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Abstract: This paper explores the use of divide and conquer algorithms to solve production
optimization problems. Exploitation of inherent structure facilitates efficient formulations and
solutions to production optimization problems that frequently appear in the upstream oil and gas
sector. We present the daily production optimization, which gives rise to network optimization
problems, and also add some comments to the closely linked reservoir optimization problem.
Subsequently, a common non-invasive optimization approach is presented prior to three concepts
that apply decomposition and structure exploitation. The first approach splits a network
simulator into interconnected parts and exploits the local components and their couplings
in devising efficient formulations and algorithms. This opens for a range of opportunities
in terms of formulations and algorithms, several of which will be discussed. This part is
accompanied by a realistic numerical study. The second approach exploits a decomposable
network structure, which frequently appears in large production systems, by applying a
Lagrangian type decomposition. The last approach deals with reservoir optimization where
there is no apparent structure to exploit. However, by recognizing this as a dynamic optimization
problem, it may be split in the time domain. The paper ends with some conclusions.

Keywords: production optimization; reservoir optimization; formulations; decomposition;
structure exploitation; optimization.

1. INTRODUCTION

Oil and gas assets are found in subsurface reservoirs in
which hydrocarbons have been trapped in some suitable
geological structure. Having discovered an asset, and as-
sessed its economical viability, it can only be drained
through wells that connect it to the surface. Thus, dur-
ing production reservoir fluid enters the wells and subse-
quently invades a collection system comprised of manifolds
and pipelines before the fluids are processed and exported
through some suitable means. It is useful to divide pro-
duction planning of an asset through different planning
horizons ranging from a life-cycle perspective to daily
production planning. Decisions on various horizons may be
portrayed in a multilevel control hierarchy as shown in Fig.
1. The topmost level includes life-cycle related decisions
such as the choice of technologies and the investment
strategy.

On a shorter time frame, normally from one to five years,
decisions are made on production strategies such as the
location of new wells, injection rates and target production
rates. Such decisions are typically supported by a sim-
ulator based on high fidelity reservoir models. Reservoir
models are based on a (qualitative) geological model of
the asset and are calibrated against appropriate data, a
process denoted history matching. To account for this
uncertainty an ensemble of reservoir models is customarily
used in reservoir simulation studies. These studies concen-
trate on the subsurface domain, which includes wells, even
though attempts are being made to include the collection

system and processing facilities, thus using an integrated
model that covers the value chain from source to export.
Optimization based on reservoir models and with time
frames of one to five years is denoted the Reservoir Opti-
mization problem.

Fig. 1. A multilevel control hierarchy

On level three in the control hierarchy in Fig. 1, which
we refer to as the Daily Production Optimization (DPO)
problem, the planning horizon typically ranges from a
few hours to a week. There are two key differences to
the reservoir optimization problem. First, the shorter time
horizon facilitates the use much simpler reservoir models
since reservoir fluid movements within this time span is
limited. There do exist exceptions to this rule, however,
for instance in wells with severe gas coning (Hasan et al.,
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2013) and in mature shale gas wells (Knudsen and Foss,
2013). Second, it is critical to account for the production
network, i.e. manifolds, pipelines and processing system,
since production bottlenecks normally is found anywhere
in the system.

The lowest level comprises fast decisions that are tack-
led by automatic control systems. This includes control
logic and conventional control for flow, pressure and level
control functions, and it is normally implemented in pro-
prietary systems.

DPO will be the focus of this paper even though reservoir
optimization also will be discussed. To elaborate on the
former, there is both a research based and business-wise
motivation for this paper. The DPO problem is hard to
solve, particularly in mature fields due to lowered reservoir
pressure, and higher gas rates (for oil fields) or water
rates. From a business perspective it is challenging to
assess the value of applying mathematical optimization
compared a baseline with skilled production engineers and
operators. There are, however, industry-based claims that
a production increase in the range from 1-4% is obtainable
(Stenhouse et al., 2010; Teixeira et al., 2013), which is an
indication that optimization can indeed make a difference.

This paper contributes to formulations for DPO and reser-
voir optimization problems, i.e. how these problems can be
formulated in ways that ensure efficient and predictable
solutions. We are in particular interested in exploiting
structure as a means to achieve this. Exploiting struc-
ture implies the use of a divide and conquer strategy,
an approach that is used extensively to solve complex
problems. The paper continues with a formulation of the
DPO problem before entering into a discussion on how this
problem normally is solved. Subsequently, some alternative
divide and conquer strategies are explored. A synthetic,
albeit realistic, offshore case is used to substantiate the ar-
guments. Finally, benefits and limitations of the proposed
formulations as well as other ways of introducing structure
are discussed, before some conclusions end the paper.

