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Abstract: A model describing the flow and pressure fluctuations in the bore-hole due to drill-
string movement has been presented. It consists of a pair of coupled nonlinear partial differential
equations modelling the distributed pressure and flow in the well, and a superposition of multiple
sine waves for the disturbance. Considering only top-side flow and pressure as measurements, it
is shown that the model can be represented by a linear time invariant finite-dimensional system
with output delay. This result is achieved by linearization and de-coupling using Riemann
invariants. An infinite-dimensional observer is designed that estimates the disturbance, and
the estimate is used in a controller that rejects the effect of the disturbance on the down-hole
pressure. A model reduction technique based on the Laguerre series representation of the transfer
function is used to derive a finite-dimensional, rational transfer function for the controller. The
performance of the full-order and reduced-order controllers are compared in simulations, which
show satisfactory attenuation of the heave disturbance for both controllers.

Keywords: Managed Pressure Drilling (MPD), Process control, Periodic disturbance rejection,
Delayed systems, Infinite-dimensional systems

1. INTRODUCTION

In drilling operations, a fluid called mud is pumped down
through the drill string and flows through the drill bit
in the bottom of the well (see Figure 1). Then the mud
flows up the well annulus carrying cuttings out of the
well. To avoid fracturing, collapse of the well, or influx of
fluids from the surrounding rock formations, it is crucial to
control the pressure in the open part of the annulus within
a certain operating window. In conventional drilling, this
is done by mixing a mud of appropriate density and
adjusting mud pump flow-rates. In managed pressure
drilling (MPD), the annulus is sealed and the mud exits
through a controlled choke, allowing for faster and more
precise control of the annular pressure. In automatic MPD
systems, the choke is controlled by an automatic control
system which manages the annular mud pressure to be
within specified upper and lower limits. Different aspects
of modeling for MPD have been examined in the literature,
see Landet et al. (2012); Kaasa et al. (2012); Petersen
et al. (2008). Estimation and control design in MPD have
been investigated by several researchers so far, see Kaasa
et al. (2012); Gravdal et al. (2010); Stamnes et al. (2008);
Breyholtz et al. (2010); Zhou et al. (2011); Zhou and
Nygaard (2011). These works focus mainly on pressure
control during regular drilling.
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Fig. 1. Schematic of an MPD system, courtesy of G.-O.
Kaasa, Statoil.

When designing MPD control systems, one should take
into account various operational procedures and distur-
bances that affect the pressure inside the well. One such
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disturbance occurs when drilling from a floating rig. In
this case, the rig moves with the waves, referred to as
heave motion. As drilling proceeds, the drill string needs
to be extended with new sections. Thus, every couple of
hours or so, drilling is stopped to add a new segment
of about 27 meters to the drill string. During drilling,
a heave compensation mechanism isolates the drill string
from the heave motion of the rig. However, during connec-
tions, the pump is stopped and the string is disconnected
from the heave compensation mechanism and becomes
rigidly connected to the rig. The drill string then moves
vertically with the heave motion of the floating rig, and
acts like a piston on the mud in the well. The heave
motion is typically more than 3 meters in amplitude and
has a period of 10-20 seconds, and the consequence is
severe pressure fluctuations in the bottom of the well.
Pressure fluctuations have been observed to be an order
of magnitude higher than the standard limits for pressure
regulation accuracy in MPD, which are about ±2.5 bar.
Downward movement of the drill string into the well gives
pressure increase (surging), and upward movement gives
pressure decrease (swabbing). Excessive surge and swab
pressures can lead to mud loss resulting from high pressure
fracturing the formation, or a kick-sequence (uncontrolled
influx from the reservoir) that can potentially grow into a
blowout, as a consequence of low pressure. A comparison
and evaluation of some MPD methods for compensation
of surge and swab pressure are presented in Rasmussen
and Sangesland (2007). Two nonlinear control algorithms
for handling heave disturbances in MPD operations are
presented in Pavlov et al. (2010), and performance of
both algorithms has been tested on a full-scale drilling
rig. The tests indicated that for typical vertical drill-string
movements, the problem of compensation of heave induced
pressure oscillations remains open.

