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Abstract: The paper presents robust controller design for systems with uncertain transport delays. 
Robust PI controllers are designed using approach, which combines the method based on plotting the 
stability boundary locus in the (kp, ki)-plane with the pole-placement method. The approach enables to 
assure robust stability of the closed loop as well as the quality of the control response prescribed by the 
choice of the closed loop poles or the relative damping or the natural undamped frequency of the 
control response.  
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1. INTRODUCTION  

Presence of transport delays in the input-output relations is a common property of many 
technological processes. Plants with transport delays can often not be controlled using usual 
controllers designed without a consideration of a transport delay. Such controllers tend to 
destabilize the closed-loop system. 

There are several approaches for transport delay treatment. One of them is based on using 
transport delay compensators based on Smith predictor, see e.g. Majhi and Atherton (1998). 
The other approach for compensation of transport delay is based on approximation of the 
transport delay term in the transfer function of the controlled processes. After the 
approximation, the modified transfer function of the controlled process is obtained and this 
transfer function does not contain the term representing the transport delay. Then, classical 
approaches to controller design can be used, as e.g. polynomial approach (Dostál et al. (2000) 
and many others) or robust control approach (Zhong (2006) and many others). 

The method for controller design for systems with transport delay and parametric uncertainty is 
presented in this paper. The method combines several known approaches. The term 
representing a transport delay in the transfer function of the controlled system is approximated 
by Pade expansion (Dostál et al. (2000)) at first. The method for robust PI controller design is 
applied for obtaining the robust stability regions for parameters of PI controllers (Tan and Kaya 
(2003), Závacká et al. (2007)). In the last step, the PI controllers from robust stability regions 
are selected using the pole-placement method (Mikleš and Fikar (2008)). 

2. CONTROLLED SYSTEM 

Consider the controlled system in the form of a transfer function 
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where K is the gain, T is the time constant, n is the order of the system and Dmin, Dmax are the 
minimal and maximal transport delays of the system. In this paper, we consider n = 1.  

The transfer function (1), for n = 1, is modified by approximation of the transport delay. The 
term representing the transport delay in (1) is substituted by the linear part of its Pade 
expansion. The transfer function of the controlled system has after the transport delay 
approximation following form 
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with interval polynomials in the numerator and denominator. 

3. ROBUST CONTROLLER SYNTHESIS  

3.1. UDescription of an uncertain system 
Consider a system with real parametric uncertainty described by the transfer function 
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where q is a vector of uncertain parameters and b, a are polynomials in s with coefficients 
which depend on the parameter q. 

An uncertain polynomial 
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is said to have an independent uncertainty structure if each component qi of q enters into only 
one coefficient. 

A family of polynomials 

 ( ){ }QqqsaA ∈= :,   (5) 

is said to be an interval polynomial family if a(s, q) has an independent uncertainty structure, 
each coefficient depends continuously on q and Q  is a box. An interval polynomial family A 
arises from the uncertain polynomials described by a(s, q) with uncertainty bounds | qi |≤ 1 for 
i = 0,…,n. When dealing with an interval family, the shorthand notation 
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may be used with [qi
-, qi

+] denoting the bounding interval for the ith of uncertainty component 
of uncertainty qi. 

 

3.2. Analysis of robust stability  
In order to use the Kharitonov theorem (Barmish (1994)) for robust stability analysis, 
polynomials associated with an interval polynomial family A have to be defined at first. In the 
definition below the polynomials are fixed in the sense that only the bounds qi

- and qi
+ enter 

into the description but not the qi themselves. The number of polynomials is four and they are 
independent on the degree of a(s, q). Associated with the interval polynomial family (6) are 
four fixed Kharitonov polynomials (Barmish (1994)) 
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The interval polynomial family A with invariant degree is robustly stable if and only if its four 
Kharitonov polynomials (7) are stable. 

