcome this, we adapt artificial neural network (ANN) to stochastic optimization using a

Bootstrap method. The explore-exploit strategy applied is a new novel feasibility-enhanced expected improvement (FEI) infill

strategy. For this study, both methods are applied to solving realistic case studies whose simulations are performed using Aspen

Plus process simulator with an interface to MATLAB environment. Uncertainties in the thermodynamic models of Aspen Plus

are calculated via regression of NIST TDE data and propagated to the results of the simulations. The results obtained show the

advantages of the new methodology, which holds significant promise for the stochastic optimization of engineering systems

under uncertainties.
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Online model maintenance – combining Output Modifier Adaptation with simultaneous model 
structure identification and parameter estimation  

Jose Matias and Johannes Jäschke. 

Since 1980s, real-time optimization (RTO) has been implemented in refineries and chemical processes 
[1]. A successful implementation depends on a number of factors, among which the process model 
plays a critical role. It must be flexible in order to adjust the plant behavior in a large range of process 
conditions, and it should be able to guarantee convergence of the RTO scheme to the plant optimal 
operating conditions [2]. 

The latter requirement can be met by applying Output Modifier Adaptation (MAy) instead of the 
classical RTO approach [3]. In MAy, input-affine terms (also known as modifier terms or, simply, 
modifiers) correct the predictions of the model outputs such that the model-based optimization 
problem converges to the plant optimum given that the model follows some adequacy criteria (i.e. it 
is locally convex near the plant optimal inputs) [3]. On the other hand, the former requirement is 
harder to fulfill since the mathematical model is determined in the very beginning of the RTO 
implementation and the plant behavior often varies with time and/or the plant is operated differently 
(e.g. distinct campaigns of a batch reactor). Moreover, a number of mathematical models can be used 
for describing the same phenomenon and, frequently, there is not enough information to make proper 
choices during the model design phase [4]. 

Therefore, in some cases, using the modifiers or estimating the parameters may not suffice for 
readapting the model to the plant behavior [5]. The mathematical model needs maintenance; its 
structure should be allowed to change and evolve with time and not be fixed at the model deployment 
[4]. In Matias and Jäschke (2019)[6], we proposed a novel method where we optimize the process 
using MAy, but also use the modifier terms as a criterion for simultaneous model structure selection. 
Therefore, the modeler does not need to determine a model structure a priori.  This method allows 
him/her to propose several model structures, which are combined and updated automatically based 
on the available operational data (modifiers). In this work, we extend the previous method in order to 
not only choose the model structure but also estimate its parameters. We are also working on a 
second paper in order to explore further issues regarding the parameter estimation, like identifiability 
problems related to non-unique parameters in addition to possibly non-unique models. 

The basic idea of the method is to propose several model structure candidates that can describe the 
plant behavior. In order to determine this set of models, we divide the process model into blocks. The 
individual blocks represent a part of the process to be modeled, e.g. pressure drop of flowing liquids 
in a pipe. Next, we propose several candidate sub-models to describe a given block, where different 
set of equations constitute each sub-model. For example, different  sub-model  candidates  for  the 
pressure  drop  in  a  pipe  may  include  (or  exclude) effects of friction, hydrostatic pressure, 
turbulence, etc.. Depending on the sub-models that are chosen for each block, the process model has 
a different shape (gradients) and prediction capacity, which can be quantified by the modifiers.  

Our problem set-up leads to a two-level optimization problem structure, where, in the first level, we 
use the modifiers as a criterion to choose the best model structure in the model set while 
simultaneously performing parameter estimation (which is the main difference between this work and 
Matias and Jäschke (2019)[6]). In the second level, we use the updated model to optimize the process 
in a classical MAy framework. As an additional feature, we keep the MAy property that guarantees 
convergence to the plant optimum even when the model at hand is structurally and parametrically 
wrong. Therefore, we can combine both tasks and still achieve the plant optimal operating conditions. 
A case study, a continuous stirred tank reactor, illustrates our approach. The results indicate that our 
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method chooses the best model structure with readapted parameters among several candidates and 
drives the process to its optimum without constraint violations.  
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Computing the Relative Gain Array for Uncertain Multivariable Processes
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Abstract: Control configuration selection or Input-output (I-O) pairing for uncertain multivariable plants 
is a challenge in decentralized control systems. Although there are different types of I-O pairing strategies 
for nominal linear multivariable processes, only a few of these can deal with model uncertainty and its 
effect on the control configuration selection. I-O pairing for uncertain multivariable processes using RGA 
has two main issues: (i) computation of the variation bounds of the relative gains and (ii) the subsequent 
selection of the appropriate I-O pairing. In this paper, a method to compute the variation bounds of relative 
gains in the RGA using the idea of Kharitonov's theorem together with optimization methods is introduced.
The mathematical foundations of the method are presented for 2×2 and 3×3 multivariable plants. Simulation 
cases are used to show the feasibility and effectiveness of the method. To conclude the paper, the results 
are discussed and future research tracks are given.
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Uncertainty-based causal analysis of process systems for causal inference 
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Abstract: Many approaches to handling anomalies and alarm management of process systems withcausal 
graphs have been proposed.  These methods generally rely on the ability to analysehistorical and 
surrogate plant data with bi- or multivariate methods to derive causal relationsbetween process variables, 
and the direction of influence.  General for such methods is thelack of tools to evaluate the validity of the 
causal analysis. 