The paper will have a bias towards offshore oil and gas
fields, and to a lesser extent refer to onshore developments
or oil sand exploration. Further, it will be biased towards
production optimization research at the IO Center at
NTNU, research that is performed in cooperation with six
oil companies and three engineering companies. The paper
will not deal with non-technical issues, such as work flows
and incentive systems, which are important ingredients in
order to spread the use of mathematical optimization.

2. DPO PROBLEM DESCRIPTION

Consider the subsea production system illustrated in Fig.
2, which consists of reservoirs, wells, manifolds, subsea pro-
cessing, flowlines, risers and separators. Well geometries
may be complicated with several branches connected to
one well outlet, and the perforated parts may be highly
deviated or even horizontal. On the seabed streams are
commingled, and in some instances some processing is
done. This is exemplified through a multiphase pump that
energizes the commingled well stream from low pressured
(weak) wells. Two pipelines leave the second manifold,
and each of the wells that are directly connected to this

manifold, as well as the flowline from the first manifold,
will be connected to one of these flowlines. The second
manifold connects to two inlet separators, which are placed
on a floating unit, through a flowline including a riser.
The downstream system boundary is given by the inlet
separators in the figure. Downstream this boundary there
will be further processing equipment before products are
exported through pipelines or ships. In this paper we will
mainly be concerned with production systems where the
upstream and downstream boundaries are placed in the
reservoir and the inlet separator, respectively.

Table 1. Utility sets

Set Description

Nd Nodes with discrete leaving edges, i.e. Nd = {i : i ∈
N,Eout

i ⊂ Ed} ⊂ N.
Ein

i Edges entering node i, i.e. Ein
i = {e : e = (j, i) ∈ E}.

Eout
i Edges leaving node i, i.e. Eout

i = {e : e = (i, j) ∈ E}.
Esnk Edges entering a sink node, i.e. Esnk = {e : e =

(i, j), Eout
j = ∅}.

We can now formulate a fairly general network optmization
problem. First, the topology can be represented by a
directed graph G = (N,E), with nodes N and edges E
(Ahuja et al., 1993). In the sequel we adopt the notation in
Grimstad et al. (2015). There are three mutually exclusive
sets of nodes, N, which all represent a junction: source
nodes (Nsrc), sink nodes (Nsnk) and intermediate nodes
(Nint). An edge E connects two nodes and represents a
pipe segment such as a well or a flowline, a valve, or
an active element like a pump. A subset of edges, Ed,
represents the on/off valves. These edges have two states:
either open or closed. Thus, discrete edges are used to
route the flow through the network by restricting the flow
through the valve. All other edges (E\Ed) represent pipes.
It is advangeous to define certain utility sets, and certain
requirements need to be placed on the graph structure,
cf. Grimstad et al. (2015). Some utility sets are defined in
Table 1 in order to compactify notation.

Table 2. Variables

Variable Description

pi Pressure at node i ∈ N.
∆pe Pressure drop over edge e = (i, j) ∈ E, e.g. ∆pe =

pi − pj .
qe,r Flow rate of phase r ∈ R on edge e ∈ E.
ye Binary variable associated with an edge e ∈ Ed. The

edge may be open (ye = 1) or closed (ye = 0).

Second, variables are considered. For three-phase flow the
phases are R = {oil, gas,wat}, denoting the hydrocarbon
liquid phase, the hydrocarbon gas phase, and the water
liquid phase, respectively. Alternative formulations like
compositional models may, however, be necessary. The
variables of the problem, listed in Table 2, are given as
mass flow rates or as volumetric flow rates in standard con-
ditions. For the sake of compactness, the phase flow rates
on an edge e ∈ E are collectively denoted qe, that is, with
an oil, gas, and water phase, qe = [qe,oil, qe,gas, qe,wat]

T.
Further, we denote all the flow rates, pressures, and pres-
sure drops in the network with q, p, and ∆p, respectively.
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Fig. 2. A subsea production system

