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1 INTRODUCTION AND PRELIMINARIES 

During last ten years, development of robust control elementary principles and evolution of 
new robust control methods for different model uncertainty types are visible. Progress in new 
techniques and theories in control of processes with model uncertainty is necessary because of 
performance requirements on control of complex processes containing large number of loops, 
activities coordination of a many agents in hybrid and stochastic control of systems containing 
large plant model uncertainties. Based on theoretical assumptions, modeling and simulation 
methods, an effective approach to the control of processes with strong and undefined 
uncertainties is designed. Such uncertainties are typical for biotechnology processes, chemical 
plants, automobile industry, aviation etc. For such processes is necessary to design robust and 
practical algorithms which ensures the high performance and robust stability using proposed 
mathematical techniques with respect the parametric and unmodelled uncertainties.  Solution to 
such problems is possible using robust predictive methods and „soft-techniques“ which include 
fuzzy sets, neuron networks and genetic algorithms. 

Robust control is used to guarantee stability of plants with parameter changes. The robust 
controller design consists of two steps:  

• analysis of parameter changes and their influence for closed-loop stability, 

• robust control synthesis. 

In hybrid control structures that combine the discrete controller and continuous plant, it is 
difficult to assess the closed-loop stability. One possibility is transformation of the controller 
and the continuous plant to the discrete-time region and specifying requirements for the 
discrete controller design. The problem of the robust controller design can be solved as: 

• Time-optimal robust controller design, 
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• Design of the robust controller based on the pole-placement. 

In both parts of the robust controller design it is possible to evolve from the solution of 
Diophantine equations. 

2 PROBLEM STATEMENT 

Consider the robust control synthesis of a scalar discrete-time control loop. Transfer function of 
the original continuous-time system is described by the transfer function 
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Transfer function of (1) can be converted to its discrete-time counterpart  
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For the plant (2) a discrete-time controller is to be designed in form 
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The corresponding closed-loop characteristic equation is 
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R
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Substituting (3) and (2) in (4) after a simple manipulation yield the characteristic equation 
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Unknown coefficients of the discrete controller can be designed using various methods. In this 
paper robust controller design method based on reflection vectors is used. 

The pole assignment problem is as follows: find a controller ( )zGR
 such that C(z)=e(z) where 

e(z) is a given (target) polynomial of degree k. It is known [8] that when  µ = n – 1, the above 
problem has a solution for arbitrary e(z) whenever the plant has no common pole-zero pairs. In 
general for µ < n – 1 exact attainment of a desired target polynomial e(z) is impossible. 

Let us relax the requirement of attaining the target polynomial e(z) exactly and enlarge the 
target region to a polytope V  in the polynomial space containing the point e representing the 
desired closed-loop characteristic polynomial. Without any restriction we can assume that 

10 == pan
 and deal with monic polynomials C(z), i.e. 10 =α .  

Let us introduce the stability measure as ρ = c
T 

c, where 

 CSc 1−=   (6) 

and S is a matrix of dimensions (n + µ + 1) x (n + µ + 1) representing vertices of the target 
polytope V. For monic polynomials holds 

 1c
1k

1i

i =∑
+

=

  (7) 

where k = n + µ. If all coefficients are positive, i.e. ci > 0, i = 1,..., k + 1, then the point C is 
placed inside the polytope V.  
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The minimum ρ is attained if 
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Then the point C is placed in centre of the polytope V.  

In matrix form we have 

 C = G x  (9) 

where G is the Sylvester matrix of the plant with dimensions ( ) ( )21 ++×+++ υµµ dn  and  x is 

the ( )2++υµ -vector of controller parameters: [ ]T

01 q,,q,1,p,,px KK υµ= . 

 





























































=

−

+

++

−−−−−−−−−−−

−−−+−−−−−

+−−+−−+−−+

−−+−−−+−

+−−+−−+

+−−++−−+

−+−−+

+−+−+

00001000

0000100

..........

000000

00000

0000

..........