A univariate approach based on controlled and simulated experiments is proposed withthe ability to 
analyse the probability for a causal relationship to exist, and it’s direction ofinfluence.  A step change is 
applied to manipulable components of the system, and changedetection is used for detection of step 
responses to establish causal relations.  A stochasticapproach to address process uncertainty as part of the 
causal relationship is proposed, bysampling  a  set  of  process  conditions.   Thus,  a  distribution  of  
causal  influence  is  obtainedbetween  the  manipulable  components  such  as  actuators  regarded  as 
causes,  and  the  process  variables.   The  distributions  are  converted  to  a  deterministic  and  
qualitative  causalrelationship similar to alarms. 

Approaches from uncertainty and sensitivity analysis are applied to evaluate the reliability of the results. 
Linearised regression models are used to identify the most influentialvariables.  Scatterplots are used to 
identify regions of the process conditions that influencethe reliability of the qualitative causal 
relationship.  Lastly, the variance of the causal resultsis analysed by introducing uncertainty to the 
parameters of the method used for establishinga causal relationship. 

Keywords: Causal analysis, Uncertainty and Sensitivity analysis, Simulation 
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Sequential Monte Carlo to Model Lactic Acid Bacteria Fermentation 
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PROSYS Research Center, Department of Chemical and Biochemical Engineering, Technical University of 
Denmark, Kgs. Lyngby, Denmark 

Lactic acid bacteria (LAB) are commonly used in the food industry, and in the dairy industry in particular 
(LAB are typically used as starter cultures) [1]. Like any other microorganisms, the LAB production is 
affected by the environmental conditions. The main conditions affecting the production of LAB are 
temperature, pH, substrate and lactic acid concentration. The production is carried on in batch or-fed –
batch conditions and monitoring the environmental condition becomes a critical aspect of the production 
process [2]. However, the lack of some on-line measurements and rely on limited sensor placed in the 
fermenter (e.g., pH) makes the monitoring of the process difficult hence the usage of mechanistic models 
can give additional relevant information about the system.

In this study, monitoring of Streptococcus thermophilus production is investigated. The fermentation 
model has been proposed by Spann et al. [3]. The pH is also calculated by include the kinetics of mixed 
weak acid base [4]. Spann et al. [3] have applied traditional Monte Carlo method to perform parameter 
estimation off-line which provided estimation of parameters of the model and its covariance matrix of the 
estimated parameters. Using Monte Carlo simulations the uncertainty of estimated parameters were 
propagated to model outputs (states) thereby providing a model-based method to monitor LAB 
fermentation. In this contribution, our aim to is to update information (its quality) on estimating parameters 
and state of the model simultenously in a online application context. To this end, other approaches can be 
followed for the on-line monitoring of LAB production. For this purpose the possibility to use sequential 
Monte Carlo methods can be considered [5], [6]. In this case, a particle filter is applied to the state space 
representation of the system (hence focusing on the state estimation ) recursively as each data is 
collected online during batch production. In this way, measurement errors and process disturbances are 
filtered which provides better estimation of the states and its uncertainty (probability density distribution) 
as new data is collected.

While many particle filters (SMC) methods focused on state estimation, the key challenge is to address 
both parameter and state estimation uncertainty. Several approaches can be followed when applying 
sequential Monte Carlo for on-line monitoring, such as defining an extended state that includes state and 
parameters, and then apply standard particle methods [5]. Further investigation can include artificial 
dynamics [7] and Markov Chain Monte Carlo within Sequential Monte Carlo algorithms [5], [8].

The aim of this study is develop a reliable process monitoring by using sequential monte carlo sampling 
techniques . The results will then be used to analyze and compare different SMC sampling methods and 
their ability to use few measured online data and predict unmeasured key process variables/states for 
monitoring production yield and impurities in a fermentation process. While the methods will be compared 
for LAB fermentation that contains typically few online data, future outlook and perspectives for extending 
the methods to reconcile noisy data from online aerobic fermentation systems (that features rich online 
data including offgas CO2 and oxygen measurements, online pH, DO and weight among others) will be 
presented and discussed.
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Abstract

The increase of complexity in the chemical process makes the development of a control struc-
ture for full process plants an inherently complex task. The complexities are related to material
recycling, energy integration, sharpened product quality control, and safety as well as environ-
mental constraints. Therefore, formal methodologies for the derivation of plantwide control struc-
tures have gained significant interest over the last fifty years. The established plantwide control
methodologies have been classified based on their main approach: Heuristic, Mathematical, Op-
timization oriented, and Mixed approach. Three of the methodologies have been selected due to
their important impact on the field:

• Plantwide control design procedure, by Luyben et al. (Heuristic approach)

• Control structure design for complete chemical plants, by Skogestad (Mixed approach)

• Plantwide control of industrial processes: An integrated framework of simulation and heuris-
tics, by Konda et al. (Heuristic approach)

