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Abstract: The purpose of this paper is to present an improved version of the time-delay system state 
feedback control design method. Based on the Lyapunov-Krasovskii functional the delayed-
independent stability condition is derived using the linear matrix inequality techniques. The results 
obtained with a numerical example are presented to compare limitations in the system structure. Since 
the presented method is based on the convex optimization techniques it is computationally enough 
efficient.  
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1 INTRODUCTION 

Control systems are used in many industrial applications, where time delays can take a 
deleterious effect on both the stability and the dynamic performance in open and closed-loop 
systems. Therefore the stability and control of the dynamical systems involving time-delayed 
states is a problem of large theoretical and practical interest where intensive activity are done 
to eliminate the fixed time delays, to compensate for the uncertain ones or to develop control 
for the time-delay systems stabilization, especially for uncertain time-delay systems. 

During the last decades, considerable attention has been devoted to the problem of stability 
analysis and controller design for the time-delay systems. The existing stabilization results for 
the time-delay systems can be delay independent or delay-dependent. The delay-dependent 
stabilization is concerned with the size of the delay and usually provides an upper bound of the 
delay such that the closed loop system is stable for any delay less than the upper bound. On the 
other side, the delay-independent stabilization provides such controller, which can stabilize 
given system irrespective of the size of the delay. 

The use of Lyapunov method for the stability analysis of the time delay systems has been ever 
growing subject of interest, starting with the pioneering works of Krasovskii [Krasovskii 1956, 
1963]. Usually now for the stability issue of the time delay systems some modified Lyapunov-
Krasovskii functionals are used (e.g. see [Friedman 2001]) to obtain the delay-independent 
stabilization and the results based on these functionals are applied to controller synthesis and 
observer design. This time-delay independent methodology and the bounded inequality 
techniques are sources of a conservatism that can cause higher norm of the state feedback gain. 
Progres review in this research field can be found e.g. in [Zhong 2006], and the references 
therein. 

The presented LMI approach is based on the Lyapunov-Krasovskii functional to eliminate 
some dead-time dependent terms. Since Lyapunov-Krasovskii functional is used, the sufficient 
conditions for exponential stability can be obtained to set the derivative of this functional 
staying negative along all the system's trajectories. 
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2 PROBLEM STATEMENT 

Through this paper the task is concerned with the computation of the state feedback u(i) which 
control the time-delay linear dynamic system given by the set of equations 

   (1) ( 1) ( ) ( ) ( )di i i h+ = + − +q Fq F q Gu i

i   (2) ( ) ( )i =y Cq

with the initial condition 

 ( ) ( ), , 1, ,0h hθ ϕ θ θ= ∨ ∈ 〈− − +q 〉   (3) 

where , is the set of positive integers, ,k h +∈ + h tΔ  is unknown time delay in general case, 
 is the sampling period, , , and are vectors of the state, input 

and measurable output variables, respectively, given system matrices , 
tΔ ( ) ni ∈q ( ) ri ∈u ( ) mi ∈y

, n n
d

×∈F F n r×∈G , 
 are real matrices. m n×∈C

Problem of the interest is to design asymptotically stable closed-loop system with the linear 
memoryless state feedback controller of the form. 

   (4) ( ) ( )i = −u Kq i

0 0

0⎥ <⎥

where the matrix  is the controller gain matrix. r n×∈K

3 BASIC PRELIMINARIES 

Proposition 1. (Schur Complement) Let Q > , are real matrices of appropriate 
dimensions, then the next inequalities are equivalent 

0 R > 0, S

0 >0⎡ ⎤ ⎡ ⎤> ⇔ ⇔ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

-1 T
-1 T

T
Q S Q - SR S 0 Q - SR S , R >
S R 0 R   (5) 

Proof. Let the linear matrix inequality takes form 

0⎡ ⎤
⎢ ⎥⎣ ⎦

T
Q S

<
S R           (6) 

then using Gauss elimination it yields 

        (7) , det 1⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

-1 -1 T -1

T -1 T
Q S I 0I -SR Q - SR S 0 I -SR=

0 I S -R -R S I 0 R 0 I

and it is evident that this transform doesn‘t changed positivity of (6), and so (7) implies (5). 
This concludes the proof.  