Third, the DPO problem is posed as the following mixed-
integer nonlinear programming (MINLP) problem, de-
noted P, before commenting on its different parts:

maximize
y,q,p,∆p

z =
∑

e∈Esnk

qe,oil (1)

subject to∑
e∈Ein

i

qe,r −
∑

e∈Eout
i

qe,r = 0, ∀r ∈ R, i ∈ Nint (2)

ζi,r(qe, pi) = 0, ∀r ∈ R, i ∈ Nsrc (3)

pi = const., ∀i ∈ Nsnk (4)

∆pe = fe(qe, pi), ∀e ∈ E \Ed (5)

∆pe = pi − pj , ∀e ∈ E \Ed (6)

−Me(1− ye) ≤ pi − pj −∆pe,

Me(1− ye) ≥ pi − pj −∆pe,
∀e ∈ Ed (7)∑

e∈Eout
i

ye ≤ 1, ∀i ∈ Nd (8)

yeq
L
e,r ≤ qe,r ≤ yeqUe,r, ∀r ∈ R, e ∈ Ed (9)

qLe,r ≤ qe,r ≤ qUe,r, ∀r ∈ R, e ∈ E \Ed

(10)

pLi ≤ pi ≤ pUi , ∀i ∈ N
(11)

ye ∈ {0, 1}, ∀e ∈ Ed

(12)∑
e∈Esnk

qe,gas ≤ Cgas, (13)∑
e∈Esnk

qe,wat ≤ Cwat. (14)

The objective function (1), total oil production, is a fairly
general goal in operational settings even though other
elements, in particular cost, could be included.

Constraint (2) is linked to mass balances for each phase,
and included for all the internal nodes in the system.
The upstream and downstream boundary conditions are
covered by constraints (3) and (4). The former inflow con-
dition may be linear or nonlinear depending on the actual
well and describes the mass flowrate from the reservoir into
the well. Common models are linear productivity index
models and nonlinear Vogel curves. Downstream condi-
tions may vary. However, a constant separator pressure is
quite common and is adopted here.

Equations (5) and (6) defines the momentum balance, or
pressure drop, across pipe segments. These are modelled
as a function of inlet flow rates and inlet pressure. For a
discrete edge the momentum balance must be deactivated
when it is closed. This is modelled through a big-M
constraint as shown in (7). Equation (8) simply states that
no more than one discrete edge leaving a node can be open
at a time, i.e. a well stream can at most be routed to one
flowline.

Constraints (9) and (10) limit the flowrate in edges
through upper and lower bounds. These bounds will,
however, always be zero for closed discrete edges since
ye = 0 in that case. This implies that the domain of the
nonlinear function fe(·) should include qe = 0; otherwise,
ye = 0 =⇒ qe = 0 is infeasible. Constraint (11) limits
the pressure in a node. A typical limitation will be a
lower bound on the bottomhole pressure in a well, which
is imposed to prevent damage to the well or near-well
reservoir.
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The two final constraints are linked to capacity constraints
for handling gas and water.

To summarize, the DPO problem as defined here is about
solving P in a robust and predictable way. The next three
section discusses this.

3. A NON-INVASIVE OPTIMIZATION APPROACH

We will start to outline a solution method for DPO by
describing a standard approach where the production net-
work simulator is treated as one black box, i.e. only allow-
ing the optimization algorithm to interrogate the simulator
by requesting outputs based on a set of inputs as shown
in the upper part of Fig. 3. This is referred to as a black-
box method. Referring to the DPO problem this implies
that equations (2)-(5) are embedded in a simulator. A
simulator may in some cases provide gradients in addition
to normal simulator outputs. This outset facilitates a range
of options. First, the use of a proxy model for optimization
could be conceivable in which the proxy models mimic the
simulator’s input output mapping. This is however practi-
cally infeasible for production optimization problems due
to the number of decision variables, which typically runs
into several tens and sometimes more. Second, a derivative
free approach may be used. Nonetheless, limitations as
to the dimension of the decision vector remain, a fact
that limits the applicability of derivative free methods.
If applying such an approach the Mesh-Adaptive Direct
Search algorithm is a reasonable choice since it does not
rely on building a local model at each new iteration point.
It is designed for difficult black box problems such as very
nonsmooth problems and hidden constraints. To elaborate
on the latter, the optimizer may investigate a wide range
of operating points in its search for an optimum. Some
of these points may lie in a region where the simulator
experiences convergence issues, or undefined and erroneous
behaviour. The optimizer may venture to these regions
when P lacks constraints that are hidden in the simulator.
One immediate example is the case where the domain of
the nonlinear function fe(·) should include qe = 0, as
discussed in the previous section. For more information
on derivative free methods we refer to Conn et al. (2009).

