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Abstract—In this work, a trajectory planning technique for an
autonomous vehicle is proposed. A Predictive Control formula-
tion is used both to plan a trajectory and control the vehicle in
the presence of obstacles and dynamic constraints. However, some
particularities of this sort of missions may make the time required
for solution of the associated optimization problem prohibitive
for a given sampling period. In this context, the possibility
of using smaller prediction and control horizons is important
to obtain a suitable control sequence within each sampling
time. For this purpose, a trajectory planner which distributes
waypoints along a previously established path is employed in the
present paper. Each waypoint is determined so that it can be
reached in a horizon which is smaller than the one necessary
to reach the target set from the initial position, thus reducing
the computational burden during the control phase. Moreover,
during the planning phase the waypoints are chosen under the
restriction that the target set should be reached within finite time
so that the mission can be accomplished.

Index Terms—Predictive control, trajectory planning, way-
point.

I. INTRODUCTION

Model-based Predictive Control (MPC) techniques involve

the solution of an optimal control problem within a moving

horizon, which is repeated (usually at every sampling time)

on the basis of feedback from the sensors of the plant [1],

[2]. One of the main advantages of MPC is the explicit

treatment of constraints over the outputs and the controls of the

plant. In aeronautical applications, it allows the various aircraft

actuators to work closer to the limits of saturation, providing

an increase in the flight envelope without compromising the

safety of operation.

In typical problems of guidance of vehicles the state must

reach a given set in finite time for the mission to be completed

successfully [3]. Another issue is the existence of constraints

that result in a non-convex optimization problem, such as the

presence of obstacles which the vehicle must avoid.

In [3] the problem of reaching a terminal set in finite time

is addressed by using a variable horizon MPC formulation and

minimizing a weighted-time-fuel cost function. The resulting

optimization problem is a Mixed Integer Linear Programming

(MILP) one, because it involves both continuous and logical

variables. A kinematic model of the vehicle is used to de-

termine the trajectory, but vehicle guidance and control can

be carried out by enhancing the model with rigid body and/or

actuator dynamics. The obstacle avoidance constraints can also

be encoded in the MILP formulation by using logical variables

in conjunction with a “big-M” method, thus circumventing

the difficulties brought about by the loss of convexity of the

optimization problem.

However, the resulting MILP problem may not be feasible

with small horizons, causing the need of larger ones in order

to reach the terminal set from the initial state. In turn, larger

horizons are associated with a higher number of optimization

variables and may render the computational treatment of the

optimization problem impracticable.

In this scenario, it may be convenient to split the mission

into a series of intermediate goals that can be achieved within

smaller horizons. Nevertheless, this division should be done

judiciously, considering information about the limits of the

actuators and constraints on the states of the plant, as well

as the obstacles and the final goal of the mission. One way

to accomplish the division is to introduce a sequence of

waypoints, i. e., intermediate points through which the vehicle

must pass to reach the terminal set. Such waypoints must be

followed in a predetermined sequence obeying constraints and

leading to the terminal set. Their determination must also take

into account the capacity of achieving the waypoints from the

current position of the vehicle within a horizon of acceptable

size. Thus, the problem is divided into two steps: 1) off-line

trajectory planning - involving the calculation of waypoints;

2) online execution of the planned trajectory. The first step is

performed before the start of the maneuver.

In this work a technique for trajectory planning via way-

points in the presence of obstacles is proposed. The em-

ployment of such a technique along with an MPC-MILP

formulation is evaluated regarding the computational burden

involved in the control task.

The remainder of this paper is organized as follows. Section

II reviews the MPC-MILP formulation adopted in the present

work, which involves minimizing the weighted-time-fuel cost

function to reach a given terminal set in the presence of

obstacles [3]. Next, in Section III, trajectory planning for

vehicles in the presence of obstacles is briefly discussed.