10

1

..........

0000

00000

000000

..........

000000

000000

1

1

11

2121

12112

1111

121121

11

1

21

1

1

KK

KK

KK

KK

KK

KK

KK

KK

KK

KK

KK

KK

KK

a

aa

baa

bbaa

bbbbaa

bbbbaaa

bbbbaaaa

bbaa

bba

bb

bb

bb

G

dd

dd

dd

dddd

dddd

dddd

dndnnn

dndnn

dndn

nn

nn

µµυµυµµµ

µµυµυµµµ

µµυµυµµµ

υµυµ

υµυµ

υµυµ

υµυµ

υµυµ

 

Now we can formulate the following control design problem: find a discrete controller ( )zGR
 

such that the closed-loop characteristic polynomial C(z) is placed: 

a. In a stable target polytope V, V)z(C ∈  (to guarantee stability), 

b. As close as possible to a target polynomial e(z), V)z(e ∈ (to guarantee performance). 

Let the polytope V denote the ( ) N1k ×+  matrix composed of coefficient vectors 
jv , Nj ,,1 K=  

corresponding to vertices of the polytope V. 

Then we can formulate the above controller design problem as an optimization task: Find x that 
minimizes the cost function 

 
2

x

TTT

x
1 eGxminGxe2GxGxminJ −=−=   (10) 

subject to the linear constraints 

 ),x(wVxG =   (11) 
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Here w(x) is the vector of weights of the polytope V  vertices to obtain the point C = G x. 

Fulfillment of the latter two constraints (12), (13) guarantees that the point C is indeed located 
inside the polytope V. Then, finding the robust pole-placement controller coefficients 
represents an optimization problem that can be solved using the Matlab Toolbox OPTIM 
(quadprog) with constraints [9]. 

Generally J1 is a kind of distance to the centre of the target polytope V. Is it better to use 
another criterion J2, which measures the distance to the Schur polynomial E(z) 

 ).EGx()EGx()EC()EC(J
TT

2 −−=−−=   (14) 

It is possible to use the weighted combination of J1 and J2 

 10,JJ)1(J 21 ≤≤+−= ααα   (15) 

and to solve the following quadratic programming task 
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Assume the discrete robust controller design task with parametrical uncertainties in system 
description. Let us also assume that coefficients of the discrete-time system transfer functions 
an , ..., a1 and bn , ..., b1 are placed in polytope W with the vertices [ ]jj

n

jj

n

j
bbaad 11 ,,,, KK= : 

 }M,...,1j,d{convW j ==   (17) 

As (9) is linear in system parameters, it is possible to claim that for arbitrary vector of the 
controller coefficients x is the vector of the characteristic polynomial coefficients C(z) placed in 

the polytope A with vertices M1 a,,a K : 

 }M...,,1j,a{convA j ==   (18) 

where a 
j 
= D 

j 
x and D 

j is the Sylvester matrix of dimensions (n + µ + d + 1) x (µ + υ + 2), 
composed of vertices set  d 

j , as in case of the exact model (9). 

 

A) Problem Formulation 

The digital controller [ ]T01 q,,q,1,p,,px KK υµ=  is to be designed such that all its vertices  

a 
j
, j = 1, ..., M are placed inside a stable desired target polytope V.  

This problem can be effectively solved using quadratic programming procedure. It is necessary 
to find the controller x by minimization of the cost function 
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where IM is identity matrix of dimension M, ⊗ is the Kronecker product 

and [ ]T
M

T
1

T_

D,,DD K= . 
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B) Stable Region Computation via Reflection Coefficients 

Polynomials are usually specified by their coefficients or roots. They can be characterized also 
by their reflection coefficients using Schur-Cohn recursion. 