Proposition 2. (Lyapunov-Krasovskii Inequality) The autonomous linear time delay system of 
the form (1) is asymptotically stable if there exists a symmetric positive definite matrix 

such that 0>P

-
-

-

T

T
d

⎡ ⎤
⎢ ∗⎢
⎢ ⎥∗ ∗⎣ ⎦

Q P 0 F P
Q F P

P
         (8) 

Hereafter, *  denotes the symmetric item in a symmetric matrix. 

Proof. Defining Lyapunov-Krasovskii functional candidate as follows 
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1

( ( )) ( ) ( ) ( - ) ( - ) 0
h

j

v i i i i j i j
=

= +∑T Tq q Pq q Qq >  `     (9) 

where , , 0= >TP P 0= >TQ Q , n n×∈P Q . The forward difference along the solution of the  
autonomous system (1) is 

1 1

( ( )) ( ( 1)) ( ( ))

( 1) ( 1) ( ) ( ) ( 1- ) ( 1- ) ( - ) ( - ) 0
h h

j j

v i v i v i

i i i i i j i j i j i j

Δ

= =

= + − =

= + + − + + + − <∑ ∑T T T T

q q q

q Pq q Pq q Qq q Qq
(10) 

1

0 1

( ( )) ( 1) ( 1) - ( ) ( ) ( - ) ( - ) - ( - ) ( - ) 0
h h

j j

v i i i i i i j i j i j i jΔ
−

= =

= + + + <∑ ∑T T T Tq q Pq q Pq q Qq q Qq  (11) 

( ( )) ( 1) ( 1) - ( ) ( ) ( ) ( ) ( - ) ( - )v i i i i i i i i h i hΔ = + + + −T T T Tq q Pq q Pq q Qq q Qq   (12) 

respectively. Therefore, inserting from (1) into (12) gives 

( ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ) ( ) ( - ) ( - ) 0

T
d dv i i i h i i h

i i i i i h i h

Δ = + − + −

− + − <T T T

q Fq F q P Fq F q

q Pq q Qq q Qq

−
 `    (13) 

( )-
( ) ( - ) 0

( - )-

T T
d

T
d d

i
i i j

i j
⎡ ⎤+ ⎡ ⎤

⎡ ⎤ <⎢ ⎥ ⎢ ⎥⎣ ⎦ ∗ ⎣ ⎦⎣ ⎦
T T qF PF P Q F PF

q q
qF PF Q

     (14) 

respectively. It is evident that (14) is negative if the next inequality 

          (15) 
-

0
-

T T
d

T
d d

⎡ ⎤+
<⎢ ∗⎣ ⎦

F PF P Q F PF
F PF Q⎥

<

0T

0<

r n×∈Z

is satified. Thus, (15) can be rewritten as 

-
0

-

T

dT
d

⎡ ⎤⎡ ⎤
+ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥∗⎣ ⎦ ⎣ ⎦

Q P 0 F
P F F

Q F
        (16) 

and using Schur complement property (7) it is possible to write 

1

0 0
- -

T T
T

T
d d dT

d −

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥≥ ⇔ ∗ ≥ ⇔ ∗ ≥⎡ ⎤⎢ ⎥ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥ ⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦ ⎣ ⎦

0 0 F 0 0 F P
F

P F F 0 F 0 F P
F

P P
     (17) 

Combining (16), (17) gives 

-
-

-

T

T
d

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥∗ + ∗⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦ ⎣ ⎦

Q P 0 0 0 0 F P
Q 0 0 F P

0 P
        (18) 

and it is obvious that (18) implies (8). This concludes the proof. 

4 PARAMETER DESIGN  

Theorem 1. For system (1), (2) the sufficient condition for the stable nominal control (4) is that 
there exist positive definite symmetric matrices X > 0, Y > 0,  and a matrix 

such that the following LMIs are satisfied 
, n n×∈X Y
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0TX X= >           (19) 

0T= >Y Y           (20) 

- -
-

-

T T T

T
d

⎡ ⎤
⎢ ∗⎢

∗ ∗⎢ ⎥⎣ ⎦

Y X 0 XF Z G
Y XF

X
0⎥ <⎥

i h

0⎥ <⎥

⎤⎦

0⎥ <⎥

1−

        (21) 

The control law gain matrix is then given as 
1−=K ZX            (22) 

Proof. The linear state feedback control law, defined in (4) gives rise to the closed-loop system 
as follows 

( 1) ( - ) ( ) ( )di i+ = + −q F GK q F q        (23) 

Substituting in (8) results in 

- ( - )
-

-

T

T
d

⎡ ⎤
⎢ ∗⎢
⎢ ⎥∗ ∗⎣ ⎦

Q P 0 F GK P
Q F P

P
        (24) 