The main contribution of this work is introduced in Section

IV, in which the proposed approach for trajectory planning

is presented. The scenarios adopted in the simulations are

described in Section V. Section VI presents the simulation

results of the proposed approach, which are compared to

the direct application of the original MPC-MILP formulation.

Finally, conclusions are drawn and suggestions for future work
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are given in section VII.

A. Notation

• x ∈ Rn: plant state;

• x0 ∈ Rn: initial plant state;

• u ∈ Rp: control signal;

• r ∈ R2: vehicle position;

• b ∈ {0,1}: binary variable associated to the horizon

minimization;

• bobsi,m ∈ {0,1}: binary variables associated to the obstacle

avoidance constraints;

• k: current time;

• ♦̂(k+i|k): predicted value of the variable ♦ at time k+i
based on the information available up to time k;

• ♦∗: optimal value of the variable ♦;

• N(k) ∈ N: MPC control and prediction horizon;

• Cr ∈ R2×n: matrix that extracts position information

from the state vector;

• U(j) ⊂ Rp: set of admissible control values at time j;

• X(j) ⊂ Rn: set of admissible state values at time j;

• Q(N(k) + 1) ⊂ Rn: set of terminal state values at the

end of the horizon;

• Zm ⊂ R2: polygon defining the m-th obstacle;

• Vi ∈ R2: i-th vertex in the planned path;

• N̄ ∈ N: maximal horizon in the one-step formulation;

• N̄P ∈ N: maximal horizon between waypoints;

• NWP ∈ N: number of waypoints;

• Nobs ∈ N: number of obstacles;

• Nf ∈ N: number of sides in each obstacle;

• NV ∈ N: number of vertices in the planned path;

• αi ∈ R: variable that determines the position of the i-th
waypoint along the planned path;

• M ∈ R+: constant large enough to make terminal

constraints inactive;

• Mx ∈ R+: constant large enough to make state con-

straints inactive;

• Mu ∈ R+: constant large enough to make control

constraints inactive;

• Mobs ∈ R+: constant large enough to make obstacle

avoidance constraints inactive;

• MWP ∈ R+: constant large enough to make waypoint

location constraints inactive;

• rx ∈ R: position along a coordinate axis in a horizontal

plane regarding an arbitrary origin;

• ry ∈ R: position along a coordinate axis (perpendicular

to the first) in a horizontal plane regarding an arbitrary

origin;

• vx ∈ R: velocity regarding the rx position;

• vy ∈ R: velocity regarding the ry position;

• ax ∈ R: acceleration regarding the vx velocity;

• ay ∈ R: acceleration regarding the vy velocity;

• γ ∈ R: weight of the term associated to the fuel

consumption in the cost function;

• 1♦ ∈ R♦: column vector of ♦ elements equal to 1;

• ‖♦‖1: 1-norm of the vector ♦.

II. PREDICTIVE CONTROL

As depicted in Fig. 1, the basic elements of a predictive

controller operating in discrete time are:

• A model used to predict the state of the plant over a

horizon of N steps in the future, based on the current

state x(k) and the control sequence {û(k + j|k)}, j =
0, . . . , N − 1 to be applied.

• An algorithm to optimize the control sequence regarding

the cost function specified for the problem and the

existing constraints on inputs and states of the plant.

Optimizer

Prediction Model

Plant

Cost

Function Constraints

Predictive Controller

û(k+j-1|k)

j = 1,…,M

û*(k|k) x(k)

x(k+j-1|k)

j = 1,…,N

ˆ

Fig. 1. Predictive control loop using state feedback.

In [3] the cost function is of the form:

J [x̂(·|k),û(·|k),N(k)] =

N(k)
∑

j=0

(1 + γ ‖û(k + j|k)‖1), γ > 0

(1)

subject to

x̂(k + j|k) =

{

x(k), j = 0
Ax̂(k + j − 1|k) +Bû(k + j − 1|k), j > 0

(2a)

x̂(k + j|k) ∈ X(j), j = 1, . . . , N(k) (2b)

û(k + j|k) ∈ U(j), j = 0, . . . , N(k) (2c)

x̂(k +N(k) + 1|k) ∈ Q(N(k) + 1) (2d)

In the present work, robustness to unknown disturbances is

not addressed in order to simplify the presentation of the main

contribution, which will be stated in Section III. Therefore,

the dependence of the sets X, U and Q on j and N(k) is

disregarded.