Let Ck(z
-1

) be a monic polynomial of degree k with real coefficients ci∈R, i = 0, ..., k, 

 C(z-1) = 1 + c1 z
-1 + ... + ck z

-k.  (20) 

Reciprocal polynomial )( 1−∗ zCk  of the polynomial )z(C
1

k
−  is defined in [11] as follows 

 k1k
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1
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Reflection coefficients ri, i = 1, ..., k, can be obtained from the polynomial )z(C
1

k
−  using 

backward Levinson recursion [12] 
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where ii cr −=  and ic  is the last coefficient of )( 1−
zCi of degree i. From (22) we obtain in a 

straightforward way: 
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Expressions for polynomial coefficients )( 1
1

−

− zCi  and )( 1−
zCi  result from equations (22,23): 
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The reflection coefficients ri are also known as Schur-Szegö parameters [11], partial correlation 
coefficients [6] or k-parameters [13]. Presented forms and structures were effectively used in 
many applications of signal processing [13] and system identification [6].  A complete 
characterization and classification of polynomials using their reflection coefficients instead of 
roots (zeros) of polynomials is given in [11]. 

The main advantage of using reflection coefficients is that the transformation from reflection to 
polynomial coefficients is very simple. Indeed, according to (23) and (25), polynomial 

coefficients ci depend multilinearly on the reflection coefficients ri. If the coefficients Rci ∈  
are real, then also the reflection coefficients Rri ∈  are real. 

Transformation from reflection coefficients ri, i = 1, ..., k, to polynomial coefficients ci,            i 

= 1, ..., k, is as follows 

 )k(
ii cc = ,   i

)i(
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−
−= ,   i = 1, ..., k;   j = 1, ..., i – 1  (26) 

or in the matrix form 

 ,c)r(RC
)t(=  t = 1, ..., k – 1,  (27) 

where 
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0  is a row vector of zeros. 

Lemma 1.  A linear discrete-time dynamic system is stable if its characteristic polynomial is 
Schur stable, i.e., if all its poles lie inside the unit circle.  

The stability criterion in terms of reflection coefficients is as follows [11]. 

Lemma 2. A polynomial C(z
-1

) has all its roots inside the unit disk if and only if ,1ri <              

i = 1, ..., k. 

A polynomial C(z
-1

) lies on the stability boundary if some ,1ri ±=  i = 1, ..., k. For monic Schur 

polynomials there is a one-to-one correspondence between [ ]T1k c,,cC K=  and [ ] .r,,rr
T

k1 K=  

Stability region in the reflection coefficient space is simply the k-dimensional unit hypercube 
{ }.k,,1i),1,1(rR i K=−∈= . The stability region in the polynomial coefficient space can be 

found starting from the hypercube R. 

 

C) Stable Polytope of Reflection Vectors 

It will be shown that for a family of polynomials the linear cover of the so-called reflection 
vectors is Schur stable. 

Definition 1. The reflection vectors of a Schur stable monic polynomial C(z
-1

) are defined as 
the points on stability boundary in polynomial coefficient space generated by changing a single 
reflection coefficient ir  of the polynomial C(z

-1
). 

Let us denote the positive reflection vectors of  C(z
-1

) as ( ) ,k,,1i,1rC)C(v ii K===+  and the 

negative reflection vectors of C(z
-1

) as ( ) .k,,1i,1rC)C(v ii K=−==−  

The following assertions hold: 

1. every Schur polynomial has 2k reflection vectors )C(vi
+ and ;k,,1i),C(vi K=−  

2. all reflection vectors lie on the stability boundary );1r( v
i ±=  

3. the line segments between reflection vectors )C(vi
+ and )C(vi

− are Schur stable. 

In the following theorem a family of stable polynomials is defined such that the polytope 
generated by reflection vectors of these polynomials is stable. 

Theorem 1. Consider ( ),1,1rC
1

−∈  ( )1,1r
C
k −∈  and 0rr C

1k
C
2 === −K . Then the inner points of the 

polytope V(C) generated by the reflection vectors of the point C 
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 { }k,,1i),C(vconv)C(V i K== ±   (28) 

are Schur stable. 