These methodologies have been applied to established benchmarks models to compare their appli-
cability and performance. The models utilized for the comparison are the Evaporator process by
Newell and Lee, the Tennessee Eastman process by Downs and Vogel, and then an industrial case
on two heat integrated distillation columns for solvent recovery. The methodology by Luyben
et al. has the least requirements of information about the process but is heavily dependent on
experience. The method by Konda et al. tries to combine the heuristics steps with simulations
to lower the dependency of experience, creates the requirement for a suitable simulation model of
the process. The methodology by Skogestad aims to find a cost-optimized control structure, using
both process knowledge and mathematical models. For the Evaporator process, the methodologies
came to different control structures. Through the method by Luyben et al. several alternative
control structures were developed, without an indication of the best one, here further experience
with the process is needed. The additional simulations suggested by Konda et al. made it possible
to narrow it down to two control structures. The application of Skogestad’s methodology, gave
three alternative control structure, where a refined economical and engineering analysis should
indicate the optimum implementable candidate.
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Abstract: The baking of bread rolls is a complex and energy intensive process which is still relying on 
the expertise of the baker or process operator. This, however, limits the possibilities for process control 
and automation. Thus, a deeper understanding of the impact of the oven conditions on the baking and 
especially on the quality of bread rolls is required to obtain a final product with the highest quality for the 
consumer. In this study we have, therefore, developed a mechanistic model (based on physical laws) for 
the baking of bread rolls that is coupled with the kinetics of the temperature and moisture induced color 
changes. The model is based on the transport of heat and mass (liquid water, water vapor and CO2)
through the porous media coupled with the expansion of the bread roll due to an internal pressure 
increase. Here, we used COMSOL Multiphysics  (finite element method)  to solve the partial differential 
equations for the heat and mass transfer as well as the ordinary differential equations for the color 
changes. The validation of the developed model shows that the predicted temperature, moisture, volume 
and color changes agree with the experimental observations. The model was then used to show the clear 
effect of changing process settings (temperature, fan speed and humidity) on the expansion and surface 
color of the bread rolls during baking. Overall, the developed model allows the prediction of the local and 
spatial temperature, moisture, volume and color development, which provides deep insights into the 
complex mechanisms during the bread roll baking process that cannot be obtained by experimentation 
alone. By applying the developed model it is possible to obtain a better control over the baking process as 
well as to optimize the process settings to achieve the highest product quality for the consumer. 

Keywords: Heat and mass transfer, Comsol Multiphysics, Quality prediction, Thermal treatment, Porous 
media, Baking process, Deformation. 
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Modelling of a Cyclic Distillation Process
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Abstract: A more detailed model has been developed for cyclic distillation. The developed stage model 
includes mass and energy balances, comparable to the MESH equations model for a conventional 
distillation stage. The developed model is capable of including multiple feed and side draw locations as 
well as taking temperature deviations from the boiling point into account. With the energy balances 
included it is possible to introduce disturbances in the feed temperature, which would not be possible with 
the simple mass balance model previously presented in literature. In order to identify potential disturbance 
and manipulated variables, which can be used for control of the column, a degree of freedom analysis have 
been performed.

Keywords: Periodic distillation, distillation control, feed disturbances

1. INTRODUCTION

Cyclic distillation is a promising method of optimizing a 
distillation process. By separating the vapour and the liquid 
flow in two periods: vapour flow period (VFP) and liquid flow 
period (LFP) the tray efficiency can be significantly improved 
compared to conventional distillation (Bȋldea, 2016).

So far, the industrial application of cyclic distillation is very 
limited, despite the technology first being proposed in the early
1960’s (Cannon, 1961). Until recently, a problem with cyclic 
distillation was back-mixing of the liquids during LFP, which 
defeats the purpose of separating the phase flows. However, 
Maleta et al. (2011) proposed a new tray design, which solved 
the draining issues. With this type of tray it is possible to 
operate a distillation column in periodic mode with 
simultaneous draining of the trays without back-mixing of 
liquids.

One issue that remains is the need for better models to describe 
the cyclic distillation. Since the 1960’s the developed models 
have been mass balance based, with assumption of a single 
saturated liquid feed (Bȋldea, 2016). These models are suitable 
for understanding the overall process. But, they lack the 
necessary complexity to predict realistic operation, for 
example to be used in designing of a control structure.

When the energy balances are not included, the vapour flow 
rate inside the column and the temperature of each holdup are 
constant. This gives poor results when disturbances in 
temperature is considered. Furthermore, proper energy 
balances are crucial to incorporate the effect of a feed that is 
not saturated liquid or endo-/exothermic reactions take place.

In this paper a new model for cyclic distillation is developed,
which includes the energy balances. This is necessary in order 
to describe the temperature inside a distillation column. First 
the development of the model is described, including the 
modelling of separate phase flows. The developed model is 
tested in a case study and compared to the previous models that 
only includes mass balances. With the energy balances 
included disturbances in the feed temperature and composition 
is tested. Finally, a degree of freedom analysis is performed in 
order to identify possibly actuators that can be used in the 
control of the process.

2. MODEL DEVELOPMENT

In order to get a better overview of the operational and 
regulating challenges in a cyclic distillation, a new and more 
detailed model for cyclic distillation was developed. A stage 
model was developed that is comparable to the well-known 
MESH (Material balances, Equilibrium relations, Summation 
equations and Heat balances) stage model.

The novel features of the developed model for cyclic 
distillation are:

Energy balances to account for time dependent vapour 
flow rate. Including energy added or removed from the 
stage.

Feed that is not necessarily saturated liquid. I.e. pure 
vapour, cold liquid or a mixture of vapour and liquid.

Taking tray temperature deviations from boiling point into 
account. I.e. heating of tray holdup if the temperature is 
too low or flash if it is too high.
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Multiple feed and side draw locations.