It can be seen from Eq. (1) that a compromise between

the time to reach the terminal set and the fuel spent during

the task is achieved by penalizing the time in the first term

of the cost function and the fuel expense in the second. By

manipulating the weight γ, the planner can be adjusted to put

more emphasis in time minimization (small values of γ) or

fuel expense minimization (large values of γ).

This cost is denoted simply by J(k) to indicate that it is a

function to be optimized at the sampling time k.

The optimal control sequence

{û∗(k + j|k), j = 0, . . . , N(k)} that minimizes the cost
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given by Eq. (1) subject to the constraints in Eqs. (2a), (2b),

(2c) and (2d) usually cannot be analytically determined.

Therefore, an optimization algorithm has to be used to obtain

the control sequence subject to constraints. Customarily, an

strategy known as “receding horizon” [2] is applied, i. e.,

only the first element of the control sequence is applied to the

plant (u(k) = û∗(k|k)) and the optimization is repeated at

the next sampling time, making u(k + 1) = û∗(k + 1|k + 1).

A. Horizon minimization

If the terminal set is given in terms of linear constraints:

Q = {x : pTi x ≤ qi, i = 1, . . . , NQ},
pi ∈ Rn, qi ∈ R, i = 1, . . . , NQ

(3)

then the terminal constraints can be rewritten as:

pTi x̂(k + j + 1|k) ≤ qi +M [1− b(j)], i = 1, . . . , NQ (4)

with b(j) defined as

b(j) =

{

1, if j = N(k),
0, if j 6= N(k)

(5)

The scalar M must be taken so that M > pTi x− qi, ∀i for

all admissible x [4].

Thus, the cost can be recast in terms of a maximum preset

value N̄ for the horizon, that is

J(k) =

N̄
∑

j=0

(jb(j) + γ ‖û(k + j|k)‖1) (6)

subject to (4) with the following additional constraints:

N̄
∑

j=0

b(j) = 1 (7)

The cost expressed in Eq. (6) coincides with the one in Eq.

(1) if the optimal value N∗(k) for the horizon is less than or

equal to N̄ and the optimal control is null after N∗(k), i. e.,

û∗(k+j|k) = 0, j > N∗(k). This last condition is guaranteed

as the constraints in Eqs. (2b) and (2c) are imposed only up to

the horizon N∗(k). After this horizon, there is no constraint

to be satisfied and thus the minimization of ‖û(k + j|k)‖1 for

j > N∗(k) results in a zero control.

The state and control constraints up to the horizon N̄ are

rewritten in [3] using scalars large enough so that they become

inactive after N(k). Indeed, let the sets of admissible states

and controls be

X = {x : rTi,xx ≤ qxi , i = 1, . . . , Nx},
U = {u : rTl,uu ≤ qul , l = 1, . . . , Nu},

ri,x ∈ Rn, rl,u ∈ Rp, qxi , q
u
l ∈ R,

i = 1, . . . , Nx, l = 1, . . . , Nu

(8)

The constraints on the states and controls can then be

rewritten as

rTi,xx̂(k + j|k) ≤ qxi +Mx

j−1
∑

m=1

b(m), i = 1, . . . , Nx

rTl,uû(k + j − 1|k) ≤ qul +Mu

j−1
∑

m=1

b(m), l = 1, . . . , Nu

(9)

which makes the constraints inactive for j > N(k) as

b(N(k)) = 1. For this purpose, Mx must be such that

Mx > rTx,ix − qxi , ∀i, for all x reachable in up to N̄ steps

from the terminal set with null control. Mu is a scalar that

renders the inequalities inactive for all admissible values of u.