Currently there are no qualified solutions available for
MPD from floating rigs considering the heave scenario in
the north sea environment, and there is an urgent need
for a solution. This is especially the case for depleted
high-pressure and high-temperature reservoirs, which have
very narrow drilling windows (Godhavn (2010)). Due to
the propagation delays of the pressure, and the lack of
downhole instrumentation, the design of a controller that
counteracts the downhole pressure fluctuations by means
of topside measurements, pumps and chokes is challenging.

In this paper, we model the annulus flow and design a
controller that attenuates downhole pressure fluctuations
based on estimating the disturbance from topside mea-
surements. The estimator is infinite-dimensional, but a
systematic model order reduction scheme shows that it can
be truncated to a low order system corresponding to the
number of harmonic disturbances. This basically amounts
to the internal model principle.

The paper is organized as follows: In Section 2, we present
a distributed-parameter-model based on mass and momen-
tum balances that provides the governing equations for
pressure and flow in the annulus. The controller is derived
in Section 3, and controller order reduction is performed
in Section 4. Section 5 provides simulation results and
conclusions are offered in Section 6.

2. MODELING

2.1 Annulus flow dynamics

The governing equations for flow in an annulus can be
derived from mass and momentum balances and written
in the form

∂P

∂t
+ U

∂P

∂x
+ (k + P )

∂U

∂x
= 0 (1)

∂U

∂t
+ U

∂U

∂x
+

c2

k + P

∂P

∂x
+ g sin(γ) + f(x)U2 = 0 (2)

where P (t, x) is pressure, U(t, x) is fluid velocity, c is speed
of sound in the fluid, g is acceleration of gravity, γ(x) is the
inclination angle of the pipe, and f(x) is the friction factor.
The constant k is related to the choice of equation of state.
We use the following relation (Nieckele et al. (2001))

ρ(t, x) = ρref +
P (t, x)− pref

c2
(3)

where ρ(t, x) is fluid density, and ρref and pref are
reference values for the density and pressure, respectively.
We then have that k = c2ρref − pref . Natural boundary
conditions for (1)–(2) are flow in at the bottom (x = 0)
and pressure at the outlet (x = l), that is

U(t, 0) = U0(t) (4)

P (t, l) = Pl(t) (5)

where l is the length of the well. For clarity of presentation,
we will consider the well to be vertical, so that sin(γ(x)) =
1. In the context of heave compensations, we are interested
in the scenario of drillstring connection, when the flow
through the drillstring is stopped (the pump has been
shut off) and the flow in the annulus is only due to the
motion of the drillstring acting like a piston. This results
in zero flow-rate in the drillstring (there is a check valve
at the drill bit preventing the back flow from the annulus
into the drillstring) and relatively slow flow-rates in the
annulus. Therefore we can develop a linear model that is
valid around Ū(x) ≡ 0. The corresponding steady pressure
profile is given by (2) as

c2

k + P̄

∂P̄

∂x
= −g (6)

which we can integrate to obtain

P̄ (x) = (k + P̄l)e
g(l−x)/c2 − k . (7)

A linearization of (1)–(2) around (Ū , P̄ ) is obtained by
inserting

U(t, x) = Ū + u(t, x) = u(t, x) (8)

P (t, x) = P̄ (x) + p(t, x) (9)

into (1)–(2), and ignoring nonlinear terms. By using (6)
and assuming p in comparison to k + P̄ is negligible, the
result is

∂p

∂t
+

∂
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(
(k + P̄ )u

)
= 0 (10)
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+
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k + P̄
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We can further write (11) as

∂

∂t

(k + P̄

c
u
)

+ c
∂p
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= 0 (12)

and define

ũ(t, x) =
k + P̄

c
u(t, x) (13)
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to obtain
∂p

∂t
+ c

∂ũ

∂x
= 0 (14)

∂ũ

∂t
+ c

∂p

∂x
= 0 . (15)

