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Abstract—Fault detection and isolation (FDI) have become one of 

the most important aspects of automobile design. Fault detection 

and isolation for engine open loop system was investigated in 

many research. In fact, the simulation results obtained from 

engine open loop system do not reflect the real situation for 

automotive engine. In the practice the engine works as closed- 

loop control system. In this paper, a new FDI scheme is 

developed for automotive engines under closed-loop control 

system. Test the method using closed-loop system has been done. 

The method uses an independent radial basis function (RBF) 

neural network model to model engine dynamics, and the 

modeling errors are used to form the basis for residual 

generation. Furthermore, another RBF network is used as a fault 

classifier to isolate occurred fault from other possible faults in the 

system. The performance of the developed scheme is assessed 

using an engine benchmark, the Mean Value Engine Model 

(MVEM) with Matlab/Simulink. Six faults have been simulated 

on the MVEM, including four sensor faults, one component fault 

and one actuator fault. The simulation results show that all the 

simulated faults can be clearly detected and isolated in dynamic 

conditions throughout the engine operating range. 
 

Keywords: Automotive engines under closed-loop control, 

independent RBF model, RBF neural network, fault detection, fault 
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I. INTRODUCTION  

A fault is any type of malfunction of components that may 
happen in a system and this fault will degrade the system 
performance. Fault detection is the program which informs us 
that something wrong in the system and needs to be repaired. 
Also, fault isolation is way to determine which fault occurs 
among the possible faults. To detect faults we usually compare 
the outputs of the real system which is in this paper the 
MVEM, and the outputs of a neural network model of the 
engine. Rolf Isermann has proposed Model-based fault-
detection and diagnosis methods for some technical processes 
[1]. On-line sensor fault detection, isolation, and 
accommodation in automotive engines had been studied by 
Domenico Capriglione [2]. Fault detection and isolation for 
MVEM open loop control system were achieved in previous 
paper of the authors [3]. However, in the practice the engine 
does not work as an open loop control system. Automotive 
engine works under close loop control system with feedback 
control. Fault detection and isolation using close loop system is 

quite different comparing with open loop system. The main 
points are: fault detection and isolation is much more difficult 
than using open loop system. The reason is the process outputs 
in close loop system will be fed back and this will affect the 
sensor faults. Secondly, in MVEM open loop system, Air fuel 
ratio (AFR) was not controlled at the 14.7, because the feature 
of feed-back did not use in the open loop control system. In this 
paper, a new fault detection and isolation method will be 
implemented by using MVEM when this model is under close 
loop control system. An independent RBFNN model is used to 
model a dynamic system using RAS throttle angle as an input. 
Feed-back (FB) and feed-forward (FF) control methods will be 
applied to the MVEM. The K-means clustering algorithm is 
used to choose the centres of RBFFNN. Recursive least squares 
(RLS) algorithm is used to update for each new sample the 
parameter matrix W.       

II. CONTROL STRUCTURE FOR MVEM 

Fig. 1 shows the Simulink model of the automatic control 
loop for the MVEM including feed-forward and feed-back 
controllers. Where the MVEM control input u is the injected 
fuel mass mfi and the disturbance input Ø is the throttle angle 
position. The feed-forward controller that correlates the steady 
state value between the MVEM control input mfi and the 
disturbance Ø will be used in the feed-forward path. In order to 
achieve better transient response, feed-forward and feed-back 
controllers will be designed as following.  

A. FF controller design 

The feed-forward controller will be implemented by look-
up table configuration. The data of this table were determined 
from the MVEM. Firstly, throttle angle position value have 
been given to the MVEM starting from 20 to 60 degree by step 
5 degree in order to cover 9 cases, secondly, the gain k has 
been changed for each case to adjust the air fuel ratio equal to 
14.7. Finally, the suitable corresponding injected fuel mass can 
be determined for each throttle angle value by using (1).  
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Figure 1.  Simulink model for the automatic control loop for the MVEM 

including feed-forward and feedback controllers 

B. PID controller design 

In general, the transfer function of PID is illustrated in (2), 

where, Kp, Ki and Kd are proportional, integral and differential 

gains respectively.   
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Where: 

 Ti: Integral time. 

 Td: Derivative time.   

