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Abstract: In this paper hybrid fuzzy model based predictive control (HFMBPC) is addressed, proposed 
and tested. The proposed hybrid fuzzy convolution model consists of a steady-state fuzzy model and 
a gain independent impulse response model. The proposed model is tested in model based predictive 
control of the concentration control in the chemical reactor, manipulating its flow rate. The paper deals 
with theoretical and practical methodology, offering approach for intelligent fuzzy robust control design 
and its successful application.  
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1 INTRODUCTION AND PRELIMINARIES 

Predictive control has become popular over the past twenty years as a powerful tool in 
feedback control for solving many problems for which other control approaches have been 
proved to be ineffective. Predictive control is a control strategy that is based on the prediction 
of the plant output over the extended horizon in the future, which enables the controller to 
predict future changes of the measurement signal and to base control actions on the prediction. 
The proposed HFMBPC has been received well in process industry. 

2 THE HYBRID FUZZY CONVOLUTION MODEL 

The output of the model can be formulated as (Abonyi et al. 2000) 
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K  is dynamic part of model (the impulse response 

model). The gain independent impulse response model is gi(x2,...,xn), the previous input values 
are u(k-i-1) over N horizon, K is steady-state gain, us and ys are steady-state input and output, 

nxx ,,2 K  are other operating parameters having effects on the steady-state output. 

The convolution is multiplied by steady-state gain 
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2.1 The steady-state part of Hybrid Fuzzy- Neuro Convolution Model (HFNCM) 

The steady state part is described by fuzzy-neuro model. A nonlinear discrete system can be 
expressed by fuzzy-neuro model (ANFIS) with n rules. The i-th rule of the model is described 
as follows (Paulusová, et al. 2008): 
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where n is the number of inputs, x=[x1,...,xn]T is a vector of inputs of the model, Aj,i(xj) is the 
i=1,2,...,Mj –th antecedent fuzzy set referring to the j-th input, where Mj is the number of the 
fuzzy set on the j-th input domain. 

The first element of the input vector is the steady-state input x1=us. 

The output is computed as weighted average of the individual rules’ consequents 
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where the weights 0< iµ <1 are computed as ∏=
=

m
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)(µ , where ∏ is fuzzy operator, usually 

been applied as the min or the product operator and m is number of rules. 
Various types of membership functions were examined in our research. Different membership 
functions were employed for each fuzzy model: triangular, Gaussian, trapezoidal and bell-type 
as shown in Fig. 1.  

The triangular membership functions are defined as follows:  
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where  〉∈ +1,, ,(
jj mjmjj aax . 

The Gaussian membership functions are defined as follows:  
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where aj,i-1, aj,i,  aj,i+1 are the centre, δj,i-1, δj,i,  δj,i+1  the width of the fuzzy sets and  
>∈< +− 1,1, , jj mjmjj aax . 

The trapezoidal membership functions are defined as follows:  
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Figure 1: Membership functions used for the fuzzy model: triangular (a), Gaussian (b), 
trapezoidal (c) and bell-type (d) 
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The bell membership functions are defined as follows:  

   ( ) 1,1,2,

1

1
+− <≤

−
+

= ijjijb

j

jij axa

a
cx

xA  (8) 

 

where 〉∈ +− 1,1, ,(
jmjjmjj aax , and b is usually positive. The importance of each parameter can be 

seen in Fig. 1d. The slope function is equal 
a
b

2
− . 

The gain of the steady-state fuzzy model can be computed as 
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where 
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2.2 Dynamic part of the HFNCM 

The dynamic state part is described by the impulse response model (IRM). Parameters of the 
discrete IRM gi (i=0,…, N, where N is the model horizon) can be easily calculated from the 
input-output data (ui and yi) of the process. 
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In matrix form 
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The parameters are given as follows 

 ( ) yUUUg TT 1−
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3 HYBRID FUZZY-NEURO MODEL BASED PREDICTIVE CONTROLLER 

The nonlinear HFNCM can be easily applied in model based predictive control scheme.  

