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Background
• Most model reduction techniques are projection based methods.

• Proper Orthogonal Decompositions reduce the complexity of sys-

tems with both space and time as independent variables: de-

scribed by PDEs.

• The projection spaces are computed via singular value decompo-

sitions of matrices that have dimension # of finite elements times

# of physical variables.

• We propose a more efficient way of computing bases from multi-

dimensional arrays.

• We demonstrate the procedure by applying it to a heat diffusion

process. However, the underlying mathematics are generic.

Step 1: Snapshot generation

0 = −ρcp
∂w

∂t
+ κx

∂2w

∂x2
+ κy

∂2w

∂y2
. (1)

Here, w(x, y, t) denotes temperature on position (x, y) and time t. Us-

ing spatial and temporal discretization a Finite Element (FE) solution

of this process is computed. The solution data is stored in a three-

dimensional array [[w]] ∈ R
L1×L2×L3, where L1, L2, L3 are the number

of spatial and temporal grid points.
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Figure 1: Snapshots of original data t1 (left) and tL3

Step 2: Computation of Projection Spaces
Projection spaces can be computed by computing a SVD of the three-

dimensional array [[w]] 1 2. The SVD gives a three-dimensional array of

coefficients [[ŵ]] and three matrices U1, U2, U3. The columns of these

matrices contain orthonormal bases for the projection spaces.
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= · ⊗ ⊗U2 U3U1[[ŵ]][[w]]
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Figure 2: Visualization of the SVD of a 3-way array

The columns of U1 and U2 contain the basis functions that will be used

in the model reduction step.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

width (y)length (x) 0

1

2

3

4

0

1

2

3

0

0.05

0.1

0.15

0.2

Figure 3: u
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(right)

Step 3: Model Reduction
Model reduction is carried out by Galerkin projections3. The

spectral expansion of the signal is truncated to wr(x, y, t) =

∑
r1,r2

ij aij(t)u
(i)
1

(x)u
(j)
2

(y), and a Galerkin projection defines the time tra-

jectory of the coefficients aij(t) = [A(t)]ij as a solution of the Ordinary

Differential Equation (ODE)

0 = −ρcp Ȧ + κxFA + κy AP. (2)

Simulations of the reduced order model can be compared with the orig-

inal model:
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Figure 4: Time slice of original data at time t40(left), time slice of reduced model of order (7, 7) at

time t40 (middle) and time slice of absolute error at time t40 (right).

Conclusions
• Considered model reduction for multidimensional systems

• Proposed a method for the computation of empirical projection

spaces using tensor decompositions.

• Generic method, applied to heat diffusion process

• Future work: test the method on more complex examples and com-

pare different tensorial decompositions to assess accuracy, com-

putational effort and reliability.
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