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Abstract: The input-to-state linearization of a system is usually necessary to consider whenever the 
input-to-output linearization of the system yields a possibly unstable cloosed-loop system. In this work 
a unified approach to the input-to-state linearization of nonlinear systems, both continuous- and 
discrete-time, is suggested. The problem is studied from a uniform standpoint. In that respect methods 
and tools of the so-called pseudo-linear algebra, applied to the algebraic formalism of differential forms, 
play a key role. 
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1 INTRODUCTION 

Many solutions to control problems of continuous- and discrete-time nonlinear systems show 
significant similarities. Usually, behind the similarities lies a mathematical abstraction that 
accommodates both cases. In this paper such an abstraction, called pseudo-linear algebra 
(Bronstein and Petkovšek, 1996; Abramov, Le and Li, 2005), is introduced to unify the 
algebraic formalism of differential one-forms of Conte, Moog and Perdon (2007) with an 
application to input-to-state linearization of nonlinear control systems, both continuous- and 
discrete-time. Though the differential and shift operators have remarkably different properties 
and calculations with differential and shift operators are based on different rules, they both 
accommodate into pseudo-linear algebra as special cases. So, the main contribution of the 
paper is unification. However, besides the conventional shift operator description of the 
discrete-time control systems, this approach is also valid for discrete-time systems described 
via the difference operator that provides a smooth transition from the sampled data algorithms 
to their continuous-time counterparts. Another contribution of the paper is extension. Pseudo-
linear algebra covers not just classical continuous and discrete-time cases, but also q-shift and 
q-difference operators, where the state at time t determines the state at time qt with R∈q . 
Applications employing other types of operators in the control theory can be found in (Guo, 
2005; Anderson and Kadirkamanathan, 2007). For instance, the q-shift operator can be in some 
cases used to model discrete-time systems with the varying sampling period. The sampling 
period may be, for instance, changed based on the availabilty of resources (Albertos, 2007). 
Note that q-shift operators can be also found in quantum mechanics. 

A preliminary discussion concerning the unification of the study of nonlinear control systems 
was given in (Halás and Kotta, 2007). 
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2 ALGEBRAIC SETTING 

In this section an algebraic setting for dealing with properties of different nonlinear control 
systems is constructed. 

2.1 Pseudo-linear algebra 

Pseudo-linear algebra, also known as Ore algebra, is the study of common properties of linear 
ordinary differential, difference, q-difference and other types of operators (Bronstein and 
Petkovšek, 1996; Abramov, Le and Li, 2005). Such operators are expressed in terms of so-
called skew polynomials. We start with introducing the notion of a pseudo-derivation. 

Let K be a field and KK →:σ  an automorphism of K. A map KK →:δ  which satisfies 

 
babaab

baba
)()()(=)(

)()(=)(
δδσδ

δδδ
+

++
  (1) 

is called a pseudo-derivation (or a σ-derivation). 

Obviously, )()/(=)/( baba σσσ  and ))())/(()((=)/( bbbaabba σδδδ −  for Kba ∈,  with 0≠b . 

The notion of a pseudo-derivation unifies the notions of a derivation and various types of 
difference operators (Bronstein and Petkovšek, 1996; Abramov, Le and Li, 2005). The 
following three examples exhaust all the possible pseudo-derivations over a field K: 

• if K1=σ  then (1) is just a rule for a derivation on K and the pair ),( δK  is called a 
differential field, 

• for any automorphism σ and any K∈α , the map )1(= K−σαδα  is a pseudo-derivation. 
By choosing appropriate K∈α  and σ we can specify various types of difference 
operators. For instance, if 1=α  and σ is the automorphism over K  which takes time t 
to 1+t  then K1== 1 −∆ σδ  represents the usual difference operator over K. One can 
easily check that 

ababbaabbababaab −−+−∆+∆∆ )(=))(())()((=)()()(=)( σσσσσ  

• for any automorphism σ  the zero map 0=δ  is a pseudo-derivation. The pair ),( σK  is 
called a difference field in that case. If necessary, one can equivalently reduce it to the 
previous case, i.e. a nontrivial pseudo-derivation, by associating the difference operator 

K1== 1 −∆ σδ . 