Let p = α − β and ũ = α + β . α and β are the so-
called Riemann invariants of the hyperbolic PDEs (14)–
(15) and are obtained through diagonalization. In terms
of the Riemann invariants, (14)–(15) become

αt + cαx = 0 (16)

βt − cβx = 0 . (17)

We model the effect of friction factor and damping in the
annulus by considering terms mα and nβ in (16)–(17)
respectively

αt + cαx +mα = 0 (18)

βt − cβx + nβ = 0 . (19)

The above are decoupled first order linear homogeneous
partial differential equations with two independent vari-
ables. The general solution of (18) can be represented as
the product

α = ᾱα0 (20)

where ᾱ is any nontrivial particular solution of this equa-
tion and α0 is the general solution of corresponding trun-
cated equation (with m ≡ 0).
Given two different (functionally independent) integrals,

u1(t, x, α) = C1, u2(t, x, α) = C2 (21)

of the characteristic system

dt

1
=
dx

c
=

dα

−mα
(22)

the general solution of (18) can be expressed in terms of
an arbitrary function of two variables as

Φ(u1, u2) = Φ(x− ct, αemt) = 0 (23)

Solving this equation for the second argument, we obtain
the solution in explicit form

α = e−mtφ(ct− x) (24)

where φ is an arbitrary function. Similarly the solution of
(19) in explicit form would be

β = e−ntψ(ct+ x) (25)

in which ψ is an arbitrary function.
Equations (24) and (25) can be solved to obtain for the
boundary

α(t, l) = e−ml/cα
(
t− l

c
, 0
)
, (26)

β(t, 0) = e−nl/cβ
(
t− l

c
, l
)
. (27)

2.2 Disturbance due to drill-string movement

If we model the drill-string movement as a disturbance
applied to flow in the bottom-hole, we have

ũ(t, 0) = d(t) (28)

which in terms of α and β is

α(t, 0) = −β(t, 0) + d(t) . (29)

Assuming the disturbance is a finite sum of single harmon-
ics, Perez (2005), that is

d(t) =

N∑
j=1

aj sin(ωjt+ ϕj) (30)

it can be modeled as

ẋ1,j = ωjx2,j (31)

ẋ2,j = −ωjx1,j (32)

for j = 1, 2, 3, ..., N , and therefore from (29), we obtain

α(t, 0) = −β(t, 0) +

N∑
j=1

x1,j . (33)

The initial condition x1,j(0), x2,j(0) determines the phase,
ϕj , and the amplitude, aj , of the jth component of the
disturbance, which are unknown, while the frequency, ωj ,
is assumed known.

3. CONTROL DESIGN

3.1 Known disturbance

We begin the control design by assuming that the distur-
bance is perfectly known by having access to d, and derive
the desired feed-forward control for this case. In the next
section, we will deal with the fact that d is unknown. The
variations in bottomhole pressure is

p(t, 0) = α(t, 0)− β(t, 0) . (34)

In order to perfectly cancel out the effect of the harmonic
disturbance on p(t, 0), we need

α(t, 0) = β(t, 0) . (35)

From (35) and (29) we have that

β(t, 0) =
1

2
d(t) (36)

and from (27) we obtain

e−nl/cβ(t− l

c
, l) =

1

2
d(t) . (37)

Shifting time we get

β(t, l) =
1

2
enl/cd(t+

l

c
) =

1

2
enl/c

N∑
j=1

x1,j(t+
l

c
) (38)

=
1

2
enl/c

N∑
j=1

cos(
ωj l

c
)x1,j(t) + sin(

ωj l

c
)x2,j(t).