4. STRUCTURE EXPLOITATION IN NETWORK
OPTIMIZATION

The DPO problems clearly exhibits structure due to the
topology of the layout of pipes and components. Scru-
tinizing P and recalling that it can be described by a
directed graph with nodes and edges in which nodes relate
to physical components, all nonlinearities are confined
to component models while the couplings between them
are given by linear relationships. Further, discrete routing
decisions are confined to couplings only, i.e. there are no
discrete decision variables in the components themselves.

We will now explore the option of decomposing the sim-
ulator into parts as a means to streamline optimization.
Decomposition facilitates the use of surrogate models as an
alternative to simulators, since the input dimension of the
component model will be much lower than for the complete
network model. As an example the input dimension to
pressure drop models (5) is four. Thus, the use of surrogate

models is indeed feasible and thereby enabling the use
alternative model formats. We will in particular be inter-
ested in basis functions with compact support, i.e. they
are zero outside of a compact set, such as piecewise linear
models (PWL) and B-spline representations. The choice of
component models rests on several considerations.

First, the accuracy and trust region of a model is impor-
tant. High accuracy on a large input set requires more com-
plex proxy models, for instance more break points for PWL
models, than high accuracy on a smaller input set. Bearing
in mind that proxies are generated from simulators there
is a trade off since proxies may be updated or extended
during an optimization run, i.e. we may start off with
proxies that are accurate on limited sets and subsequently
update them based on the progression of the optimization
run. Alternatively, more complex proxies may be generated
prior to an optimization run with no subsequent change in
these.

Second, severe nonlinearities may occur in network opti-
mization, a typical example is pressure drop multiphase
flowlines when flow patterns change. Such nonlinearities,
which even may be discontinuous, always hamper opti-
mization. Thus, there exists a trade off between accuracy
and smoothness when generating proxies. This is easier
handled with small component models rather than for
large network models.

Third, the network optimization problem is transformed
into an MILP for PWL models. This is a distinct ad-
vantage since MILP solvers is a mature technology where
solutions come with a quality certificate. The downside
is that an accurate representation may require an overly
high dimensional MILP. Returning to nonlinear compo-
nent models leave us with an MINLP. However, special
purpose algorithms may be exploited for specific classes
of nonlinear functions as will be shown in a later example
with B-spline functions.

Fourth, the component models may take on different forms
within one application. Some parts may be represented by
a simulator, while others are pre-sampled and available
through tables, and yet other through surrogate models.

Fifth, communication between an optimizer and simula-
tors, i.e. I/O operations, may be time consuming. This
problem is not present for surrogate models. Thus, this
perspective favors proxy models over simulators.

Proxy models also have the favourable property that they
are analytic functions with gradients. As mentioned, this
is not always the case for simulators.

Splitting the network into parts makes the coupling vari-
ables readily available and in particular it is straight-
forward to include bounds on these variables since this
amounts to linear inequality constraints that hardly affects
the run time of the algorithm. As a contrast, such vari-
ables will appear as nonlinear constraints in the standard
approach. The penalty for this availability is of course a
large increase in the number of optimization variables.

An important advantage of using the decomposed model
is the fact that constraints can be relaxed during an
optimization run, which is particularly important for the
equality constraints on the boundary between nodes. This
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means that an MINLP algorithm can relax all decision
variables, in particular the discrete variables related to
routing that appear on the boundaries between compo-
nents.

Splitting the network into parts has two negative implica-
tions. First, as alluded earlier, the number of optimization
variables increases substantially. It is important to note,
however, that the decomposed approach does not intro-
duce any extra integer variables. Second, the communica-
tion between the optimizer and models is more extensive
than for the standard approach, since information about
the structure must be communicated (once) – while tra-
ditionally, communication is limited to the request and
response for evaluating the simulator at a point.

5. EXAMPLE

In this example we test four approaches to production
optimization. This includes the black-box approach and
three variations that exploit the network structure, see
Table 3. To compare the approaches we consider the
maximization of oil production from the system depicted
in Fig. 2. The system is modelled with realistic parameters
for the wells and flowlines, and the incidence matrix is
shown in an Appendix.