In order to find out the PID controller parameters (Kp, Ki 
and Kd), many numerous tuning rules for PID controller can be 
found in the literature. The process of selecting the controller 
parameters to meet given performance specification is known 
as controller tuning. The rules for determining values of the Kp, 
Ti and Td based on the transient response characteristics of 
given plant have been proposed by Zigler and Nichols [4]. All 
the PID parameters were determined by using the Matlab 
software R2009a. Equation 5 shows the transfer function of the 
PID controller after calculate all its parameters. 
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III. EVALUATION OF CLOSED LOOP CONTROL SYSTEM 

In order to evaluate the MVEM under close loop control 
system, a set of signal was used for the throttle angle position 

to obtain a representative set of input data.The range of this 
excitation signals was bounded between 20 and 60 degrees. 
This almost covers the whole throttle angle position in normal 
operation condition. The outputs of the PID and feed forward 
controllers will be used as a second input of the MVEM (see 
Fig. 1). Fig. 2(a ,b) illustrate the input signal of throttle angle 
position and the AFR output response of the MVEM close loop 
control obtained from the block diagram shown in Fig. 1. The 
AFR is to be controlled at 14.7. From the Fig. 2 it can be seen 
that the PID controller has good performance and the obtained 
results were very accurate, therefore the AFR has been 
controlled at 14.7.  

IV. ENGINE MODELING 

The first step in the engine modeling by using RBFNN is 
the generation of a suitable training RAS data set of throttle 
angle position and setpoint of AFR. As the training data will 
influence the accuracy of the neural network modeling 
performance, the objective of experiment design on training 
data is to make the measured data become maximally 
informative, subject to constraints that may be at hand. As 
mentioned above, a set of random amplitude signals (RAS) 
were designed for the throttle angle position and AFR setpoint 
to obtain a representative set of input data of MVEM close 
loop. The sample time of 0.02 sec was used. The second step is 
to determine the input variables of the RBF model. The SI 
engine to be modeled has two input variables: throttle angle 
and the outputs of the PID and feed forward controller which is 
fuel flow rate, and four outputs: air manifold temperature, air 
manifold pressure, crank shaft rotary speed and air fuel ratio. 
The network input that generated the smallest modeling errors 
was selected, and has first-order for the two process inputs and 
third order for process output. As selected above, the RBF 
model has 16 inputs and 4 outputs. The hidden layer nodes 
have been selected as 15. Before the training, 15 centres were 
chosen using the K-means clustering algorithm, and the width 
σ was chosen using the p-nearest-neighbours algorithm. All 
Gaussian functions in the 15 hidden layer nodes used the same 
width. For training the weights W the recursive least squares 
algorithm [5] was applied and the following initial values were 
used: µ= 0.98, w (0) =1.0×10

-6
×U (nh×4), P(0)=1.0×10

8
×I 

(nh), where µ is the forgetting factor, I is an identity matrix and 
U is the matrix with all element unity, nh is the number of 
hidden layer nodes. Totally a data set with 7000 samples was 
collected from the MVEM. Before training and testing, the raw 
data is scaled linearly into the range of [0 1]. Fig. 3 show the 
model training results of the last 500 samples in the training 
data set and the first 500 samples in the test data set. 

 

 
(a) 
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u=mfi 

432



 
(b) 

Figure 2.  (a) the input signal of throttle angle position, (b) the AFR output 

response of the MVEM control loop 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.  ,a,b,c and d. The simulation results of the speed, pressure, 

temperature and air fuel ratio engine model output and the RBFNN s output 

respectively 

From Fig. 3, it can be seen that there is a good match 
between the two outputs with a very small error, in general. 
The modeling error of the training data set is smaller than the 
test data set. The mean absolute error (MAE) index is used to 
evaluate the modeling effects. For this model the MAE values 
of crankshaft speed, manifold pressure, manifold temperature 
and air fuel ratio are 0.0014, 0.0061, 0.0031 and 0.0031 
respectively.  

 

V. SIMULATING FAULTS 

Before the developed method is tested on a real engine with 
real faults, it was tested in this research on the nonlinear 
simulation of SI engines, the MVEM with different faults 
simulated on it. One component fault, one actuator fault and 
four sensor faults with different levels of intensity have been 
investigated as practical examples of spark ignition (SI) engine 
faults. The component fault is air leakage in the intake 
manifold. The actuator fault is a malfunction of the fuel 

injector. The four sensor faults are malfunction of the intake 
manifold pressure sensor, manifold temperature sensor, crank 
shaft speed sensor and air fuel ratio sensor. Details of the 
simulation of these faults are described as follows. 