  

3.3. Description of PI controller synthesis 
The method of a robust PI controller synthesis is based on finding and plotting the stability 
boundary locus in the (kp, ki)-plane and then determining stabilizing PI controllers (Neymark 
(1978), Tan and Kaya (2003)). The method is used to find all parameters of a PI controller, 
which stabilizes a control system with an interval plant family. The stability boundary locus 
divides the parameter plane ( (kp , ki) - plane) into stable and unstable regions. The stable 
region, which contains the values of stabilizing kp and ki parameters can be determined by 
choosing a test point within each region.  

Consider the control system in Fig. 1, where Gs(s) is a controlled process with the transfer 
function (8)  
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and C(s) is a feedback stabilizing PI controller (9) 
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Figure 1:  Control system  

 
According to (7), for the controlled system in the form of the transfer function (8) with interval 
uncertainty, the Kharitonov polynomials Ni(s), i = 1, 2, 3, 4, for the numerator and Dj(s),  j = 1, 

2, 3, 4, for the denominator can be created, as it is seen in (10), (11) 
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Sixteen Kharitonov plants can be obtained using polynomials (10) and (11) for the systems (8). 

The closed loop characteristic equation of the control system from Fig. 1, where e. g.  

 ( )
+−−

−−

++

+
=

01
2

2

01

asasa

bsb
sGS   (12) 

can be written by substituting s = jω as 
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The PI controller can be easily obtained by equating the real and the imaginary parts of the 
characteristic equation (13) to zero, for details see (Závacká et al. (2007)). Equating the real 
and imaginary parts of d(jω) to zero gives following expressions for calculating of kp, ki in the 
dependence on the frequency ω 
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Plotting the dependence ki on kp for a certain range of ω gives the stability boundary locus in 
the (kp, ki)-plane. The stability boundary splits the plane into the stable and unstable regions. 
The parameters of the PI controller are then chosen from stable regions.   

The over described approach is then applied onto all Kharitonov plants and the robust stability 
region is obtained as the intersection of stability regions of all Kharitonov plants (Tan and Kaya 
(2003), Závacká et al. (2007)). 

4. POLE -PLACEMENT METHOD 

The pole-placement control design belongs to the class of well-known analytical methods 
where transfer function of the controlled process is known (Mikleš and Fikar (2008)). In this 
method, only the closed-loop denominator that assures stability is specified. The advantage of 
this approach is its usability for a broad range of systems. If the controller is of PID structure 
then the characteristic equation can be one of the following 

 00 =+ ωs    (15) 
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or the combination of (16) and (17), where ξ is the relative damping, ω0 the natural undamped 
frequency, and – c1 is a closed-loop pole. Specifying suitable values of parameters ξ, ω0, c1 in 
(15)-(17) leads to the controller which can assure the desired quality of the control response. To 
obtain unique solution, the system of equations for calculation of controller parameters has to 
be the system with zero degree of freedom. If higher order characteristic polynomial is 
considered, then any of parameters ξ, ω0 or c1 can be added to unknown variables. 
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5. RESULTS 

5.1.  Application of robust controller synthesis and pole-placement method 
The main aim is to find parameters of PI controller (9) such that the stability of the feedback 
closed loop with the system (8) is assured and at the same time the closed loop response has 
certain quality, which can be prescribed by the choice of closed loop poles, the relative 
damping or the natural undamped frequency.  

The area of all controller parameters, which are able to assure the robust stability of the 
feedback closed loop, is found by the method, which is based on plotting the stability boundary 
locus in the (kp, ki)-plane (Tan, Kaya ( 2003), Závacká et al. (2007), Vaneková et al. (2009)). 

Then the pole-placement method is used to specify those controller parameters, which assure 
the control performance. The close loop characteristic equation for the system (8) and PI 
controller (9) can be express in the following forms 
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and c1 is one pole of the feedback control system, ξ is relative damping and ω0 is the natural 
undamped frequency. The quality of the control response can be assured by the choice of these 
three parameters.  

By comparison of the coefficients in (18) and (19), we obtain the system of equations for 
calculation of PI controller parameters in the form  
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It is clear that the unique solution is obtained when there are three unknown variables in (20). 
Two of them are PI controller parameters and the third is one of c1, ξ  or ω0.  