An illustration of a tray in a cyclic distillation column is shown 
(Fig. 1). This representation is similar to a MESH tray, but due 
to the separate phase flows, the inlets and outlets are different 
during VFP and LFP.

Fig. 1. Variables in a cyclic distillation stage during VFP (top) 
and LFP (bottom).

The general stage equations can be written similar to the 
MESH equations, however, a distinction between VFP and 
LFP is necessary.

During VFP, the model equations for stage n, counted from the 
top down, and components i=1,2…NC are:

ௗெ೙,೔ௗ௧ = ௡ܸାଵ ݕ௡ାଵ,௜ − ௡ܸ ݕ௡,௜ + ௡ܸାଵி ௡ାଵ,௜ிݕ  (1)

ௗ௛೙ௗ௧ = ௡ܸାଵ ܪ௡ାଵ − ௡ܸ ܪ௡ + ௡ܸାଵி ௡ାଵிܪ  + ܳ௡ ௡,௜ݕ(2) = ௡,௜ݔ ௡,௜ܭ (3)∑ ௡,௜ே஼௜ୀଵݔ = 1 (4)∑ ௡,௜ே஼௜ୀଵݕ = 1 ௡ܯ ௡,௜ݔ(5) = ௡,௜ܯ (6)

Using the expressions for the vapour and liquid enthalpies (ܪ௡
and ℎ௡ respectively) in the energy balance (2), it is possible to 
isolate and calculate the vapour flow. 

For the liquid flow period, the mass and energy balance can be 
written:ܯ௡,௜(௅ி௉) = ௡ିଵ,௜(௏ி௉)ܯ + ௡ିଵ,௜ிܯ − ܵ௡ ݔ௡,௜(௏ி௉) (7)

ℎ௡(௅ி௉) = ℎ௡ିଵ(௏ி௉) + ℎ௡ିଵி − ℎ௡ௌ஽ ௡ܯ ௡,௜ݔ(8) = ௡,௜ܯ (9)

The superscript (VFP) denotes the end of the vapour flow 
period and (LFP) the end of the liquid flow period.

During the vapour flow period, the liquid is stationary on the 
trays, therefore, the accumulation term in the material and 
energy balances (1)-(2) are necessary. During the liquid flow 
period, the liquid holdup of each tray is dropped to the tray 
below. The condenser and reboiler always have a holdup, to 
avoid either from running dry.

This model is subject to assumptions of constant pressure, tray 
efficiencies equal to 1 and total condenser. It is assumed 
vapour feed is supplied during VFP and mixed with the feed 
tray vapour and liquid feed is added during LFP.

It is assumed the temperature in reboiler and condenser is 
equal to the boiling point after LFP. 

3. RESULTS AND DISCUSSION

A simple case was chosen to investigate the effect of the 
complexity of the model. A ternary mixture of ethanol-
methanol-water was implemented, assuming ideal gas and 
liquid described by Wilsons thermodynamic model. The 
Wilsons binary interaction parameters and molar volumes are 
shown in Table 1.

Table 1: Wilsons parameters (Holmes et al. 1970).

Binary pair 
(1)-(2)

૚૛ࢇ (K) ૛૚ࢇ
(K)

૚,࢓ࢂ
(cm3/mol)

૛,࢓ࢂ
(cm3/mol)

EtOH – H2O 192.38 480.80 58.7 18.1

MeOH –
H2O

103.31 242.63 40.6 18.1

EtOH -
MeOH

-257.34 301.15 58.7 40.6

The models were simulated in pseudo-steady-state, i.e.
periodic behaviour of the holdups in the column stages. The 
feed was set to be saturated liquid. The simulation parameters 
are shown in Table 2.
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Table 2: Simulation parameters.

Parameter Value

Pressure (ܲ) 1 atm

Number of trays (ܰܶ) 15

Feed stage (ܰܨ) 12

Feed flow (ܯଵଶி ) 200 mol/cycle

EtOH in feed (ݔா௧ைுி ) 15 mol%

MeOH in feed (ݔெ௘ைுி ) 5 mol%

Water in feed (ݔுమைி ) 80 mol%

VFP duration (ݐ௏ி௉) 25 s

LFP duration (ݐ௅ி௉) 5 s

To ensure pseudo-steady-state the bottom and reflux flow rates 
were set to keep holdups in the reboiler and condenser the 
same after each LFP. The distillate flow rate was set to 25 
mol/cycle.

Comparisons of the simple mass balance model (red) and the
simple mass and energy balance model (black) at ݐ = ௏ி௉ݐ are
shown in Fig. 2.

Fig. 2. Molar composition in column stages at ݐ =  ௏ி௉, inݐ
pseudo-steady-state. Simple mass balance model (red), mass 
and energy balance model (black).

As can be seen there is an effect of including the energy 
balances in the model. By including the energy balances it is 
possible to describe the stage temperatures over time, which 
for example can be used to better predict a proper control 
strategy.

A +5% change in the feed temperature has been investigated. 
Fig. 3 shows the ethanol composition at ݐ = ௏ி௉ݐ in the 
reboiler (bottom) and in the condenser (top) for no changes in 

the feed temperature (black) and a 5% increase in the feed 
temperature (red). The mass and energy balance model, is used 
for this simulation.

Fig. 3. Ethanol composition at ݐ = ௏ி௉ݐ in reboiler (top) and 
condenser (bottom) in pseudo-steady-state (black) and for a 
5% increase in feed temperature (red).