A. Component fault 

Equation (6) of the manifold pressure [6] is modified to (7) 
in order to collect the engine data subjected to the air leakage 
fault. 
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where ip  is the absolute manifold pressure (bar), atm  is 

the air mass flow rate past throttle plate (kg/sec), apm  is the air 

mass flow rate into the intake port (kg/sec), EGRm  is the EGR 

mass flow rate (kg/sec). The added term is used to simulate the 
leakage from the air manifold, which is subtracted to increase 

the air outflow from the intake manifold.  0l  represents no 

air leak in the intake manifold.  The air leakage level is 
simulated as 20% of total air intake in the intake manifold. This 
fault occurs from the sample number 3750~ 3850 in the faulty 
data as shown in Fig.4, and was simulated by changing the 
Simulink model of the MVEM.  

 

B. Actuator fault 

For SI engines, the target is to achieve an air–fuel mixture 
with a ratio of 14.7 kg air to 1 kg fuel. This means the normal 
value of air fuel ratio is 14.7. Because any mixture less than 
14.7 to 1 is considered to be a rich mixture, any more than 14.7 
to 1 is a lean mixture. Lean mixture causes the efficiency of the 
engine reduced, while rich mixture will cause emission 
increased. The fuel injector is controlled by the controller with 
correct amount of fuel. If the fuel injector has any fault the 
injected fuel amount will not be correct and affect the air/fuel 
ratio. Here, the malfunction of the fuel inject is simulated by 
reducing the injected fuel amount of 25% of the total fuel mass 
flow rate  between the sample number 2550 and 2650 as shown 
in Fig.4. This fault is also simulated by changing the Simulink 
model of the MVEM. 

37500 750 850 1350 1450 1950 2050 2550 2650 3150 3250 

Samples

 Speed 

faults

 Air leak 

faults
 Fuel mass flow 

faults
Temperature 

faults

Pressure 

faults

3850 4850

 Air fuel ratio 

faults

 

Figure 4.  Distribution of the simulated faults 
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C. Sensor fault 

The four sensor faults considered are (10, 15, 10 and 20) % 
changes superimposed on the outputs of crankshaft speed, 
manifold pressure, and temperature and air fuel ratio sensors 
respectively. These faults are simulated from sample numbers 
750 to 850, 1350 to 1450, 1950 to 2050 and 2550 to 2650 
respectively as shown in Fig.4. The faulty data for the sensors 
is generated using multiplying factors (MFs) of 1.1, 1.1, 1.15 
and 1.2 for the above over-reading faults respectively. Faulty 
data are generated by the Modified MVEM with throttle angle 
at different values between 20

o
 and 60

o
 for all the fault 

conditions. The 6 states with their multiplying factors (MFs) 
are given in table I. The sample time is chosen as 0.02 sec. 

VI. FAULT DETECTION 

Fig.5 shows the information flow for the fault detection 

and isolation. Firstly, the 7000 samples data set of random 

amplitude sequence for throttle angle in the proper range and 

the outputs of the PID and feed forward controllers are fed 

into the MVEM under close loop control system. The 

collected four engine outputs together with the two inputs as 

well as their delayed values are used to train the RBF model. 

After training, all the six faults are simulated to the MVEM. 

Then, with another 4850 set of square signals of throttle angle 

position (see Fig. 6) and fuel flow which is output of PID and 

feed forward controller (see Fig. 7) fed into the MVEM under 

close loop control system, the model prediction error and the 

filtered residual are generated for fault detection. With the six 

faults simulated from samples 750 to 3850 as shown in 

Fig.4.After a low-pass filter is used the filtered prediction 

errors are shown in Fig.8 (b, c, d & e). The first 500 samples 

of data set which mean the beginning 10 second of engine 

operation has been ignored because contain noise signals. The 

first filtered model prediction error of air fuel ratio is shown in 

Fig.8, b. The second, third and fourth for air manifold 

temperature, pressure and engine speed are showed in 

Figs.8(c, d, e) respectively. In these Figs. the samples 0 to 750 

are data without faults. Including them is to show the 

prediction error is under the selected threshold in ―no fault 

case‖. Now it is evident that all simulated faults have a 

significant reflection on the model prediction errors. A 

threshold is chosen for each prediction error and is also 

displayed in these Figs. Moreover, Fig. 8, f shows the residual 

error (re) which is generated by (8). 