Table 1: Basic types of operators 

Case  σ    δ    f(t)  

 differential  K1    
td

d    
t
tf

d
)(d   

shift  1+→ tt    0    1)( +tf   

difference  1+→ tt    K1−σ    
)(1)( tftf −+  

q-shift   qtt →    0    )(qtf  

q-difference  qtt →    K1−σ    )()( tfqtf −  
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Different types of operators can be now simply specified by choosing appropriate σ and δ. 
Some basic types of operators are listed in Table 1. Of course, if needed, one can define more 
exotic operators, as for instance Mahlerian which takes t  to pt . 

Definition 1. A σ-differential field is a triple ),,( δσK  where K  is a field, σ is an 
automorphism of K and δ is a pseudo-derivation.        ■ 

Thus, the σ-differential field unifies the notions of a differential field and a difference field. It 
will be the starting point for constructions used in charactering theoretic properties of various 
nonlinear control systems. 

Definition 2. Let V be a vector space over a field K. A map VV →:θ  is called pseudo-linear if 

 
uauaau

vuvu
)()()(=)(

)()(=)(
δθσθ

θθθ
+

++
  (2) 

for any Ka∈  and Vvu ∈, .        ■ 

In comparison with a pseudo-derivation which unifies the notions of a derivation and various 
types of difference operators, a pseudo-linear map unifies in addition the notion of a shift 
operator. Note that any field K is a vector space itself. Hence, we can consider pseudo-linear 
maps over K assuming that (2) holds for any Kvua ∈,, : 

• if K1=σ  then (2) is a derivation. The pseudo-linear operator being δθ = , 

uauaau )()(=)( δδδ +  

• for any automorphism σ and any K∈α , the map )1(== K−∆ σαδα  is a pseudo-
derivation and the pseudo-linear operator being ∆=θ , 

uauaau )()()(=)( ∆+∆∆ σ  

• if 0=δ  then (2) is a shift operator. Now, the pseudo-linear operator being σθ = , 
)()(=)( uaau σσσ  

Thus, pseudo-linear maps allow us to handle differential, difference and shift structures from a 
uniform standpoint. However, difference and shift operators represent two alternative ways of 
describing discrete-time dynamics. The shift-operator based model can always be transformed 
into the difference-operator domain and vice versa. In particular, this can be done in general 
and the problem can thus always be reduced either to a purely differential case or to a purely 
shift case. 

Remark also that the shift operators are, in general, easier to handle than the difference 
operators. On the other hand, the difference-operator based models are closely linked to the 
continuous-time models in terms of both parameters and structure and improve the numerical 
properties of structure detection algorithms (Anderson and Kadirkamanathan, 2007). 

3 CONTROL SYSTEMS  

In this section we define a wide class of nonlinear control systems. For the sake of simplicity, 
for )(tx  we write just x. In what follows, the symbol 〉〈1x  stands for a pseudo-linear operator: 

)(=1 xx θ〉〈 . It can be a derivation, xx &=1〉〈 , that corresponds to the continuous-time case (see 
also Table 1), a shift, )(=1 xx σ〉〈 , or a difference, ))((=1 xxx −〉〈 σα  with R∈α , that correspond 
to two alternative discrete-time cases. 

The nonlinear control systems considered in this paper are objects of the form 
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)(=

),(=1

xgy
uxfx 〉〈

  (3) 

where the entries of f and g are meromorphic functions, which we think of as elements of the 
quotient field of the ring of analytic functions, and nx R∈ , mu R∈  and py R∈  denote 
respectively state, input and output to the system. 