An increase in the feed temperature does not seem to have a 
significant effect on the ethanol composition in the bottom 
product, but it does in the top product. When the feed 
temperature is above the boiling point, flash occurs and vapour 
feed is supplied to the column, which has an effect on the trays 
above the feed location. This would not be seen if energy 
balances and variations in the feed were not implemented.

The base case is then compared to an increase in the ethanol
content of the feed, going from 15 mol% to 20 mol%, while 
the water content is decreased to 75 mol%. For this 
disturbance, it is assumed the feed is saturated liquid. The 
ethanol composition in condenser (top) and reboiler (bottom) 
can be seen in Fig. 4, for the base case (black) and the change 
in feed composition (red).

Fig. 4. Ethanol composition at ݐ = ௏ி௉ݐ in reboiler (top) and 
condenser (bottom) in pseudo-steady-state (black) and for a 
33.33% increase in feed content of ethanol (red).

As expected, when the ethanol composition in the feed is 
increased, and the water is decreased, the ethanol in the top and 
bottom is also increased. As with the change in the feed 
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temperature, the new steady-state is found fast in the reboiler, 
but it takes many cycles to get to the new steady-state in the 
condenser. 

As mentioned considerations of temperature deviating from 
boiling point and multiple feed and side draw locations have 
not been shown here. Implementation of multiple feed and side 
draws is relatively simple, since another feed or side draw is 
added by setting ܯ௡,௜ி or ܵ௡ to greater than zero.

Implementation of temperature deviations, that is flash or 
heating of liquid if the temperature is above or below boiling 
point, is more difficult. It is time consuming to perform flash 
calculations, so it is assumed flash only occurs if the liquid 
temperature is above boiling point after LFP. Heating occurs 
during VFP and only if the temperature is below boiling point. 
During heating no mass transfer occurs for the heating stage. 
Therefore, if the entire VFP is spent on heating a liquid, then 
the overall separation will suffer. 

With the developed mass and energy model, it is possible to 
perform a degree of freedom analysis in order to identify 
suitable manipulated variables.

4. CONTROL OF CYCLIC DISTILLATION

When designing a control structure for a distillation column,
there are many important variables, and many options for 
choosing manipulated and controlled variables pairings. With 
cyclic distillation two important variables, which conventional 
distillation does not have, is the time for the LFP and the VFP 
period. Especially ݐ௏ி௉ is important, since a longer time for 
VFP increases the overall time for mass transfer, but can 
decrease the throughput. The time for LFP should be set to 
ensure a complete draining before the next VFP is initiated in 
order to avoid back-mixing. The time for LFP should be set to 
the minimum value that allows complete draining.

To get an overview of the variables in the cyclic distillation 
column a degrees of freedom analysis is made. For the degrees 
of freedom analysis the process is once again divided in VFP 
and LFP. For VFP the number of equations is ௘ܰ௏ி௉ =ܰܶ(3 + (ܥ3ܰ and the number of variables is ௩ܰ௏ி௉ = 2 +ܰܶ(8 + where NT ,(ܥ5ܰ is the number of trays and NC the 
number of components. This gives the degrees of freedom for 
a stage during VFP as:

஽ܰ௢ி௏ி௉ = 2 + ܰܶ(5 + (ܥ2ܰ (10)

The variables that are specified for a given tray are: ܲ,ݐ௏ி௉,   ݕ௡,௜ி , ௡ܸி, ௡ܶி, ܳ௡, ௡ܸାଵ, ,௡ାଵ,௜ݕ ௡ܶାଵ. The variables ௡ܸାଵ, ௡ାଵ,௜ݕ and ௡ܶାଵ are known from the stage below. For 
LFP the number of equations is ௘ܰ௅ி௉ = ܰܶ(2 + (ܥܰ and the 
number of variables is ௩ܰ௅ி௉ = 2 + ܰܶ(5 +  which ,(ܥ4ܰ
gives the degrees of freedom:

஽ܰ௢ி௅ி௉ = 2 + ܰܶ(3 + (ܥ3ܰ (11)

The specified variables are:  ܲ, ,௅ி௉ݐ ܵ௡, ௡ܶி, ௡,௜ிܯ , ,௡,௜(௏ி௉)ݔ,௡,௜(௏ி௉)ܯ ௡ܶ. Where the variables ܯ௡,௜(௏ி௉), ௡,௜(௏ி௉)ݔ and  ௡ܶ are 
known from the end of VFP.

The control degrees of freedom are not the same as the process 
degrees of freedom, but is related to this with the number of 
disturbance variables (Seborg et al. 2011).

஼ܰ஽௢ி = ஽ܰ௢ி − ஽ܰ௏ (12)

Disturbance variables are the input variables that are not 
manipulated. Assuming the temperature, composition as well 
as the vapour flow from the stage below and the stage pressure 
are disturbance variables then: ஽ܰ௏௏ி௉ = 1 + ܰܶ(2 + ,(ܥܰ this 
gives the control degrees of freedom as:

஼ܰ஽௢ி௏ி௉ = 1 + ܰܶ(3 + (ܥܰ (13)

Similar for LFP, the number of disturbance variables is ஽ܰ௏௅ி௉ = 1 + ܰܶ(1 +  if the disturbance variables are ,(ܥ2ܰ
assumed to be the holdups and temperatures after VFP as well 
as the feed flow and temperature.