 

                      2

222

tepe
nere    (8)   

          
Where en, ep and et are the error vectors of the speed, pressure 
and temperature respectively between the engine model and the 
RBF neural network. 

TABLE I.  THE 6 FAULTS STATES AND MULTIPLYING FACTORS 

No Fault Name multiplying factors (MFs) 

1 Air Leak 20%  

2 Injected fuel mass flow 25%  

3 Speed sensor 10% over reading 1.1 

4 Pressure sensor 15% over reading 1.15 

5 Temp. sensor 10% over reading 1.1 

6 Air fuel ratio 20% over reading 1.25 
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Figure 5.  The information flow for the fault detection and isolation 

 
Figure 6.  Square signals of throttle angle position  

 
Figure 7.  fuel flow rate (output of PID and feed forward controllers)  

 
(a) 

 
(b) 
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(c) 

 

(d) 

 
(e) 

 
(f) 

Figure 8.   (a)simulated faults, (b), (c) , (d) and (e) Filtered model prediction 

error of air fuel ratio, air manifold temperature, air manifold pressure and 

engine speed , (f) Filtered residual  

VII. FAULT ISOLATION 

 As have been seen in Fig.8, f, though all simulated faults 
cause a significant deviation in the residual, this can be used to 
detect fault but cannot be used to isolate fault. When a fault 
occurs, only its associated output of the fault diagnosis system 
has a reflection, while all the other outputs should be 
insensitive to this fault, then the fault can be isolated from the 
other possible faults. In this research there are 6 possible faults 
but only four modeling errors. It can be concluded from Fig.8 
that if only the first model output (air fuel ratio) goes over the 
threshold while the other three outputs remain under the 
thresholds, then it must be air fuel ratio sensor has fault. If 
second model output (temperature) goes over the threshold 
while the other three outputs remain under the thresholds, then 
it must be temperature sensor has fault. Similarly, if only the 
third model output (pressure) goes over the threshold while the 
other three outputs remain under the thresholds, then it must be 
the pressure sensor has fault. Moreover, if only the fourth 
model output (speed) goes over the threshold while the other 
three outputs remain under the thresholds, then it must be the 
speed sensor has fault. If both the first model output (air fuel 
ratio) and the forth model output (speed) go over the thresholds 
while the other two outputs remain under the thresholds, then it 
must be the fuel injector has fault. Finally, If the first, second 
and third model outputs go over the thresholds while the fourth 
output remain under the threshold, then it must be the air leak 
occurs. Therefore, to achieve a clear isolation among all 
possible faults, another RBF network is employed as a fault 

classifier. The classifier has four inputs each receiving one of 
the four modeling errors, and has seven outputs with one 
representing ―no fault case‖ and the other six representing the 
six different faults. The classifier is trained in the following 
way. Collect 7 sets of data with first set without fault and the 
other six sets each with one fault only. For each data set of the 
seven, the target of the training for the output corresponding to 
the contained fault is set to ―1‖, while the targets for the other 
outputs set to ―0‖. Totally 4850 RAS data samples were 
collected with first 750 without fault and each set of 600 
samples with one of the five faults, the last sixth fault occurred 
during the last set of 1100 samples. These data are fed into the 
new RBF model and the generated four modeling errors are fed 
into the RBF classifier to train it, with the targets given as 
described above. After training, the classifier is tested with the 
similar arrangement of data, totally 4850 data samples which 
are the modeling errors obtained from the RBF of fault 
detection and MVEM under close loop control system (see Fig. 
8, b, c, d and e).  The first 750 samples are fault-free, followed 
by six data sets. The first five data sets have 600 samples and 
having a single fault, the sixth data set has 1100 samples and 
has the last fault. Between any two of these six faulty data sets 
insert 500 fault-free samples and the final 1000 samples are 
fault-free, so that the residual rising time and disappearing time 
can be observed. The data samples with associated fault types 
are listed in Table II. Similar to the first RBF network, the 
centres and widths are also selected using the K-means 
clustering algorithm and the P-nearest centres method 
respectively. The network weights are trained using the 
recursive Least Squares algorithm with its parameters set as µ= 
1.0, w (0) =1.0×10

-6
×U (nh×6), P (0) =1.0×105×I (nh). The 

number of the hidden layer nodes was tried several numbers 
and the one giving minimum training error was chosen and was 
250. Figs. 9~14 show the test result after filtering. The isolation 
thresholds are chosen as shown in the Figs. 