Table 3. Optimization approaches

Approach Structural
information

Analytical
derivatives

Routing

Black-box No No No*
Grey-box Yes No** Yes
White-box Yes Yes Yes
Surrogate Yes Yes Yes

* Exhaustive search is required
** Constraints related to structure may have derivatives

Here, the black-box method refers to the traditional use
of a gradient-based solver, where gradients are computed
by finite differences. The manipulated/input variables are
the production choke pressure drops for each well and the
desired pressure rise over the pump. With this approach,
routing is not handled by the solver, that is, the well
routings must be fixed. The output variables are related to
the objective and production capacity constraints, which
become nonlinear functions in the input variables. No
structural information is used in this approach.

The gray-box and white-box approaches exploit struc-
tural information, allowing the solver to include routing
variables and relax them during solving. In the white-
box approach all information is available and analytical
derivatives are supplied to the solver. This approach is
usually not a realistic option since simulator models are
implemented with advanced computer codes that occlude
for analytic derivatives.

Finally, in the surrogate approach structural information
is utilized and unknown functions are approximated with
cubic B-spline surfaces, as illustrated in the lower part of
Fig. 3. The B-spline surfaces are smooth functions with
analytical derivatives readily available for the solver.

The nonconvex problems that result from the approaches
in Table 3 are solved to local optimality. The black-box

Table 4. Results

Approach Precomp. time
(sec)

Run time (sec) Optimality
gap (%)

Black-box 0 301 0
Grey-box 0 114 0
White-box 0 40 0
Surrogate 24 42 0

approach employs Ipopt (Wächter and Biegler, 2006) and
an integer heuristic that exhaustively tries all routing-
feasible routing combinations (there are 4096 routing com-
bination, 729 being routing settings that are feasible ac-
cording to (8)). In the other three approaches Bonmin
(Bonami et al., 2008) is used as a heuristic, which may
accelerate the search by (sometimes wrongfully) disre-
garding branches with poor routing combinations. In the
black- and grey-box approach, finite differences are used
to compute derivatives. The results are recorded in Table
4.

Simulator

Optimizer

Surrogate

Optimizer

Black-box approach

Surrogate approach

Fig. 3. Illustration of the black-box and the surrogate
optimization approaches

All approaches are able to close the optimality gap in this
particular case (the global optimum was certified by a
global solver). The results are clearly in favor of exploiting
structure. As to the three divide and conquer strategies
we may first recall that the white-box approach is an
unrealistic option in most cases. Left with the grey-box and
surrogate methods, the surrogate approach is the preferred
option in this example. The surrogate model requires
an additional 24 seconds for sampling and building the
surrogate models. This is however only done once.
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Delays caused by I/O operations were not considered in
Table 4. We believe the introduction of I/O time delays
would favor the surrogate method. To substantiate this,
in our experience with black-box optimization on real field
cases the distribution of total solution time typically has
been: simulation 90%, I/O operations 5%, and time spent
in the optimizer 5%.

6. DISCUSSION

This discussion section will first address the issues in-
vestigated above before extending it to loosely coupled
networks and subsequently to the reservoir optimization
domain.

6.1 DPO problems

The rationale for applying a divide and conquer strat-
egy is, not unexpectedly, substantiated through the test
case. Thus, there are distinct advantages using such an
approach. This is not surprising since a structure exploita-
tion strategy embeds more system knowledge into the
formulation of the optimization problem. Thus, if one is
able to utilize this in a meaningful manner the expecta-
tion is improved performance. The non-invasive, or black-
box, approach has the advantange that implementation is
easier, in particular in cases where the network model is
implemented in one simulator.

A key decision rests with the use of simulators or surrogate
models in optimizers that exploit structure. There are
essentially three options; use the component simulators as
they are, create surrogate models offline, or a mix in which
the surrogate models are updated when the optimizer
moves outside the trust region of a component model as
proposed in Gunnerud et al. (2013). It is worth noting
that there are always hazards when running a simulator.
This includes communication issues, numerical conver-
gence problems and error messages. Thus, a reasonable
strategy is indeed to avoid simulator evaluations altogether
during an optimization run.

