
International Conference
CYBERNETICS AND INFORMATICS

February 10 - 13, 2010
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1 INTRODUCTION AND PRELIMINARIES

Consider the linear system

xk+1 = Axk +Buk +Bddk, k∈ {0,1,2, . . .}

yk = Cxk +Duk +Dddk
(1)

with constraints

xk ∈ X ⊂ R
nx, yk ∈ Y ⊂ R

ny, uk ∈ U ⊂ R
nu, (2)

wherexk note states,yk are measurements,uk are controlled inputs, anddk are disturbances. Further
X,Y,U are polytopes.

In addition we have a “reduced” model

xred
k+1 = Aredxred

k +Breduk +Bred
d dk, k∈ {0,1,2, . . .}

yred
k = Credxred

k +Dreduk +Dred
d dk

(3)

wherexred
k ∈ Rnxred with nxred < nx. The reduced model (3) is assumed to be found by some model re-

duction scheme such as balanced truncation, balanced residualization or optimal Hankel norm reduction
[Skogestad and Postlethwaite, 2005].

In this paper we consider model predictive control (MPC) [Mayne et al., 2000]. The question we want
to answer is:What is the worst-case difference between an MPC using the full model (1) and an MPC
using the reduced model(3)? This question is related to the problem of “closed loop analysis of reduced
order models for use in MPC”.

An important feature of MPC is its possibility to handle constraints. However, if there are no constraints,
several methods exists to analyse the performance of control based on the reduced order model. In time
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domain one may consider measures such as rise-time, settling time, overshoot, decay ratio, steady state
offset and total variance [Skogestad and Postlethwaite, 2005]. In frequency domain one may consider
gain and phase margins but also peaks on sensitivity functions as a more general measure. These methods
are however mostly limited to single input single output systems (SISO). In the general case of a multiple
input multiple output (MIMO) plant we recommend to use robust stability and performance, through the
µ- analysis, as discussed in detail by Skogestad and Postlethwaite [2005].

Hovland et al. [Hovland et al., 2006, Hovland and Gravdahl, 2008] proprose a scheme to use reduced
model in explicit MPC. They perform a two-step procedure to analyse the reduced order controller: First,
they analyse the model reduction using an open loop evaluation of the model mismatch (evaluated by
theH2-norm). Then, they make a table of model order and resulting number of regions, and choose the
model order that gives a satisfactory low number of regions combined with a low model mismatch.

In this paper we evaluate the performance of the reduced-order controller by addressing the following
problem:

max
d∈D

distance(uk,u
red
k )

subject touk = argmin{MPC forumlation with full model}

ured
k = argmin{MPC formulation with reduced model}

(4)

The goal of problem (4) is to find the maximum difference between the full-order controller and the
low-order controller. Note that we do not use an explicit formulation of the controllers, rather we simply
express them as solutions to optimization problems. We willshow that problem (4) can be rewritten as a
mixed-integer linear program (MILP) and solved using standard software.

Remark 1 In this paper we treat the distance between the controllers as ‖uk − ured
k ‖∞. However, we

could also have used difference in outputs, i.e.‖Qy(yk− yred
k )‖∞, or a combination of both. We use the

infinity norm‖ · ‖∞ because then the problem can be reformulated as an MILP.

1.1 Notation and assumptions

We use “full-order controller” to indicate an MPC based on the full model (1) and “low-order controller”
for MPC based on the reduced model (3).

In this paper we follow the normal way of letting the initial statex0 represent the disturbances, i.e. in the
following we do not consider the effect ofBd andCd as they appear in model (1). This is mostly to ease
the presentation, but in general we recommend to keep the disturbancesdk in the problem formulation.

1.2 Organization of the paper

We first review a model reduction technique that we later willuse in an example. This gives a map
xred

k = Tl xk which represents the model reduction. We then review how bilevel optimization problems
can under some assumptions be reformulated to MILP problems, and thereafter show how the linear
quadratic MPC fits into this framework, and finally how we can formulate problem (4) as an MILP.
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2 MODEL REDUCTION BY BALANCED TRUNCATION

We here review model reduction by balanced truncation [Moore, 1981] as an example of a model reduc-
tion scheme that can be analyzed with the proposed method. Wefollow Dones et al. [2010].