The desired feedforward topside control that attenuates
downhole pressure oscillations is thus

β(t, l) =
1

2
enl/cBX(t) (39)

where

B =

[
cos(

ω1l

c
) sin(

ω1l

c
) · · · cos(

ωN l

c
) sin(

ωN l

c
)

]
X(t) = [x1,1(t) x2,1(t) · · · x1,N (t) x2,N (t)]

T

3.2 Unkown disturbance - observer design

The desired control signal (39) can not be implemented,
since the disturbance X(t) can not be measured in prac-
tice. At the topside, which is the only place we can collect
measurements, we obtain from (26)–(27) by shifting time
that

eml/cα(t, l) = −e−nl/cβ(t− 2
l

c
, l) +

N∑
j=1

x1,j(t−
l

c
) (40)
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Let us now define our topside measurement as

Y (t) = eml/cα(t, l) + e−nl/cβ(t− 2
l

c
, l) =

N∑
j=1

x1,j(t−
l

c
)

(41)
Then, we have the system

Ẋ = AX (42)

Y (t) = CX(t−D) (43)

where

A =


A1 0 . . . 0

0 A2

...
...

. . . 0
0 . . . 0 AN

 , Aj =

[
0 ωj

−ωj 0

]

C = [1 0 1 0 · · · 1 0] (44)

D = l/c (45)

which is an LTI system with sensor delay. If (A,C) is
observable, the results in Krstic and Smyshlyaev (2008)
can be applied. In this case, we get the infinite-dimensional
observer

˙̂
X = AX̂ + eADL(Y − ẑ(0))

ẑt = ẑx + CeAxL(Y − ẑ(0)), x ∈ (0, D)

ẑ(D) = CX̂ (46)

where

eAx =


eA1x 0 · · · 0

0 eA2x
...

...
. . . 0

0 · · · 0 eANx


eAjx =

[
cos(ωjx) sin(ωjx)
− sin(ωjx) cos(ωjx)

]
(47)

and L must be chosen so that A − LC is Hurwitz.
According to Krstic and Smyshlyaev (2008), the observer
error system is exponentially stable in the following norm(

|X(t)− X̂(t)|2 +

∫ D

0

(z(t, x)− ẑ(t, x))2dx
) 1

2

(48)

where z(t, x) represents the output equation (43) in the
following manner

zt = zx, x ∈ (0, D) (49)

z(D) = CX (50)

Y = z(0) . (51)

It is straightforward to prove that (A,C) is observable if
ω1, ω2, ..., ωN are distinct.

3.3 Controller summary

The conventional way of controlling downhole pressure in
an MPD system is to compute a set point for the choke
pressure that corresponds to the desired downhole pressure
and manipulate the choke opening to achieve this set point.
Disregarding the heave-induced disturbance, this would be
Pref = P̄l. In the case with heave-induced disturbance,
we can alter the set point by viewing P (t, l) resulting
from applying the desired β(t, l) from (39) as the reference
pressure signal. Of course, we have to replace X(t) in (39)

with its estimate X̂(t). The result, written in the original
variables, is

Pref =
k + P̄l

c
U(t, l) + P̄l − enl/cBX̂(t) . (52)

We assume that a choke controller is available that
achieves Pl(t) ≈ Pref (t).

4. CONTROLLER ORDER REDUCTION

The controller derived in (46) and (52) is infinite-
dimensional. The implementation of this controller is com-
putationally expensive, and therefore a finite-dimensional
approximation of it is desired.
The model reduction technique used in this paper is based
on the Laguerre representation of the transfer function.
In Amghayrir et al. (2005), a model reduction technique
that combines the Laguerre basis function and the gram
matrix to reduce finite or infinite dimensional systems
while minimizing a defined quadratic error is introduced.
This method works based on the construction of a pencil of
functions, using a one-order operator, and their projection
on the basis of Laguerre functions. In order to apply the
method, the transfer function for our controller is needed.
It is derived next.

4.1 Derivation of the controller transfer function

Consider the control scheme as a system with input Y (t)
and output β(t, l), given from (39) by replacing X(t) with
X̂(t). Taking the Laplace transform of (46) we have

sX̂ = AX̂ + eADL(Y − ẑ(0)) (53)

sẑ = ẑx + CeAxL(Y − ẑ(0)), x ∈ (0, D) (54)

ẑ(D) = CX̂ (55)

β(t, l) =
1

2
enl/cBX̂(t) . (56)