Defining the congruence transform matrix 
1 1 1diag − − −⎡= ⎣T P P P          (25) 

and premultiplying (24) from the right and the left side by (25) gives results 
1 1 1 1 1

1 1 1

1

- -
-

-

T T

T
d

− − − − −

− − −

−

⎡ ⎤
⎢ ∗⎢
⎢ ⎥∗ ∗⎣ ⎦

TP QP P 0 P F P K G
P QP P F

P
     (26) 

With notation 
1 1 10 0,− − −> = >P = X , P QP Y KP = Z       (27) 

(26) implies (21). This concludes the proof. 

Remark 1. Analyzing (26) it is evident that Q cannot be chosen to be equal P. Subsequently, if 
Q is not a variable but any given matrix, (26) has to be rewritten as 

1 1 1 1

1

1 1

1

1

- -
-

0

-

T T

T
d

TP P 0 0 P F P K G
Q 0 0 0

0 P P F
Q 0

P

− − − −

−

− −

−

−

⎡ ⎤
⎢ ⎥∗⎢ ⎥

<∗ ∗⎢
⎢ ⎥∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦

⎥

⎥

     (28) 

which implies 

1

1

- -
-

0

-

T T

T
d

TX X 0 0 XF Z G
Q 0 0 0

0 X XF
Q 0

X

−

−

⎡ ⎤
⎢ ⎥∗⎢

<∗ ∗⎢
⎢ ⎥∗ ∗ ∗
⎢ ⎥∗ ∗ ∗ ∗⎣ ⎦

⎥       (29) 
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5 UNIFIED ALGEBRAIC APPROACH  

Theorem 2. For system (1), (2) the sufficient condition for the stable nominal control (3) is that 
there exist positive definite symmetric matrices X > 0, Y > 0, such that the 
following LMIs are satisfied 

, n n×∈X Y

0TX X= >           (30) 

0T= >Y Y           (31) 

- 0
T T

T

⊥

⊥ ⊥

⎡ ⎤
<⎢ ∗⎣ ⎦

Y X XF G
G XG ⎥

⎤

         (32) 

- - 0T
d d+ + <Y X XF F X          (33) 

The control law gain matrix K is then given as a solution of the inequality 
1- - 0
-

T− −

−

⎡ + <⎢ ∗⎣ ⎦

1 T T

1
MR M S MR N K

R ⎥        (34) 

where 

- -
- 0, ,

-

TT

T
d ε

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥

⎤
⎢ ⎥ ⎢= − ∗ + > = =⎢ ⎥

⎥
⎢ ⎥ ⎢∗ ∗ ⎥
⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

3n

Y X 0 XF 0 X
S Y XF I M 0 N

G 0X ⎦
0     (35) 

and 0 , and 0r r×< ∈R ε< ∈  are arbitrary design parameters.   

Proof. Now, with notation (27) inequality (26) can be written as 

[ ]
- -

- -
-

T

T T
d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤∗ + +⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∗ ∗ ⎣ ⎦ ⎣ ⎦⎣ ⎦

T

XQX X 0 XF X 0
XQX XF 0 K 0 0 G 0 K X 0 0

X 0 G
0<

⊥

  (36) 

Defining the orthogonal complement approximation as follows 

= diag

⊥

⊥
⎡ ⎤
⎢ ⎥ ⎡ ⎤= ⎣ ⎦⎢ ⎥
⎣ ⎦

0
G 0 I 0 G

G
        (37) 

where  is the orthogonal complement to G, and premultiplying (36) from the left side by 
(37) and from the right side by its transposition gives 

⊥G

- -0 0

T T
T T

T
T

⊥
⊥

⊥ ⊥
⊥ ⊥

⎡ ⎤ ⎡⎢ ⎥∗ < ⇔ ⎢⎢ ⎥ ∗⎣ ⎦∗ ∗⎣ ⎦

XQX X 0 XF G XQX X XF G0 0
G XGG XG

⎤
<⎥

]

   (38) 

Subsequently defining the orthogonal complement 

[= 

⊥

⊥
⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

X
X 0 0 I

0
I

0

        (39) 

then premultiplying (36) from the left and right side by (39) results in 

- - T
d d+ + <XQX X XF F X         (40) 
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With notation 

10, 0−= > = >XQX Y X P         (41) 

(38), (40) implies (32), (33), respectively.  