The surrogate approach necessitates the use of a flexible
approximation scheme, in particular the ability to vary
accuracy in different parts of the operating envelope for
each component model, to reduce the need for offline
evaluations. This calls for approximation schemes with
basis functions with compact support, of which PWL and
B-splines are two apparent choices. PWL allows for the
use of powerful MILP solvers. The size of the optimization
problem however may however limit the use of PWL. An
alternative is the use of nonlinear basis functions with a
dedicated solver. Our experience with B-splines coupled to
a tailored, global MINLP solver are excellent (Grimstad
and Sandnes, 2014). This solver, CENSO, accepts non-
linear constraints based on B-splines. The importance of
applying a global solver is debatable since a local solu-
tion usually suffices given that the networks models are
approximations of reality in the first place.

The network formulation allows for nonlinearities in the
nodes only. This is no limitation since a nonlinear coupling,
i.e. a nonlinear edge, between two nodes can be removed
by splitting the edge into two (linear) edges and one node,
and confine the nonlinearities to the node only.

The divide and conquer formulation assumes that discrete
decisions are constrained to the edges only. This limits
the use of discrete variables in the nodes, an option
which can be of interest when modelling for instance
discontinuities. However, as alluded earlier, smoothness in
the (nonlinear) nodes is important to secure robust and
reliable solvers. This is the same problem we obtain when
trying to optimize discrete variables as inputs to black-
box models; the model is then discontinuous and thus
optimization becomes challenging. In the case of PWL
models the binary variables are also part of the model.
Since the model is analytical, however, it is possible to
treat the binary variables as continuous variables while
solving – thus removing the discontinuities.

Problem P is not without challenges and it cannot be
applied to all situations. First, cases where different oil
compositions are produced together present a definite chal-
lenge. In such cases it may be necessary to resort to a
compositional fluid model. This increases the input dimen-
sion of (5) and the need to include specific thermodynamic
models to allow for phenomena like flashing. These facts
complicate the development of proxy models. Extensions
of P are, however, practically feasible. As an example,
Grimstad et al. (2015) extended P with energy models to
model temperature to include gas velocity constraint in
a riser, and applied surrogate models based on B-splines
successfully, even with a global solver.

Second, the discussion so far has treated DPO as a static
problem. Thus, the approach is to re-optimize as fre-
quently as necessary and implement the solution in a
control system operated by the production team. This
strategy relies on well-tuned controllers such that the
recommended operating point is swiftly reached. To elab-
orate, the control logic on the lowest level in Fig. 1 needs
to be well tuned. The dynamics of the production system
is typically much faster than the frequency with which the
DPO is performed. Normally the dominant dynamics of
the production systems is less than one hour while DPO is
performed once or a couple of times a day. In this context
optimization on a static formulation makes sense since
it is much simpler and less error prone than a dynamic
optimization strategy like Model Predictive Control. There
are, however, exceptions. One case occurs when reservoir
dynamics are fast, as in oil reservoir with severe gas coning
or mature shale gas wells. By fast reservoir dynamics we
mean dynamics with dominant time constants in the hours
to one day region. In such cases dynamic optimization does
indeed make sense. Two other situations where dynamic
optimization is an option are when lengthy procedures like
well startup occur and in production systems with very
long flowlines. One example of the latter is offshore gas
condensate production connected through a long flowline
to an onshore LNG plant. In Statoil’s Snøhvit field offhore
northern Norway the dominant dynamics of the pipeline
alone is 8 hours.

Problem P does encompass systems with subsea process-
ing including equipment like subsea separators and pumps,
i.e. active components in addition to valves and manifolds.
Thus, the approach is applicable in these situations pro-
vided static models suffices and the input dimension to
models like (5) is limited. The same hold for downstream
extension to topside facility components.
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6.2 Higher level decomposition

DPO problems can be large, and may be composed of sev-
eral subsystems, as in Fig. 2, where the couplings between
these subsystems are weak. A typical example is systems
where the subsystems are connected only through down-
stream separator pressures and gas and water handling
constraints as defined by (4), (13) and (14) in P. This
structure paves the way for decomposition techniques.

As a means of illustration we inspect Fig. 3 where there
are close links between manifold 1 and 2 while the coupling
to manifold 3 is much weaker. If we assume pressure
control on both inlet separators, which is the normal case,
the only coupling from an optimization point of view are
constraints in the processing facilities, i.e. gas handling and
water handling constraints. Such optimization structures
invite the use of some decomposition technique since there
are only a few global constraints, in this case Lagrangian
relaxation or Dantzig Wolfe decomposition are appropriate
methods. The general idea is to relax global constraints,
and thereby decompose the DPO problem into smaller
sub-problems, which are coordinated by a “master” prob-
lem. An iterative procedure is then used to achieve con-
vergence towards a solution. An efficient solution of the
sub-problems, which may be carried out in parallel, is a
key. Thus, it is important to apply structure exploitation
as discussed in Section 4 to each sub-problem.