In constructing an appropriate algebraic setting we follow the lines given in (Conte, Moog and 
Perdon, 2007), or (Aranda-Bricaire, Kotta and Moog, 1996) for the discrete-time counterpart. 
Let K denote now the field of meromorphic functions of variables 0};,{ ≥〉〈 kux k . We assume 
that system (3) is generically submersive, i.e. 

 n
ux
x

K =
),(
)(rank

∂
∂σ  

Under this assumption, σ is an automorphism of K and there exists, up to an isomorphism, a 
unique difference field K* called the inversive closure of K (Cohn, 1965). Here we assume that 
the inversive closure is given and by abuse of notation we use the same symbol K for both. An 
explicit construction follows the same lines as in (Aranda-Bricaire, Kotta and Moog, 1996) and 
(Bartosiewicz, Kotta, Pawluszewicz and Wyrwas, 2007) for the shift operator and the 
difference operator based cases, respectively. Note that if K1=σ , K* = K. 

Let δ  be a pseudo-derivation defined on K. The field K can be endowed with a σ-differential 
structure, determined by system equations (3). In this case the triple ),,( δσK  forms a σ-
differential field. We define a pseudo-linear operator θ, acting on K, separately for derivation, 
shift and difference operators. 

First, if K1=σ  and td/d=δ , a pseudo-linear operator δθ =  and 

 〉〈
〉〈

≥

〉〈

∂
∂

+
∂
∂ ∑∑ k

jk
j

m

k
j

i
i

n

i

k u
u

x
x

ux δϕδϕδϕ

0
1=1=

=}),({  

where ),(= uxfx iiδ  and 〉+〈〉〈 1= k
j

k
j uuδ . 

Second, if 0=δ , a pseudo-linear operator σθ =  and 

 }),({=}),({ 〉〈〉〈 kk uxux σσϕσϕ  

where ),(= uxfxσ  and 〉+〈〉〈 1= kk uuσ . 

Finally, if ∆− :=)1(= Kσαδ  with R∈α , then a pseudo-linear operator ∆=θ  and 

 [ ]}),({}),({=}),({ 〉〈〉〈〉〈 −∆ kkk uxuxux ϕσσϕαϕ  

where K11= +∆
α

σ , ),(= uxfx∆  and 〉+〈〉〈∆ 1= kk uu . 

Next, define the vector space E of one-forms spanned over K by differentials of elements of K; 
that is 
 };d{span= KE K ∈ξξ  

Any element Ev∈  is a vector of the form iii
cv ξ∑=  where only a finite number of ic 's are 

nonzero elements in K. We say that Ev∈  is exact if ϕ=v  for some K∈ϕ  and ϕ is then 
usually referred to as a differential of ϕ. 
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The vector space E can also be endowed with the σ-differential structure determined by the 
system equations (3). However, this time there is no need to define actions separately. Each 
pseudo-linear operator KK →:θ  induces a pseudo-linear operator EE →:θ  as follows 

 [ ]iiii
i

ccvv ξδξθσθ )())()((==)( 1 +∑〉〈   (4) 

The operator θ  commutes with the operator d, ))((d=)d( ϕθϕθ , and reduces to the well-known 
rules 

 [ ]iiii
i

ccv ξδδξδ )()(= +∑  

and 

 ))((= ii
i

cv σξσσ ∑  

for the special cases of continuous-time systems ( K1=σ , td/d== δθ ) and distrecte-time 
systems ( 0=δ , σθ = ), respectively. 