Consider a continuous linear system

ẋ = Acx+Bcu, y = Ccx+Dcu

x∈ R
nx, y∈ R

ny, u∈ R
nu.

(5)

The model reduction by balanced truncation consists of two steps: First, we find a balanced representa-
tion of system (5), then we remove the states corresponding to the smallest Hankel singular values of the
balanced representation.

2.1 Balanced representation

The controllability and observability gramians of a linearsystem are defined as

AcWc +WcA
c′ +BcBc′ = 0 (6)

Ac′Wo +WoAc +Cc′Cc = 0 (7)

A balanced representation of system (5) is obtained througha transformation matrixT, such thatW̄c and
W̄o (of the transformed system) are equal. Letz denote the states of the balanced system, i.e.z= Tx. It
can be shown that

W̄c = W̄o = diag(σ1,σ2, . . . ,σnx)

W̄c = TWcT
−1

W̄o = (T−1)′WoT
−1

(8)

whereσi, k= 1,2, . . . ,nx are the Hankel singular values of the balanced representation, ordered according
to

σ1 > σ2 > · · · > σnx ≥ 0.

2.2 Truncation

Let z′ = [z′1 z′2]. In balanced truncation we simply deletez2 from the vector of balanced statesz.

DenoteTl andTr as

T =













Tl
︷ ︸︸ ︷




T11 . . . T1n
...

...
Tñ1 . . . Tñn






...
...

Tn1 . . . Tnn













, T−1 =













T−1
11 . . . T−1

1ñ
...

...
T−1

n1 . . . T−1
nñ






︸ ︷︷ ︸

Tr

. . . T−1
1n
...

. . . T−1
nn








(9)
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We can now express the balanced and truncated result as

ż1 = Tl A
cTr +TlB

cu

ȳ = CcTrz1 +Du,
(10)

and we note that the map from the full state vectorx to the balanced and truncated system (10) is given
by z1 = Tl x.

3 BILEVEL OPTIMIZATION

Here we give an introduction to bilevel optimization and solution methods, following Jones and Morari
[2009]. For more background details the reader is referred to a recent survey [Colson et al., 2005].

Bilevel problems are hierarchical in that the optimizationvariables(y,z) are split into uppery and lower
z parts, with the lower level variables constrained to be an optimal solution to a secondary optimization
problem:

min
y

VU (y,z)

subject toGU(y,z) ≤ 0

z= argmin
z

VL(y,z)

subject toGL(y,z) ≤ 0

(11)

In this paper we will only consider problems where the lower-level problem has an unique optimizer.
Moreover, we will have two low-level problems, one for the full-order controller and one for the low-
order controller.

3.1 Solution methods

If the lower level problem is convex and regular, then it can be replaced by its necessary and sufficient
Karush-Kuhn-Tucker (KKT) conditions, yielding a standardsingle-level optimization problem:

min
y,z,λ

VU(y,z)

subject toGU(y,z) ≤ 0

GL(y,z) ≤ 0

λ ≥ 0

λ ′GL(y,z) = 0

∇zL (y,z,λ ) = 0

(12)

whereL (y,z,λ ) := GL(y,z)+λ ′GL(y,z) is the Lagrangian function associated with the lower-levelprob-
lem. For the special case of linear constraints and a quadratic cost, all constraints of (12) are linear and the
complimentary conditionλ ′GL(y,z) = 0 is a set of disjunctive linear constraints, which can be described
using binary variables, and thus leads to a mixed-integer linear problem.
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4 APPLICATION TO ANALYSIS OF MPC CONTROLLERS

4.1 MPC formulation

Consider the following semi-infinite horizon optimal control problem [Jones and Morari, 2009]:

min
x,u

J(x,u) =
1
2

x′NPxN +
1
2

N−1

∑
i=0

u′iRui +x′iQxi,

subject toxi+1 = Axi +Bui, ∀i = 0, . . . ,N−1,

xi ∈ X, ∀i = 1, . . . ,N−1,

ui ∈ U, ∀i = 0, . . . ,N−1,

xN ∈ XN,

x0 = x.