Therefore the problem is defined with a fixed horizon N̄
and a linear cost involving real and integer variables subject

to linear constraints. Thus, algorithms for MILP can be used

to obtain the optimal control sequence.

B. Obstacle avoidance

Obstacles such as buildings, hills and dangerous areas to

be avoided are commonly present in problems of vehicle

guidance. The obstacle avoidance constraints lead to the loss

of convexity of the optimization problem that has to be solved

in order to calculate the control sequence. The present work

adopts the formulation for the avoidance of obstacles presented

in [5] and [3], which introduces a set of binary variables for

each obstacle.

The constraint that the trajectory in space does not cross an

obstacle can be written as r = Crx /∈ Zm, in which Zm =
{r|P obs

m r ≤ qobsm }. Without loss of generality, all obstacles

will be assumed to have the same number of sides Nf . It is

therefore required that the position r is not in the sets Zm,

1 ≤ m ≤ Nobs at each sampling time, which is equivalent

to imposing that the sets Im = {i ∈ {1, . . . , Nf} : P obs
i,mr >

qobsi,m} 6= ∅, where Pi,m is the i-th row of P obs
m and qi,m, the

i-th element of qobsm . To this end, binary variables can be used

as follows:

− P obs
i,mr(k + j) ≤ −qobsi,m +Mobs[1− bobsi,m(k + j)]− ǫ

Nf
∑

i=1

bobsi,m(k + j) ≥ 1, bobsi,m ∈ {0, 1},

1 ≤ j ≤ N̄ , 1 ≤ m ≤ Nobs

Thus, with a large enough scalar Mobs, when bobsi,m(k+j) =
0, the constraint becomes inactive. If bobsi,m(k+j) = 1, the con-

straint is effectively enforced. The condition
∑Nf

i=1 b
obs
i,m(k +

j) ≥ 1 requires that at least one of the constraints is active at

every sampling time, ensuring that the position r is “outside”

the m-th obstacle. ǫ > 0 is chosen arbitrarily small so that the

inequality “≤” becomes “<”, thus removing the border of the

obstacle from the set of allowed positions.
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III. TRAJECTORY PLANNING ARCHITECTURE

Path planning refers to the search for a curve in two or

three dimensions connecting the starting point to the goal

point or terminal set and avoiding obstacles. If the planning

is successful, a set of positions that the vehicle must occupy

to reach the destination is produced. However, the dynamic

constraints of the vehicle are not taken into account. In

contrast, the problem of trajectory planning includes dynamic

constraints. So the result must also include a sequence of

velocity vectors associated to the position of the vehicle.

In the context of aircraft guidance and control, the path

planning involves a number of issues in addition to the avoid-

ance of obstacles. Such issues include the presence of dynamic

constraints, usually in the form of velocity and acceleration

limits, the need for a feedback control strategy in real time in

order to make the system robust to atmospheric disturbances,

and constraints on the amount of fuel available to execute the

maneuver. These factors contribute to increase the complexity

of trajectory planning and control of aircraft in the presence

of obstacles, often making the problem computationally in-

tractable. This limits the application of established algorithms

that have been developed in robotics and path planning for

land vehicles [6].

Among the possible solutions for this problem, one that

enjoys relative success divides the planning and control in

hierarchical levels, counting often with layers that employ

heuristics to reduce the computational load [6]. Thus, on

the upper level, planning is carried out, in which dynamic

constraints may be included and which may rely on some

optimization criterion. Then, if the dynamic constraints have

not yet been considered, it proceeds to a smoothing of the path

to adapt to these constraints when possible and discarding it

otherwise. The next step is the addition of time tags to the path,

obtaining a trajectory. At this stage, one can employ some

kind of optimality criterion to define the trajectory. Finally,

this trajectory is used to generate references to the feedback

controller. Also, criteria for an optimal control solution can be

adopted. In this context, [6] presents a thorough review of the

literature.