We briefly demonstrate some basic computations in ),,( δσK  and E by the following example. 
Example 1. Consider the nonlinear q-difference system with q = 2. 

 
xy

xuxx
txty

tutxtxtx
=

==
)(=)(

)()(=)()(2 1 ∆− 〉〈

 

The corresponding σ-differential field is ),,( δσK  where σ takes t to 2t and K1= −∆ σ , the 
pseudo-linear operator being ∆=θ . ),,( δσK  has the σ-differential structure given by the 
system equations. If, for instance, 2= xϕ , then 

 2222221 )(=)(=)(== xxxuxxxxx −+−+∆−∆〉〈 σϕϕ  

Also E has σ-differential structure given by the system equations. If, for instance, uxv 2= , then 
uxxxuuuuxxxuuuxxuvv 2))(2(=2))(2(=2)()(2== 11 −++−+∆+∆−∆ 〉〈〉〈 σσ . Or directly by (4), 

xuxuuuxuxuv 〉〈〉〈〉〈 ++∆+∆ 111 2))(2(=)(2))((2= σ  which yields the same result.         ■ 

4 MODELLING, ANALYSIS AND SYNTHESIS PROBLEMS 

Within the algebraic formalism based on differential one-forms the necessary and sufficient 
solvability conditions as well as the solutions have been obtained for different fundamental 
modelling, analysis and synthesis problems (Aranda-Bricaire, Kotta and Moog, 1996; Conte, 
Moog and Perdon, 2007; Kotta, Zinober and Liu, 2001). These solutions are intrinsic and 
coordinate-free. A significant example is offered by the way in which the notion of 
accessibility, static state feedback linearization and state space realizability are dealt with. In 
all cases, a single tool, based on the notion of relative degree, gives the key for carrying on a 
deep analysis and for characterizing relevant dynamical properties. The formalism is based on 
classification of differential forms, related to a control system. Within this algebraic formalism 
the sequence of subspaces is associated to a control system which contains a lot of information 
on structural properties of the system.  

Let }d{span= xX K  and θ be a pseudo-linear map over E. For the sake of simplicity, let 
〉〈kk vv =)(θ  for any Ev∈ . 

Definition 3. The relative degree of a one-form X∈ω  is given by 
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 }},,{span;{min= Xkr k
K ⊂/∈ 〉〈ωω LN         ■ 

Now the sequence of subspaces is defined by induction as follows: 

 
};{span=

}d{span=

1
1

1

1

−
〉〈

− ∈∈ jjKj

K

HHH

xH

ωω
 

Clearly, kH  is the subspace of one-forms which have relative degree greater than or equal to 
k . Furthermore, there exists an integer 0>*k  such that 

∞++
⊃⊃⊃ HHHHH kkk === 211 *** KK  

In what follows we mainly provide a unification of the existing results for continuous- and 
discrete-time cases plus an extension of these results to the difference operator domain using 
the notion of a pseudo-linear operator. Moreover, this approach covers also the less frequent 
cases of q-shift and q-difference based system descriptions. 

4.1 Input-to-state linearization 

Static state feedback linearization is a basic control prolbem that allows to linearize a nonlinear 
system and thereby a use of linear methods. The input-to-state linearization of a system is 
usually necessary to consider whenever the input-to-output linearization of the system yields a 
cloosed-loop system that contains a possibly unstable unobservable subsystem. 

Using the idea of kH  filtration one can easily carry over the results valid for the static state 
feedback linearization problem (Conte, Moog and Perdon, 2007; Aranda-Bricaire, Kotta and 
Moog, 1996). The aim is to find, if possible, a regular static state feedback ),(= vxu ϕ  and a 

state transformation )(= xφξ , where ϕ and φ are meromorphic and m
vK =rank
∂
∂ϕ , such that, in 

the new coordinates, the closed-loop system reads 

 BvA +〉〈 ξξ =1  

where the pair ),( BA  is controllable (in Brunovsky canonical form). 

Theorem 1. System (3) is linearizable by regular static state feedback if and olny if 

• 0=∞H , 

• iH  are completely integrable for any 1≥i .        ■ 

The proofs follow the same line as in (Conte, Moog and Perdon, 2007; Aranda-Bricaire, Kotta 
and Moog, 1996) using the notion of a pseudo-linear map. 