TABLE II.   DATA SAMPLES AND FAULT TYPES 

Data 

samples 

Fault types 

1 ~ 750 No fault 

751 ~ 850 Speed sensor fault 

801 ~ 1350 No fault 

1351 ~ 1450 Pressure sensor fault 

1451 ~ 1950 No fault 

1951 ~ 2050 Temperature sensor fault 

2051 ~ 2550 No fault 

2551 ~ 2650 Fuel injector fault  

2651 ~ 3150 No fault 

3151 ~ 3250 Air fuel ratio fault 

3251 ~ 3750 No fault 

3751~3850 Air leak fault  

3851~4850 No fault 

 

 
Figure 9.  Filtered first output of fault classifier 
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Figure 10.  Filtered second output of fault classifier 

         

Figure 11.  Filtered third output of fault classifier 

 
Figure 12.  Filtered forth output of fault classifier 

          

Figure 13.  Filtered fifth output of fault classifier 

 
Figure 14.  Filtered sixth output of fault classifier 

VIII. DISCUSSION OF SIMULATION RESULTS 

A.  Training the Neural Network model. 

The simulation results of training and testing by using 15 
hidden nodes were very good and in general, a good prediction 
between the engine model output and the RBF neural network 
output was achieved. From Fig. 3, it can be seen that the mean 
absolute error between the engine speed output and the 
RBFNN is very small.  

B. Detection of the Sensor, Component and Actuator Faults. 

The Fig. 8 (b, c, d and e) show the test results of the fault 
detection of air fuel ratio/fuel flow/leakage, temperature/air 
leak, pressure/air leak, and speed/fuel injection respectively 
after filtering with 15 hidden nodes. It can be seen from Figs. 
after filtering operation that all kind of faults were detected 

clearly. The error values were between 0.05 and -0.1 except the 
samples in which faults occur. The detection thresholds were 
chosen as 0.09 for crankshaft speed / fuel injection, (- 
0.01/+0.08) for manifold pressure/air leak, 0.05 for manifold 
temperature/air leak and (0/0.06) for air fuel ratio. 

C. Isolation of the Sensor, Component and Actuator Faults. 

In this section, another RBFNN called neural classifier 
were used in order to isolate all kinds of the faults. This neural 
was received error signals between the MVEM and the 
RBFNN model outputs. 50, 150 and 250 hidden nodes are used 
in order to try to obtain good simulation results. From the Figs. 
of the results, we found 250 hidden nodes after filtering 
operation were the best case and the simulated faults can be 
clearly isolated (see Figs. 9~14). The isolation thresholds are 
chosen as shown in the Figs. in case 250 hidden nodes. 

IX. CONCLUSIONS 

In this research, the MVEM under close loop control 
including feed-forward and feed-back controllers was used. 
Look up table has been used as a feed-forward controller and 
PID used as feed-back controller.  The data of the Look up 
table were determined by using the MVEM and the data of PID 
were calculated by Zigler and Nichols methods by using the 
Matlab software R2009a. The AFR output response of the 
MVEM close loop control was controlled at 14.7. Four sensor 
faults (intake manifold pressure, temperature, crankshaft speed 
and air fuel ratio), one component fault (leakage in the intake 
manifold) and one actuator fault (injected fuel mass flow) have 
been simulated. Two RBFNNs were used, the first one to 
model engine dynamics and the second one to isolate the 
sensor faults, component fault and actuator fault from the 
modeling errors. By using p – Nearest Neighbours method and 
K-means algorithm the width in hidden layer nodes of the RBF 
neural network σ and the centres c are calculated for both 
RBFNNs. The recursive least square algorithm was applied for 
training the weights w of the RBF neural networks. The 
proposed method can detect and isolate the faults and from the 
Figs. of simulation results, it can be seen that the methods were 
able to detect and isolate the faults.  
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