஼ܰ஽௢ி௅ி௉ = 1 + ܰܶ(2 + (ܥܰ (14)

The control degrees of freedom gives the total number of 
possible manipulated variables. However, often simpler 
control configurations can be made with just a couple of 
manipulated variables. For cyclic distillation, it is important to 
consider the duration of VFP as a manipulated variable. Other 
possible variables that can be used for control can also be 
found in conventional distillation. Actuators for cyclic 
distillation control with one saturated liquid feed and no side 
draws is shown in Table 3 and compared to conventional 
distillation.

Table 3: Actuators in cyclic and conventional distillation.

Actuators Cyclic Conventional

Feed flow rate X X

Product flows rates X X

Condenser and reboiler duty X X

Reflux flow rate X X

Vapour flow periods duration X

As mentioned, when operating a distillation in cyclic mode, 
the duration of vapour and liquid flow periods become 
important actuators that can be used in the control strategy.
The other actuators in the cyclic distillation that are available 
for control are similar to the actuators for conventional 
distillation. 
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5. CONCLUSIONS

A model have been developed for cyclic distillation, which 
includes the energy balances. Furthermore, the developed 
model is capable of account for feed that is not necessarily 
saturated liquid. A model capable of accounting for tray 
temperatures above and below boiling point as well as having 
multiple feed and side draw location was discussed.

It was shown that the developed model is capable of describing 
a disturbance of +5% in the feed temperature and account for 
flashed feed. Furthermore, a disturbance in the feed 
composition was investigated. Both cases showed the 
developed model being capable of describing changes in the 
feed, and that new pseudo-steady-states could be found.

For a general overview of a cyclic distillation process it would 
be fine to use a simple model, but if disturbances that have 
effect on the temperatures or vapour flow are imposed, then a 
more detailed model is required. 

A degree of freedom analysis is made for a cyclic distillation 
column and, based on this simple analysis, manipulated 
variables are identified for the control. The control of a cyclic 
distillation process is different from conventional distillation,
since the time for vapour and liquid flow periods are also 
available as actuators and must be specified, which will have 
an effect on the process.
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Abstract Overview 

It is common to approximate nonlinear models with a collection of linear models, but sometimes it can 
cause problems, such as lack of representativeness of the nonlinear behavior and generation of nonexistent 
peaks. Nonlinear identification has been improved to overcome these problems. The type of nonlinear 
model used in this work is the polynomial Nonlinear AutoRegressive Moving Average models with 
eXogenous inputs (NARMAX). In the present work, a gray-box identification is compared with the black-
box one for optimization and control purposes. The identification was performed using an orthogonal least 
square algorithm and validation was made using k-step-ahead cross-validation method. Dynamic real-
time optimization was set based on both first-principle models and identified models, and compared, to 
evaluate the performance of identified nonlinear models. The gray-box model was more representative in 
relation to the nonlinearity of the system and generated closer solutions in the dynamic real-time 
optimization, when comparing with the solutions based on first-principle model. 

Keywords 

NARMAX models, Gray-box, System Identification. 

Introduction

Nonlinear models have received more attention during 
the past decades as the computational capacity of solving 
complex problems has increased. The Nonlinear 
AutoRegressive Moving Average models with eXogenous 
inputs (NARMAX) is a parametric model, which uses 
measured discrete data set from industrial or simulated 
plant, typically as a black-box model. However, it can also 
be used with some system information, such as static gain, 
number of stationary states on the output variables, mass 
balance, energy balance or qualitative characteristics with 
respect to the dynamic behavior of the system (as a gray-
box model).  

* To whom all correspondence should be addressed

The improvement of using some type of system 
information motivated many researchers to apply system 
identification using NARMAX models with different types 
of estimation algorithm (Johansen, 1996). The parameter 
estimation algorithm used in this work is the Orthogonal 
Least Square algorithm developed by Chen et al. (1989). 

In this work, qualitative characteristics of the case 
study are available. This type is not much explored because 
it depends on the quality of the available qualitative 
characteristics, which usually comes from system 
manipulation by the user. When high quality information is 
acquired, gray-box identification improves the capacity of 
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mathematical models to represent the dynamic behavior of 
nonlinear systems. 

The main objective of this work is to develop a 
methodology for identifying nonlinear systems with prior 
knowledge using polynomial NARMAX models. The 
proposed methodology is then compared with a typical 
black-box approach and applied on dynamic real-time 
optimization. 

Proposed Methodology 

In order to acquire nonlinear data, each input variable 
was perturbed in a way that each excitation lasts enough 
time to reach a stable response in the its end and with the 
range of the operating interval (as widely as possible). 
Measurement uncertainty was added in the form of white 
noise to all input and output data. Normalization was 
performed taking the minimum of each variable as 
reference. 

The general structure of NARMAX models is given by, 

    (1) 

where  is a nonlinear function with nonlinearity degree  
in relation to all variables, with . , ,

 and  are the output variable, input variables, 
noise and prediction error at instant , respectively. ,

 and  are the maximum lags of system output, inputs,
noise, respectively,  is the time delay of the model. The 
polynomial type is given by, 

    (2) 

   (3) 

where  is the number of input variables,  is a regressor
with nonlinearity degree  at instant . 

The parameter estimation was performed using an 
orthogonal least square algorithm named Golub-
Householder with Error Reduction Rate (ERR) (Aguirre, 
2000). The problem was divided into two parts: NARX part; 
and MA part (where noise modeling is made). Each part 
used the OLS algorithm. 