 

D) Roots of Reflection Vectors 

In this section we study the root placement of reflection vectors. It is useful for selecting a 
stable target simplex to solve the robust output control problem. 

By definition, at least one root of a reflection vector )C(vi  (i.e. root of 

[ ] 







= −−−
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)C(v
1zz)z(V

i1k1
i K ) must lie on the unit circle, and the number of unit circle roots is 

determined by the number i of the reflection vector )C(vi  and the character of the roots (real or 

complex) is determined from the sign of the boundary reflection coefficient ).1r( V
i ±=  

 

E) Robust Controller Design 

A robust controller is to be designed such that the closed-loop characteristic polynomial is 
placed in the stable polytope (linear cover) of reflection vectors. It means that the following 
problems have to be solved: 

1. choice of initial polynomial C(z
-1

) for generating the polytope V(C), 

2. choice of  k + 1 most suitable vertices of V(C) to build a target simplex S, 

3. choice of a target polynomial E(z
-1

). 

In the following section some “thumb rules” are given for choosing a stable target simplex S. 

To choose k + 1 vertices of the target simplex S we use the well known fact that poles with 
positive real parts are preferred to those with negative ones [1]. The positive reflection vectors 

)C(vi
+  with i odd and negative reflection vectors )C(vi

−  with i even are chosen yielding k 
vertices. The (k+1)th vertex of the target simplex S is chosen as the mean of the remaining 
reflection vectors. 

The target polynomial E(z
-1

) of order k is reasonable to be chosen inside the stable polytope of 
reflection vectors V(C). A common choice is E(z

-1
)=C(z

-1
). 

For higher-order polynomials the size of the target simplex S is considerably less than the 
volume of the polytope of reflection vectors V. That is why the above quadratic programming 
method with a preselected target simplex S works only if uncertainties are sufficiently small. 
Otherwise it is reasonable to use some search procedure to find a robust controller such that the 
polytope of closed-loop characteristic polynomial is placed inside the stable polytope of 
reflection vectors V(C). 

3 EXAMPLES  

Consider a system described by the second order transfer function  
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with individual coefficients varying within uncertainty intervals 
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 6.0,1;6.0,8.0;4.0,4;3 010 =∈∈∈ Daab   (30) 

After some modification of (29) we obtain 
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with individual coefficients varying within uncertainty intervals 
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To assess stability, four continuous-time Charitonov transfer functions are considered. They 
have been converted to the discrete region with sampling period T=0.6s: 
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A) Time-optimal controller 

For each of these discrete transfer functions (33) were designed time-optimal controllers by the 
solution of the diofantine equation  

 A(z)P(z) + B(z)Q(z )= C(z)   
   
   (34) 

where the target closed-loop characteristic polynomial by the time-optimal robust controller 
design is: C(z) = 1. 
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Stability analysis based on the designation of the phase and magnitude margin was realized per 
Bode logarithmic-frequency characteristics (Fig.1) for each individual closed-loop with 
appropriate polynomial controller in feedback loop. Found phase margins: 

°=∆ −+ 101ϕ , °=∆ ++ 108ϕ , °−=∆ +− 5.37ϕ , °−=∆ −− 20ϕ                                    (36) 

Based on the absolute value minimization of phase margin min(abs(∆ϕ)) was selected discrete 
polynomial controller −−RG  and later applied in feedback loop with other plants. Selected 
controller did not succeed to control the system (29) in whole range of parameter variety and 
only in case of transfer functions ( )sG −−

 and ( )sG +−
 is the closed-loop stable. 
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Figure 1:  Bode logarithmic-frequency characteristic (closed-loop with controller 
−−RG ) 

 

B) Robust pole-placement algorithm 

One possible way how to design a stable controller is to design it for the plant model with the 
lowest phase margin (the worst case) and apply it in all other plant models.  