Example 2. Consider the nonlinear system 

 
)()()(=)(1)(

)()()(=)(1)(

2222

2
2111

tutxtxtxtx
tutxtxtxtx

+−−+
+−−+  

which can be modeled either over the σ-differential field ),,( ∆σK  with 1: +→ ttσ , K1= −∆ σ  
and the pseudo-linear operator being ∆=θ , i.e. a difference operator, or over the σ-differential 
field ,0),( σK  with 1: +→ ttσ  and the pseudo-linear operator being σθ = , i.e. a shift operator. 

If the system is modeled over ),,( ∆σK , that is 

 
uxxx
uxxx

222

2
211

=
=

+−∆
+−∆   (5) 
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then the filtration can be computed as 

 
};{span=

}d,d{span=

112

211

HHH
xxH

K

K

∈∆∈ ωω
 

If we consider 2211= xx ααω + , where K∈21 ,αα , then 

 

22222211
2
22211

22221111

2211

)()()2()(=

)()()()(=
)()(=

xuxuxxxuxuxxx

xxxx
xx

αασαασ

αασαασ
ααω

∆+++−+∆+++−

∆+∆+∆+∆
∆+∆∆

 

Now 1H∈∆ω  implies 0=)()( 22
2
21 xx ασασ +  from which )(= 2

1
12 x−− σαα . Note that the system 

is generically submersive and from the system equations 212
1 /=)( xxx−σ . Thus, we get 

 
0=

}dd{span=

3

2
2

1
12

H

x
x
x

xH −K  

However, notice that even if the system is modeled over ,0),( σK , that is 

 
uxx
uxx

22

2
21

=
=

σ
σ   (6) 

one gets the identical accessibility filtration 

 
};{span=

}d,d{span=

112

211

HHH
xxH

K

K

∈∈ σωω
 

This time 

 
)()()(2)(=

)()()()(=

222
2
2221

2211

uxuxuxuxx

xx

+++

+

ασασσω

σασσασσω
 

which implies 0=)()( 22
2
21 xx ασασ +  and we again get )(= 2

1
12 x−− σαα . 

 
0=

}dd{span=

3

2
2

1
12

H

x
x
x

xH K −
 

Since all the subspaces are completely integrable 

 

0=

}d{span=}dd1{span=}dd{span=

}d,d{span=

3

2

1
22

2

1
1

2
2

2

1
12

211

H
x
x

x
x
x

x
x

x
x
x

xH

xxH

KKK

K

−−  

the linearizing output, with relative degree 2 , can be chosen as 21/= xxy f . The corresponding 

state transformation can be found as fy=1ξ , 〉〈1
2 = fyξ  and the linearizing feedback from 

〉〈2= fyv . 

However, note that if the system is modeled over ),,( ∆σK , (5), then 
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v
x
x

xuxy

x
x

xy

x
x

y

f

f

f

=2=

=

=

2

1
22

2

2

1
2

2

1

+−∆

−∆  

from which 

 2
2

1

2
2=

x
x

x
vu −+  

and )/,/(=),( 2122121 xxxxx −ξξ , while if it is modeled over ,0),( σK , (6), then 

 

vuxy

xy
x
x

y

f

f

f

==

=

=

2
2

2

2

1

σ

σ  

from which 

 
2

=
x
vu  

and ),/(=),( 22121 xxxξξ .        ■ 

5 CONCLUSION 

In this paper, a unification and an extension of the algebraic formalism of one-forms were 
discussed for a wide class of nonlinear control systems. In both the unification and the 
extension the pseudo-linear algebra played a key role. Though differential, shift and diffrence 
operators have remarkably different properties, they all accommodate into this mathematical 
abstraction as special cases. Moreover, the suggested framework includes also less 
conventional operators like q-shift and q-difference operators. Pseudo-linear algebra was 
applied to demonstrate that the earlier solutions to input-to-state linearization of continuous- 
and discrete-time cases can be presented in a unified manner and include the earlier solutions 
as the special cases. 
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