Presented results were obtained for the choice ξ = 1 and [ ]5600 .;∈ω , and calculated PI 
controller parameters lie in Fig. 2 on the cyan line. The robust stability area for PI controller 
parameters was found as the intersection of stability areas obtained by plotting the stability 
boundary locus in the (kp, ki)-plane for 8 Kharitonov plants obtained for the system (2) and PI 
controller (9) (Závacká et al. (2007). It is clear from Fig. 2 that using the pole-placement 
method leads to the reasonable choice of PI controller parameters.  
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Figure 2:  Designed PI controllers for ξ = 1 
 

Then we used the choice ξ = 1.2, ξ = 0.8 and ξ = 0.5 and calculated PI controller parameters 
are in Fig. 3. From all designed PI controllers we used for simulation experiments controllers 
shown in Tab. 1 and Fig. 3 (blue stars). 

 

5.2. Simulation results 
Robust PI controllers (Tab. 1) designed by the described approach for various systems with 
uncertain transport delay were tested by simulations and by verification of correctness of the 
relative damping.  

For verification of correctness of the relative damping we consider the worst case of transport 
delay (Dmax). In this case, since we know right hand sides in (20), parameters c1, ξ  and ω0 can 
be computed. These values are shown in Tab. 2 for every designed controller. 

Simulations parameters of the system (1) were K = 0.5, T = 2, Dmin = 2, Dmax = 8 and nominal 
value of transport delay was taken as average of Dmin and Dmax, so Dnom = 5. 

Control responses of the process obtained using PI controllers reg1-reg8 (Tab. 1) for three 
different values of transport delay are shown in Figs. 4, 5, 6 and 7. 

Here, w is the setpoint, reg is the controlled output for the minimal (min), maximal (max) and 
nominal (nom) transport delays of the controlled system and for controller taken from Tab. 1, 
respectively. 

The simulation results confirm that the approach leads to the design of robust PI controllers 
which assure both, the robust stability of the feedback closed loop and the robust control 
performance with prescribed quality.  
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Figure 3:  Designed PI controllers  

Table 1: PI controllers 

 kp ki 

reg1 0.424 0.110 
ξ = 1.2 

reg2 0.042 0.058 

reg3 0.426 0.117 
ξ = 1 

reg4 0.042 0.073 

reg5 0.425 0.139 
ξ = 0.8 

reg6 0.040 0.095 

reg7 0.426 0.197 
ξ = 0.5 

reg8 0.041 0.148 

Table 2: Verification of PI controllers 

Controller kp ki ξ ω0 -c1 

reg1 0.424 0.110 1.199 0.180 -0.212 

reg2 0.042 0.058 1.199 0.082 -0.544 

reg3 0.426 0.117 0.995 0.143 -0.360 

reg4 0.042 0.073 1.003 0.090 -0.558 

reg5 0.425 0.139 0.800 0.145 -0.411 

reg6 0.040 0.095 0.798 0.101 -0.578 

reg7 0.426 0.197 0.498 0.159 -0.485 

reg8 0.041 0.148 0.500 0.122 -0.617 
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Figure 4:  Control responses for ξ = 1.2 
 
 

 

Figure 5:  Control responses for ξ = 1 

CONCLUSION 

Robust PI controllers were designed for systems with transport delay via combination of two 
methods, the method for robust PI controller design based on finding the stability region for 
controller parameters and the pole-placement method. The pole-placement method was used 
for the choice of the PI controller from the stability region in such manner that the quality of 
control was achieved. The quality of control response was prescribed by the choice of relative 
damping or natural undamped frequency of the closed loop response. Designed controllers 
were tested by simulation experiments. Obtained results confirm that the proposed approach 
leads to the design of robust controllers that are suitable for control of real processes with 
transport delay and with uncertainty. 
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Figure 6:  Control responses for ξ = 0.8 
 

 

Figure 7:  Control responses for ξ = 0.5 
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