The identification algorithm used in this work can be 
summarized as shown in  Figure 1, where  is the objective 
function of the OLS algorithm.  and  are the
number of terms of the NARX and MA part of the model, 
respectively. 

Figure 1. Block diagram of the gray-box identification 
algorithm 

The gray-box identification can be divided into seven 
main steps: 

1. The user starts by suggesting some change on the
coordinates or not.

2. The user specifies a range of values for the model
orders ( , ,  and ).

3. Synthetic data is acquired from first-principle
models.

4. Normalization is done.
5. Off-line identification algorithm chooses

regressors, estimates parameters and optimizes the
number of features for each type of model (varying
the nonlinearity degree, ℓ) and for each suggestion
on coordinate change.

6. Validation step compares the R-squared value of
all types of models and chooses the model that has
the highest one.

7. The suggestion on coordinate change is also
chosen comparing the R-squared values with the
one of the black-box identification.

Application Example 

The identification was performed on an oil production 
system with two gas-lift wells (Krishnamoorthy et al., 
2018).  First, a black-box model was developed according 
to Eq. (4) and (5). 

 (4) 

91

A
Proceedings of the 22nd Nordic Process Control Workshop 
August 2019, Kgs. Lyngby, Denmark   



 (5) 

The validation of the black-box model gave a R-
squared value of 0.5038.  

The change in the coordinates that gave higher 
improvement was substituting  for  and  for

. Using this information, a gray-box model was
developed according to Eq. (4) and (6). The validation of 
the gray-box model gave an R-squared value of 0.8867, 
which is higher than the one from black-box model. This is 
because the algorithm chose a NARX model instead of a 
NARMAX one. 

   (6) 

Dynamic Real-time Optimization 

The closed loop responses of the NARMAX models to 
the DRTO actions on the input variables were compared 
with the one using the first-principle model, the result is 
shown in Figure 2. 

Figure 2. Comparison of DRTO performances (first-
principle model and black-box model) 

The difference between the solutions was expected 
because the NARMAX model accounts with noise, which 
is different (none in this case) than the noise in the original 
data set. When using gray-box models, the difference 
between the solutions reduced significantly, reassuring the 
improvement noted with the system identification results. 

Conclusion 

The gray-box identification algorithm used in this work 
has low complexity, although it can take a lot of time 
depending on the knowledge of the user about the process 
(if one makes a lot of suggestions to the change in 
coordinates). The gray-box method improved the modeling 
of the system, generating higher R-squared value, which 
was illustrated with an application in dynamic real-time 
optimization. 
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Abstract: Due to the different characteristics of space heating load and heating for domestic
hot tap water consumption, a common approach for heat load prediction for buildings is to use
separate models for the two. Using a latent variable framework as described in the article, both
models can be calculated recursively and simultaneously. A nominal model is used to model the
outdoor temperature dependent behavior:

ŷnom(t) = Θϕ(t) + ε(t), (1)

mainly modeling space heating load. Using a sufficient number of lagged inputs and the concept
of maximum likelihood results in an ARX model. The residual ε(t) is assumed to be distributed
as

ε(t) ∼ N (Zγ(t),Σ). (2)

The residual prediction
ŷres(t) = Zγ(t) (3)

is then modeled using a data driven latent variable approach, where γ(t) is calculated from
temporal data such as time of the day and work day / not workday. The prediction of the total
heat load can then be written as

ŷ(t) = Θϕ(t) + Zγ(t). (4)

The described method results in a parsimonious model, allowing for a computationally efficient
implementation and avoiding overfitting. Individual building model matrices can be summed
when the same covariates are used, allowing for straight forward aggregation of predictions when
applicable. The method is validated using measurement data from a multi-dwelling building
located in the city of Lule̊a, in general showing a good fit given the irregular patterns of hot
water consumption for single buildings. It is concluded that the method shows promising results,
and that further research is needed to validate the method against a larger building stock, with
a corresponding categorization of buildings.

Keywords: Heat load prediction, 4GDH, District heating, Consumer model
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Systematic tuning of PI controllers in non-steady-state return sludge flow of 
wastewater treatment systems 
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Abstract: Performance of the secondary settling tanks at a wastewater treatment plant determines the 
amount of nutrients released into the environment and consequently the impact on the receiving water 
bodies. In order to ensure sufficient biomass in the activated sludge biological treatment tanks, a stable 
sludge blanket (to avoid sludge escape), and a stable solids concentration in the waste sludge for good 
dewatering conditions, the return activated sludge flow is controlled using a feedback cascade control 
loop consisting of two proportional-integral (PI) controllers. In the outer loop, the sludge blanket level set 
point is compared to the measured sludge blanket level and the calculated error signal (ϵSlbl) is 
transmitted to the master PI controller. The output of the master PI controller is used as the set point for 
the solids concentration in the return sludge in the inner loop. Here, the set point is compared to the 
measured solids concentration of return sludge and the calculated error signal (ϵSS) is transmitted to the 
slave PI controller. The output of the slave PI controller is used as a set point for the flow rate of return 
activated sludge. The system is influenced by disturbances from the variation in inlet flow, originating 
from both daily water consumption dynamics and from wet weather events, as well as changes in the 
sludge properties affecting the settlability. The performance of the control system is thus influenced by 
the parameters of the PI controllers. Previously, these parameters have been chosen based on operational 
experience and not on systematic procedures. In this work an attempt to retune the inner PI controller in 
the cascaded control loop was conducted. From this, a second order transfer function with an inverse 
response was assumed to be the process model of the inner control loop. Data was used to estimate the
dominant time constant of the inner loop model to a value of 60 minutes. Using the internal model 
control method, it was found that the previously used PI parameters were optimal for a dominant time 
constant of 30 minutes. This resulted in a doubling of the previously used integral time. Qualitative 
evaluation of the system performance after doubling the integral time, indicates a more stable 
performance than prior to the change.
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Health-aware control – current status and future outlook 