The technique proposed in the present paper involves three

layers, namely:

1) A path planner which produces a path composed of the

connection of successive straight-line segments connect-

ing the initial position to the target set, while avoiding

obstacles. Dynamics constraints are not considered in

this layer.

2) A trajectory planner which determines waypoints along

the planned path obtained from the first layer. The

determination of the waypoints is done considering the

dynamic constraints of the vehicle, the existence of

obstacles, the arrival at the target set in finite time and

the capacity to reach each waypoint from the previous

one within a fixed small horizon.

3) A Predictive Control layer which employs the waypoints

determined during the second phase as targets of pre-

dictive control problems with small horizon, until the

last one is reached and the target set can be reached

within the small horizon. In this phase, the dynamic and

obstacle avoidance constraints are again enforced.

In the present work, the path planner is not addressed and a

path which satisfies the conditions described above is assumed

available. For the purpose of obtaining such a path, many

techniques may be used, such as Voronoi graphs, probabilistic

roadmaps, A∗ search [7], and RRTs (Rapidly-exploring Ran-

dom Trees) [8]. It is further assumed that the path is provided

in the form of a sequence of vertices connected by straight-line

segments.

The trajectory planning and control architecture adopted

herein is depicted in Fig. 2. The dashed lines mark the

blocks addressed in the present work. The MPC controller

was discussed in the previous section. The trajectory planner

provides a list of target waypoints in the order that should

be followed to reach the final target set. The “Active target

selection logic” simply checks whether the position of the

vehicle is equal to the waypoint (up to a certain numerical

tolerance); if true, the active target is the next waypoint in

the sequence; otherwise, the active target remains the same.

After the last waypoint is reached, the logic commutes to the

final target set. Since the “Trajectory planner” passes only the

waypoints to the control loop, and not every position, velocity

and control signal used to reach them, and since the controller

cost function and the planner one can be different, the planned

trajectory and the one that is actually followed may in general

present differences.

Path planner
Trajectory

planner

Vertices Waypoints

Active target
selection logic

MPC controllerVehicle

Active
Target

Control
Signal

State
Vector

Fig. 2. Trajectory planning and control architecture used in this work.

IV. PROPOSED TRAJECTORY PLANNING TECHNIQUE

The technique proposed in this paper for trajectory planning

involves the determination of a preset number of waypoints.

These are scattered between the initial position of the vehicle

and the terminal set. Their determination considers a horizon

shorter than the one necessary to reach the terminal set from

the initial state. Therefore, computational burden is expected

to be lighter.

In order to limit the search space of solutions, the waypoints

are constrained to a previously planned path, given in terms
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of the vertices of a sequence of straight-line segments which

constitute a collision-free path from the initial position of the

vehicle to the target set. This turns the problem of searching

a two-dimensional space for a solution to a one-dimensional

search over a piecewise linear curve.

In addition, the obstacle avoidance constraints are enforced

in the optimal determination of the positions of the waypoints

along the planned path in order to ensure the existence of

collision-free trajectories between the waypoints. The problem

of determining waypoint positions along the planned path

composed of straight-line segments, avoiding obstacles and

leading to the terminal set can be posed as follows:

Problem 4.1: Let NWP , N̄P , Nobs, Nf , and {Vi}, i =
1, . . . ,NV +1 be the preset number of waypoints, the maximal

horizon to reach an waypoint from the previous one, the

number of obstacles, the number of sides of each obstacle,

and the ordered sequence of vertices whose connection via

straight-line segments produces the collision-free path (V1 is

the initial position of the vehicle), respectively. The waypoint

determination problem is stated as

min
û(k+j|k), αi, b

obs
l

, bWP
i,j

NWP
∑

i=1

αi + µ

NWP
∑

i=1

NV
∑

j=1

jbWP
i,j (10)

s.t.