(13)

HereXN = {x | Hx ≤ h} ⊂ X is a polytopic invariant set for the systemx+ = Ax+ Bµ(x) for some
given control lawµ : R

nx 7→ R
nu. FurtherP∈ R

nx×nx andQ∈ R
nx×nx are positive definite matrices and

R∈ R
nu×nu is a positive semi-definite matrix. We defineX ⊂ R

nx to be the set of statesx for which there
exists a feasible solution to (13).

If u∗(x) is the optimal input sequence of (13) for the statex, andu∗0(x) is the resulting control law, then
stability of the systemx+ = Ax+Bu∗0(x) can be established under the assumption thatVN(x) = x′Px is a
Lyapunov function for the systemx+ = Ax+Bµ(x) and that the decay rate ofVN is greater than the stage
costl(u,x) = u′Ru+x′Qxwithin the setXN.

By usingxk = Akx0+∑k−1
j=0A jBuk−1− j the MPC problem (13) can be rewritten as [Bemporad et al., 2002]:

V(x0) =
1
2

x′0Yx0 +min
U

{
1
2

U ′HU +x′0FU, subject toGU ≤W +Ex0}, (14)

whereU ′ =
[
u′0 u′1 · · · u′N−1

]
.

We want to use (14) as a lower-level problem in bilevel programming. The following equations define
the KKT conditions for this problem:

HU +F ′x0 +G′λ = 0

GU−W−Ex0 ≤ 0

λ ≥ 0

λ ≤ Ms

GU−W−Ex0 ≥−M(1−s)

(15)

Heres∈ {0,1}nW , wherenW is the number of inequality constraints in (14). The two lastequations
in (15) correspond to the complementary conditionλ ′GL(y,z) = 0 in the general bilevel problem, here
described with binary variabless. M is a constant that is large enough such that the solution to (15)
corresponds to the solution of (14). (This is called a “big-M” formulation.)

4.2 First input analysis problem

Let (H full ,F full ,Gfull ,Wfull ,Efull ) correspond to(H,F,G,W,E) in (15) for an MPC using the full-order
model (1) and further let(H red,F red,Gred,Wred,Ered) be the corresponding matrices to the reduced-order
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model (3).

Further we denote KKT(MPCfull
,xfull

0 ) as the set of equations (15) evaluated at(H,F,G,W,E)
= (H full ,F full ,Gfull ,Wfull ,Efull ) andx0 = xfull

0 ∈R
nx. Correspondingly we let KKT(MPCred

,xred
0 ) describe

the KKT-conditions in equations (15) for the reduced order controller, withx0 = xred
0 ∈ R

nred
x .

We define the one-step problem as:

max
x∈X

‖B(U full (1 : nu)−U red(1 : nu))‖∞

subject to KKT(MPCfull
,x)

KKT(MPCred
,Tl x)

(16)

The notationUq(1 : nu), q ∈ {full ,red} means the firstnu elements of the vectorUq. This is the input from
the MPC that is actually implemented in the plant.

The polytopeX is the search space for the MILP. This can either be the set of feasible initial states for
the full-order controller, or a set of initial states that the engineer find interesting.

Using the reformulations show earlier this can be rewrittenas an MILP.

Remark 2 We observe that the objective function renders(16) non-convex due to the termmax‖t‖∞
(where t is a convex function of(u,ured)) . However, the problem may be converted into a mixed integer
linear program (MILP) using a standard technique (e.g. [Löfberg, 2004]), in which we introduce binary
variables ni , pi for each element of t and add the condition that the binary variable pi is one if‖t‖∞ = ti
and ni is one if‖t‖∞ = −ti. The method adds only linear and binary conditions to(16) and therefore the
overall problem remains a MILP [Jones and Morari, 2009].

Remark 3 We evaluate the input difference in the direction B because this is the direction a “wrong”
input (due to the reduced model) will influence the states.

5 EXAMPLE: DISTILLATION

We here consider MPC for “column A” by Skogestad [1997]. Thisis a 82-state nonlinear model which
we linearize around a nominal operating point and discretize with sample timeTs = 1. The model has
two inputs (reflux and boilup) and two output (mole fractionsin the top and bottom of the column). The
model of the column is available on Prof. Skogestads homepage (google “skogestad”).