Adriaen Verheyleweghen

Equipment in chemical process industry is subject to wear-and-tear induced degradation when used 
during normal operation. To maximize the value of the asset, maintenance must be performed when 
the asset health is critical in order to keep the asset operational. This raises the question of how to 
schedule maintenance, and how to operate the asset optimally between scheduled maintenance 
interventions. Although considering the equipment health state in the decision process is not a new idea 
(controllers robust to plant-model-mismatch have been around since the very early days of process 
control), there has been increased interest in developing so-called “health-aware” controllers (HAC) in 
recent years. The term “health-aware” control was first coined by (Escobet, Puig, & Nejjari, 2012), but 
we adopted the term in this work to describe any control structure in which asset health is constraining 
or otherwise directly influencing the permissible set of controls. Furthermore, we choose to think of 
HAC as optimization-based control structures where asset degradation models are included in the 
optimization problem. In other words, HAC is a proactive approach to handle and influence asset 
degradation, rather than traditional, reactive approaches such as fault-tolerant control (FTC). By having 
a proactive approach to degradation, the control structure does not have to overly conservative in order 
to avoid unplanned and costly plant shutdowns, thus resulting in more operational flexibility, less 
conservative operation and larger profit margins.  

In this work, we discuss the challenges and prerequisites that must be addressed in order to obtain a 
HAC structure. In particular, we discuss the issues pertaining to obtaining asset degradation models, 
which are necessary to give an accurate prognosis of how future operational strategies will influence the 
asset health. Furthermore, we discuss the issues related to real-time diagnostics of the asset health. 
Since measurements of the health state of the asset are rarely available, estimators and soft sensors are 
usually necessary for diagnostic purposes. However, due to the lack of detailed first principles 
degradation models, the diagnostic predictions are often highly uncertain. This uncertainty must be 
handled in a system manner. Lastly, the problems stemming from an HAC structure formulation may 
end up being quite complex and require special solution methods. In this work, we discuss the 
aforementioned problems, current industrial and academic status, as well as possible solutions and 
future outlooks. We also present a framework for formulating and solving HAC problems. Finally, an 
illustrative case study is presented.  
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Sustainable value chains are an important element to achieve the UN 2030 Sustainable Development Agenda
(SDA) [1]. For this purpose, an integrated biorefinery is an essential concept for the sustainable production of 
food, chemicals and power generation, utilizing e.g. lignocellulosic waste from agricultural waste as feedstock 
[2]. The crux of this concept is a poor economic potential due to the multitude of costly process steps. [3]. 
Therefore, the process design of a new biorefinery has to be performed systematically [4]. Besides, designing 
the process and the utilized feedstocks, special focus lies on the selection of products, since they will determine 
the overall profitability. Only by optimizing the integration of feedstock, biorefinery processes and co-
products, the whole value chain will be both economically viable and sustainable [5].

In detail, the systematic approach to design a sustainable value chain with a biorefinery in its core avails 
methodologies from Process Systems Engineering and comprises three main steps: (1) Process Design, (2) 
Process Optimization and (3) Value Chain Optimization. (1) In the first step, first-order models for possible 
unit operations in a biorefinery are developed, calibrated and validated with own experimental and literature 
data. Together with a combined Uncertainty and Sensitivity Analysis quantifying the model robustness, 
surrogate models are developed. These models are integrated into a superstructure, which is then optimized to 
yield an optimal process design. (2) With the optimal design, the process is optimized both unit-wise and plant-
wide. Primarily, this serves to find optimal operation conditions for the process units and to develop scheduling 
and control strategies for the process. Furthermore, it iteratively gives feedback for the extension of the process 
design, by increasing the overall utilization of the feedstock by co-production strategies and performing 
process integration and intensification. (3) Finally, by including feedstock and product markets in the 
optimization, the whole value chain is displayed. Besides a risk-based economic evaluation, different 
assessments, e.g. on the life-cycle are performed. This results in several target indicators for the value chain.

Apart from design heuristics and instigations for development of microorganisms and processes for the 
optimized biorefinery, the result is an overall proof of the economic viability of the value chain with a 
biorefinery as part of a sustainable production pattern, perfectly matching the goals of the UN-SDA.

[1] United Nations, Transforming our world: The 2030 agenda for sustainable development, 2015.
[2] F. Cherubini, Energy Conversion and Management, Vol. 51, 2010, pp. 1412-1421.
[3] A. Chandel et al., Bioresource Technology, Vol. 264, 2018, pp. 370-381.
[4] C. Gargalo et al. in: J. Klemens (Ed.), Assessing and Measuring Environmental Impact and Sustainability, Elsevier,
Oxford, 2015, pp. 277-321.
[5] C. Gargalo et al., Industrial & Engineering Chemistry Research, Vol. 56, 2017, pp. 6711-6727
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