In most cases, the difference between system outputs and reference trajectory is used in 
combination with a cost function on the control effort. A general objective function is the 
following quadratic form (Paulusová, et al. 2005) 
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Here, r is desired set point, Γu (Γu=γK2) and Γy are weight parameters, determining relative 
importance of different terms in the cost function, u and ∆u are the control signal and its 
increment, respectively. Parameter p represents length of the prediction horizon, m is the length 
of the control horizon. Output predicted by the nonlinear fuzzy model is ŷ(k). 
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 are the step response coefficients and the change on the control variable is 

∆u(k)=u(k)-u(k-1). 
Model predictions along the prediction horizon p are 
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Disturbances are considered to be constant between sample instants  
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where y(k | k) represents the measured value of the process output at time k.  
So 
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Prediction of the process output along the length of the prediction horizon, can be written 
compactly using matrix notation 
 
 )()()(ˆ kfkuKSky +∆=  (18) 

 

Matrix S is called the system’s dynamic matrix (19) (Morari, et al. 1989). 
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By minimizing its objective function (12) the optimal solution is then given 
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In many control applications the desired performance cannot be expressed solely as a trajectory 
following problem. Many practical requirements are more naturally expressed as constraints on 
process variables such as manipulated variable constraints, manipulated variable rate 
constraints or output variable constraints. The solution calls into existence of quadratic 
programming solution of the control problem. 

3.1 Algorithm for the HFCM based control 

The algorithm has the following steps (Abonyi, et al, 1999): 

1. Calculation impulse response model gi from (11), 
2. Calculation of us from ys=y(k), considering the inversion of the fuzzy-neuro model, 
3. Calculation of the value of the steady-state gain K by (9), 
4. Calculation of S by (19) and e by (15), 
5. Calculation of the controller output from the first element of the calculated ∆u vector 
generated from (20).  

4 CASE STUDY AND SIMULATION RESULTS  

4.1 Case study 

The application considered involves an isothermal reactor in which the Van Vusse reaction 
kinetic scheme is carried out. In the following analysis, A is the educt, B the desired product, C 
and D are unwanted byproducts (Paulusová, et al. 2006). 
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From a design perspective the objective is to make k2 and k3 small in comparison to k1 by 
appropriate choice of catalyst and reaction conditions. The concentration of B in the product 
may be controlled by the manipulating the inlet flow rate and/or the reaction temperature. 
The educt flow contains only cyclopentadiene in low concentration, CAf. Assuming constant 
density and an ideal residence time distribution within the reactor, the mass balance equations 
for the relevant concentrations of cyclopentadiene and of the desired product cyclopentanol, CA 
and CB, are as follows: 
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This example has been considered by a number of researchers as a benchmark problem for 
evaluating nonlinear process control algorithm. 
By normalizing the process variables around the following operating point and substituting the 
values for the physical constants, the process model becomes: 
 

 
)()(

))(()(100)(50)(
))(10()(10)(50)(

2

2212

1
2
111

txty
txutxtxtx

txutxtxtx

=
−+−=

−+−−=
&

&

  (23) 

 



International Conference   February 10 - 13, 2010 
CYBERNETICS AND INFORMATICS  VYŠNÁ BOCA, Slovak Republic 
  

7 

where the deviation variable for the concentration of component A is denoted by x1, the 
concentration of component B by x2, and the inlet flow rate by u. 

4.2 Simulation results 

The comparison of time responses of output of HFNCM with nonlinear plant is shown in Fig. 
2. Time responses of the controlled and reference variables under HFNMBPC are shown in 
Fig. 3. 
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Figure 2: Time responses of output from the nonlinear plant and the HFNCM model with 
membership functions triangular (a), Gaussian (b), trapezoidal (c) and bell-type (d) 
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Figure 3: Time responses of the controlled and reference variables under HFNMBPC (m=5, 
p=10, Γy=K, Γu=γK2, γ=1) with membership functions triangular (a), Gaussian (b), 

trapezoidal (c) and bell-type (d) 

5 CONCLUSIONS 

The HFMBPC uses the advantage of fuzzy systems in the representation of the steady-state 
behavior of the system. Other advantage is that it tries to combine knowledge about the system 
in form of a priori knowledge and measured data in the identification of a control relevant 
model. 
Simulation example illustrates the potential offered by the HFNCMBPC. 
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