Based on the solution of the Diophantine equation the following controller was designed for the 
continuous-time transfer function ( )sG −+

 with the worst phase margin value: 
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with the corresponding control law: 

 ( ) ( ) ( ) )2(19.0)1(84.0)(94.0273.017.1 222 −−−−+−−−−= kykykykukuku   (38) 

The target closed-loop characteristic polynomial according to previous consideration is: 

 )76.01)(71.01)(21.01)(67.01)(86.01()( 11111 −−−−− −−−++= zzzzzzC   (39) 

 

 
Figure 2:  Closed-loop step responses under robust controller 
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Closed-loop step responses under the discrete-time feedback controller (37) and feed-forward 

controllers ( )
6.13

1
)(/)( 111 == −−− zPzSzGFF

 in case of ( )sG −+  and ( )sG ++  transfer functions, 

respectively, and ( )
11.2

11 =−zGFF
 in case of ( )sG +−  and ( )sG −−  transfer functions are 

illustrated in Fig.2. 

 

C) Controller Design via Reflection Coefficients 

Consider the nominal continuous-time transfer function (29) with 8.0,6.0,5.3 010 === aab  

converted to the discrete-time with the sampling period T=0.6s: 
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The task is to design a discrete-time controller (3), υ=µ=2. 

From the transfer function (40) and matrix form of (9) results  
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Let us choose the initial polynomial C(z
-1

) for generating the polytope V(C) as follows 

 ]3.01][3.01][2.01][)2.03.0(1[)( 1111 −−−− ++−±−= zzzzizC   (42) 

with reflection coefficients ,2.01 =r  ,14.02 =r  ,052.03 −=r  ,0069.04 −=r  .00234.05 =r  

Now we can find the reflection vectors )C(vi of the initial polynomial C(z
-1

) leading to the 

matrix form of the target simplex S (vertex polynomial coefficients) 
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S
  (43) 

The discrete-time controller design task for the nominal transfer function (40) has been solved 
via quadratic programming taking α=0.1 in the cost function J (16). 

For the selected target simplex S we have obtained the following discrete-time feedback 
controller 

 ( )
21

21

1

1
1

FB
z00134.0z0425.01

z0366.0z0607.0048.0

)z(P

)z(Q
zG

−−

−−

−

−
−

++

+−
==   (44) 

with the control law 
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( ) ( ) ( ) )2(0366.0)1(0607.0)(048.0200134.010425.0 222 −+−−+−−−−= kykykykukuku   (45) 

Corresponding closed-loop step responses under the feedback controller (44) and feed-forward 

controller ( ) 6.7)(/)( 111 == −−− zPzSzGFF
 in case of ( )sG −+  and ( )sG ++  transfer functions, 

respectively, and ( ) 7.151 =−zGFF
 in case of ( )sG +− and ( )sG −−  transfer functions are in Fig.3. 

 

Figure 3:  Closed-loop step responses under robust controller 

 

D) PID Controller 

The optimal module method is one of the best methods for PID controller design and was 
applied also for solving example. The PID-controller continuous transfer function calculated by 
the optimal module method to the nominal plant (29): 

( ) 







++=

++
= s

ss

ss
sGPID 7052.1

7673.0

1
11299.0

1693.01299.02216.0 2

 (46) 

PID-controller (46) was tested in whole range of the parameter uncertainty variety with 
individual continuous transfer functions (33). Designed PID-controller do not stabilize all 

systems in required quality and stability. In case of −+G transfer function is closed-loop 
unstable.   

4 CONCLUSION 

The paper deals with the development of robust methods based on reflection vectors 
methodology for computation of control law coefficients guaranteeing stability, robustness and 
high performance with respect to parameter uncertainties. Theoretical results were verified on 
the examples for feedback and feedforward control structures. Proposed methods were tested 
for both stable and unstable processes. 

The paper proposes theoretical principles and design methodology of robust discrete-time 
controllers for systems with parametric uncertainties. 
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The illustrative example was solved using quadratic programming for suitably defined cost 
function. Simulation results prove applicability of the proposed robust controller design theory 
for systems with parametric uncertainty. 
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