The physical meaning of inputs and outputs is not important for the purpose of displaying the methods
in this paper, hence we will simply treat them as generic variables

uk ∈ R
2
, yk ∈ R

2
, k = 0,1,2, . . . . (17)

In order to simplify calculations we first reduce the linearized model to 16 states, and we consider this
to be our base case. Using balanced truncation, as describedin section 2, we generate a set of models
consisting of 1 to 15 states.
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Figure 1: Solutions for a set of different reduced order models.
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Figure 2: Closed loop simulation for the full order controller (nfull = 16) and low-order controller with
nred = 6.
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The MPC problem we consider is the following one:

min
u0,...,u7

y′8y8 +
7

∑
i=0

y′iyi +u′iui

subject toxk+1 = Axk +Buk, k = 0,1, . . . ,7

yk = Cxk, k = 0,1, . . . ,7

−1≤ uk ≤ 1, k = 0,1, . . . ,7.

(18)

Here1′ = [1 1]. The only difference between the MPC using full order model and MPC using reduced
order model is the internal model represented by the matrices (A,B,C) and the dimension of the state
vectorxk.

Thereafter we use problem (16) to calculate the maximum difference‖B(ured− ufull )‖∞ applied to the
plant. The search spaceX is given by the box constraint

X =
{

x∈ R
16

∣
∣
∣ ‖x‖∞ ≤ 10

}

. (19)

The resulting differences are shown in figure 1. In figure 2 we show a closed loop simulation for a
reduced controller using 6 internal states together with the controller using 16 states. The system we are
simulating is the 16-state system. We start the simulation from the worst possible initial state, which in
this case was

x0 = 10· [−1 1 1 −1 1 1 −1 1 1 −1 −1 −1 1 1 1 −1]′. (20)

We observe that for this initial point the maximum input difference is 0.0905, which is in agreement with
figure 1. Further, the performance of the two controllers arevery similar in terms of bringing the system
from this initial state to the reference pointx = 0.

We used Yalmip [Löfberg, 2004] under MatlabTM to set up the optimization model andGLPK1 to solve
the problem. For this example, using a PC with 2000 MHz CPU with 2 GB memory, it took about 1-2
seconds to solve each problem.

6 DISCUSSION

Infinity norm We used the infinity norm in the calculation of the differencebetween the full- and the
reduced- order controller. Using this norm we can rewrite the problem as an MILP, and hence renders
the problems solvable. Further this norm should be a naturalnorm in order to evaluate themaximum
difference between two functions, as discussed by Jones andMorari [2009].

Implicit representation of MPC We use the KKT conditions to describe the MPC controllers, asthe
solution to the KKT system contains the optimal input from the MPC controller. An alternative method
could be to find the MPC controllers explicitly by solving a parametric program [Kvasnica et al., 2004].
However, this would be a lot more complicated (need a binary variable for each region in the MILP
formulation), and for the example discussed in this report (16 states with an input horizon of 8) it would
most likely take a very long time even to find an explicit representation of the controller.

1can be found athttp://www.gnu.org/software/glpk/
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Planned activity In the near future we want to investigate different ways of solving this problem, rather
than formulating it as an MILP [Bard, 1998]. In addition we want to extend the method to check trajec-
tories of inputs, rather than only the first input. This can bedone simply by stacking problems on the
type of the “first-input difference” in equation (16).

Perhaps more interesting is that rather than treating the initial state vector as a disturbance, we include
only disturbances that have a physical meaning (i.e. actualdisturbances to the system). This should fit
into the formulation quite easily as long as the disturbances enter linearly as is the case for system (1).

In a recent paper [Manum et al., 2009] we tried to use the same problem as described in this paper in
order to show nominal stability of a low-complexity controller by comparing it to a robust MPC for the
same system. The same methodology could be used to prove stability of MPC with a reduced order
model.

7 CONCLUSIONS

An MILP framework for analysis of closed-loop performance of MPC using reduced order model has
been presented. The method was demonstrated on a 16-state linear system.
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