Fig. 4. Production system composed of two weakly coupled
subsystems

An application of the above approach is the DPO prob-
lem presented in Gunnerud and Foss (2010) for the Troll
oil field on the Norwegian continental shelf. Each sub-
system was modelled using PWL models and thus each
sub-problem amounted to an MILP. Results indicated a
substantial runtime reduction by applying Lagrangian re-
laxation or Dantzig Wolfe decomposition as compared to a
centralized approach, i.e. solving the complete problem as
one large MILP. Runtime was reduced by 10 to 100 times
for the complete system comprised of more than 50 wells.
These results were achieved without taking advantage of
parallelizing the solution of the sub-problems. As a side
comment it may be added that Dantzig Wolfe decomposi-
tion was deemed the preferred method because of a more
efficient updating algorithm for the Lagrange variables.

6.3 Decomposition in the reservoir optimization domain

This paper has focussed on the DPO problem. However,
it is appropriate to include some remarks on reservoir

optimization, i.e. level 2 in Fig. 1. This is a dynamic
optimization problem where some economic measure is
maximized on a prediction horizon, see Jansen et al. (2008)
and references therein for more details.

The reservoir optimization problem is normally solved
by a single shooting approach in which an optimization
algorithm communicates with a simulator that provides
state variable values and sensitivities, or gradients, on the
prediction horizon in question. Since high fidelity reservoir
models are large constructs with state dimension running
into the thousands or even millions, efficient gradient cal-
culation is critical. Gradients are thus either computed
by an adjoint method or approximated through an en-
semble based method (Jansen et al., 2008; Chen et al.,
2009). A reservoir model rarely has internal structure that
can be exploited analogeous to the DPO problem. One
exception is compartmentalized reservoirs, which are not
treated here. There does, however, exist an opportunity
to decompose the reservoir optimization problem anyway;
along the time axis. This is a feature that is exploited in
multiple shooting, a concept that is well known from the
Model Predictive Control literature (Diehl et al., 2002).
The idea is to divide the prediction horizon into intervals
and add continuity constraints on the state variables where
the intervals connect. This obviously introduces a large
number of new constraints, which seems like an intractable
option in most cases. By using a reduced space approach,
however, this is indeed feasible as shown in a recent pub-
lication (Codas et al., 2015) where it is applied to a two
phase reference case with 18500 active cells and 12 wells.
It should be noted that the multiple shooting algorithm
relies on the fact the continuity constraints need only be
satisfied when the multiple shooting algorithm converges
to its solution.

There are some interesting advantages by decomposition
according to the multiple shooting approach. First, since
the state variables are treated as independent variables,
one may easily enforce bounds on them. This is in con-
trary to the single shooting approach in which state vari-
able constraints will appear as nonlinear constraints. Such
constraints are usually handled by dualizing the nonlin-
ear constraints by applying an Augmented Lagrangian
method. Second, decomposition facilitates parallelization
since the simulators for each time interval can be run
simultaneously. Further, parallel computation can also be
employed at the linear solver level. An obvious downside
of the multiple shooting approach is the large increase in
independent variables.

7. CONCLUSIONS

This paper recommends the use of formulations that ex-
ploit structure for production optimization in oil and gas
systems as compared to a black-box approach. Structure
exploitation improves efficiency and reliability of the solver
and increases flexibility in the formulation of the optimiza-
tion problem. Among the divide and conquer strategies the
surrogate approach where local models use basis functions
with compact support is a preferable alternative in some
cases.
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9. APPENDIX

The incidence matrix S of the network considered in Sec. 5
is illustrated below. The matrix is in R|N|×|E| and specifies
the couplings in the network. Its structure is

S =

[−I 0 0 0
I −I −I 0
0 A B C

]
∈ R18×23 (15)

where I is the identity matrix, I, A,B ∈ R6×6, and
C ∈ R6×5. S has 46 nonzeros elements and 368 zeros.
The sparse structure illustrates that there are potentially
many zeros in an input-output map of a production system
network. Many gradient calculations can be saved by
exploiting this sparsity.
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