From (53), we have

X̂ = (sI −A)−1eADL(Y − ẑ(0)) (57)

and we can solve (54) for ẑ(0) by writing it as

ẑx = sẑ − CeAxL(Y − ẑ(0)) (58)

and applying the variation of constants formula. We get

ẑ(D, s) = esD ẑ(0)−
∫ D

0

es(D−y)CeAyL
(
Y − ẑ(0)

)
dy (59)

Thus,

ẑ(0) = H−1
(
e−sDCX̂ + (H − 1)Y

)
(60)

where

H = 1 + C(A− sI)−1(e(A−sI)D − I)L . (61)

Using (57) and (60) we have

X̂ =
(
I + J(H)−1e−sDC

)−1

J(
1− (H−1C(A− sI)−1(e(A−sI)D − I)L)

)
Y

(62)

where
J = (sI −A)−1eADL . (63)

Substituting (62) into (56), we finally obtain
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β(s, l) =
1

2
enl/cB

(
I + J(H)−1e−sDC

)−1

J(
1− (H−1C(A− sI)−1(e(A−sI)D − I)L)

)
Y

(64)

After a few simplifying steps we have

β(s, l) = G(s)Y (s) (65)

with

G(s) =
1

2
enl/cB

(
(1 + C(A− sI)−1(e(A−sI)D − I)L)

e−AD(sI −A) + Le−sDC
)−1

L . (66)

4.2 Laguerre-based model order reduction

The procedure developed in Amghayrir et al. (2005) is used
for computing rational, finite-dimensional approximations
of the transfer function (66) with parameters given in
Table 1 and heave disturbance frequency vector as follows

ωi =
[
0.21 0.31 0.52 0.63 0.9

]
[rad/s] (67)

The bode plots of the original infinite-dimensional transfer
function and its approximations are shown in Figure
2. Obviously, the 10th-order approximation matches the
original infinite-dimensional transfer function extremely
well.

Table 1. Parameter Values

Parameter Value Parameter Value

l 5000 [m] c 1.2271× 103 [m/s]

ρref 870 [kg/m3] pref 1.013 [bar]

m 0.1 n 0.1
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Fig. 2. Comparison of the Bode plots of original model and
reduced order approximations.

5. SIMULATIONS

In this part we present the results of simulations. The lin-
ear PDE model is used in simulations. The performance of
controller with infinite-dimensional observer is compared
to the reduced-order controller. Figure 3 shows compari-
son of bottom-hole pressure for the cases of control with
infinite-dimensional observer and reduced-order controller,
and the corresponding top-side pressures are illustrated in
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Fig. 3. Comparison of the bottom-hole pressures.
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Fig. 4. Comparison of the top-side pressures.

Figure 4. Clearly, both cases show very good disturbance
rejection capabilities after some initial oscillations.

The heave-induced pressure disturbance and its estimate
are illustrated in Figure 5. The pressure variations around
hydrostatic pressure in the whole well for the case of
rational reduced order controller is shown in Figure 6.

6. CONCLUSIONS

In this paper a dynamical equation describing the flow and
pressure in the annulus is derived. The coupled nonlinear
partial differential equation is linearized, and decoupled
using Riemann invariants. The disturbance due to drill-
string movement is modeled as a superposition of multiple
sinusoidal waves applied to flow in the bottom-hole. The
state-space realization of heave disturbance is shown to be
a delayed LTI system considering the flow and pressure
measurements at the top-side.
An infinite dimensional observer is designed to estimate
both the disturbance state and the measurement state.
Moreover a controller is considered to reject the distur-
bance completely. Next, the irrational infinite-dimensional
transfer function between the measurement and control
input is obtained. A model reduction technique based on
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Fig. 5. The heave-induced pressure disturbance and its
estimation.

Fig. 6. Pressure variations around hydrostatic pressure for
the case of rational reduced order controller.

Laguerre description of the transfer function is used to
derive a simplified, rational, finite-dimensional controller
for the system. Finally the simulation results are pre-
sented, which shows satisfactory attenuation of the heave
disturbance.
Future work includes investigating how to deal with tran-
sient response of the control system, dealing with friction
in a more rigorous manner, and robustness with respect to
modeling errors.
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