Let for S > 0 a matrix K satysfies the inequality 

0T T T+ −MKN N K M S <

<

0− <

⎤

        (42) 

Since there exists a matrix R > 0 such that 

0T T T T T+ − +MKN N K M S N K RKN       (43) 

completing (43) to square it can be obtained 
1 1( ) ( )T T T− − −+ + −T T 1 TMR N K R MR N K MR M S     (44) 

1- - 0
-

T− −

−

⎡ + <⎢ ∗⎣ ⎦

1 T T

1
MR M S MR N K

R ⎥

⎤
⎥
⎥
⎦

]

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

       (45) 

respectively. Thus, using notation (35) inequality (45) implies (34). This concludes the proof. 

6 ILLUSTRATIVE EXAMPLE  

To demonstrate the algorithm properties it was assumed that system is given by (1), (2), where 

-0.0057 0.2255 0.0344 -0.0015 0.0064 -0.1486
-0.4433 1.0287 -0.0979 , 0.0010 -0.0061 -1.0355
-0.0612 0.1643 0.0382 -0.0062 -0.0006 -0.1178

dF F
⎡ ⎤ ⎡
⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎣ ⎦ ⎣
0.0689 0.1177 1 2 10.1714 0.0064 , , 0.11 1 00.0517 0.0338

t sΔG C
⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

     

Applying the Matlab function svd(.), the orthogonal complement were obtained as 

[ 0.2622 0.1806 0.9480G⊥ = − −        

and using Self-Dual-Minimization (SeDuMi) package for Matlab [Paeucelle at all. 2002] the 
control design  problem was solved as feasible with 

3
0.7074 0.3158 0.2559 0.8129 0.3631 0.2940
0.3158 0.1410 0.1142 , 10 0.3631 0.1622 0.1313
0.2559 0.1142 0.0925 0.2940 0.1313 0.1063

X Y −
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   

For that X, Y upon some computation was found    

0 0 0.7074 0.3158 0.2559
0 0 0.3158 0.1410 0.1142
0 0 0.2559 0.1142 0.0925
0 0 0 0 0
0 0 , 0 0
0 0 0 0 0

0.0689 0.1177 0 0 0
0.1714 0.0064 0 0 0
0.0517 0.0338 0 0 0

TM N

− − −⎡ ⎤ ⎡
⎢ ⎥ ⎢− − −
⎢ ⎥ ⎢− − −⎢ ⎥ ⎢
⎢ ⎥ ⎢

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣
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0

0.7066 0.3154 0.2556 0.0760 0.0138 0.0184
0.3154 0.1408 0.1141 0.0339 0.0062 0.0082
0.2556 0.1141 0.00924 0.0275 0.0050 0.0066

0.0008 0.0004 0.0003 0.0371 0.2662 0.0348
0.0004 0.0002 0.0001 0.0165 0.1188S

− − − −
− − − −
− − −

− − − − − −
= − − − − − 0.0155

0.0003 0.0001 0.0001 0.0134 0.0963 0.0126
0.0760 0.0339 0.0275 0.0371 0.0165 0.0134 0.7074 0.3158 0.2599
0.0138 0.0062 0.0050 0.2662 0.1188 0.0963 0.3158 0.1410 0.1142
0.0184 0.0082 0.0066 0.0348 0.

−
− − − − − −
− − − − − −

− − − − − − − − −
− − 0155 0.0126 0.2559 0.1142 0.0925

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − −⎢ ⎥⎣ ⎦
 

0 9 0, 1.3ε εS S I= + > =        

Solving (34) with R = I2 the final result was 

0.0182 0.0081 0.0066
0.0194 0.0087 0.0070K − − −⎡= ⎢− − −⎣ ⎦

⎤
⎥

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

        

0.0022 0.2271 0.0357 0.8995
- 0.4401 1.0302 0.0967 , ( ) 0.1262

0.0596 0.1650 0.0388 0.0411
c cρF F GK F

−⎡ ⎤
⎢ ⎥= = − − =
⎢ ⎥−⎣ ⎦

     

which gives the stable closed-loop eigenvalues spectrum ( )cρ F  lying in the stable unit circle.   

7 CONCLUDING REMARKS 

The method uses the standard LMI numerical optimization procedures to manipulate the 
system feedback gain matrix as the direct design variable. The manipulation is accomplished in 
that manner that produces the desired closed-loop system asymptotical stability. Finally the 
design method is illustrated by a nontrivial example.  
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