r̂(k + iN̄P |k) ≤ (αi −NV + j)Vj+1+

+ [1− (αi −NV + j)]Vj +MWP (1− bWP
i,j ), (11a)

1 ≤ i ≤ NWP , 1 ≤ j ≤ NV

− r̂(k + iN̄P |k) ≤ −{(αi −NV + j)Vj+1+

+ [1− (αi −NV + j)]Vj +MWP (1− bWP
i,j )

}

, (11b)

1 ≤ i ≤ NWP , 1 ≤ j ≤ NV

NV
∑

j=1

(NV − j)bWP
i,j ≤ αi, 1 ≤ i ≤ NWP (11c)

NV
∑

j=1

bWP
i,j = 1, 1 ≤ i ≤ NWP (11d)

bWP
i,j ∈ {0,1}, 1 ≤ i ≤ NWP , 1 ≤ j ≤ NV

0 ≤ αNWP
≤ αNWP−1 ≤ · · · ≤ α1 ≤ NV (11e)

x̂(k + (NWP + 1)N̄P |k) ∈ Q (11f)

û(k + j|k) ∈ U, 0 ≤ j ≤ (NWP + 1)N̄P − 1 (11g)

x̂(k + j|k) ∈ X, 1 ≤ j ≤ (NWP + 1)N̄P − 1 (11h)

P obs
m x̂(k + j|k) ≤ −qobsm +Mobs(1Nf

− bobsm (k + j|k))

(11i)

Nf
∑

l=1

bobsl,m(k + j|k) ≥ 1, bobsl,m(k + j|k) ∈ {0, 1}, (11j)

1 ≤ j ≤ (NWP + 1)N̄P , 1 ≤ m ≤ Nobs

where µ > 0 is a scalar, r̂(k + iN̄P |k) = Crx̂(k + iN̄P |k)
is the predicted position at the sampling time (k+ iN̄P ), and

P obs
m , qobsm , and Mobs are defined as in section II-B.

The binary variables bWP
i,j are used to make the constraints

in Eqs. (11a) and (11b) active or inactive. If bWP
i,j = 1, then

the inequalities (11a) and (11b) are active, which imposes an

equality constraint restricting the position of the i-th waypoint

to the straight-line segment between the j-th and (j + 1)-th
vertices. Otherwise, if bWP

i,j = 0, the inequalities (11a) and

(11b) are inactive for the particular values of i and j, meaning

that the i-th waypoint is not located in the straight-line segment

between the j-th and (j+1)-th vertices. For this purpose, the

scalar MWP is chosen large enough to render the constraints

in Eqs. (11a) and (11b) inactive.

The inequalities in Eqs. (11a), (11b), (11c) and (11e) along

with the equality in Eq. (11d) impose that the positions of

the waypoints remain in one of the straight-line segments that

compose the planned path. If NV − j ≤ αi ≤ NV − j + 1,

then the i-th waypoint is located in the straight-line segment

between vertices Vj and Vj+1. For instance, if αi = NV − j,

then the i-th waypoint is exactly at the j-th vertex of the

planned path.

The first term of the cost function in Eq. (10) aims at

minimizing the values of αi, 1 ≤ i ≤ NWP , which

prioritizes solutions that locate the waypoints farther from

the initial position and closer to the terminal set, in order

to avoid low initial speeds. The second term is introduced

in order to obtain the maximal possible value to the term

(NV − j)bWP
i,j , 1 ≤ j ≤ NV . As a consequence, the value

of (NV − j)bWP
i,j resulting from the minimization of this term

subject to the constraint in Eq. (11c) is the greatest integer

which is smaller or equal to αi for any positive value of the

scalar µ. This, in turn, means that the term (αi −NV + j) in

the constraints (11a) and (11b) is restricted to the set [0, 1) ,

thus resulting in a position between Vj and Vj+1 for the i-th
waypoint.

The resulting values of αi, 1 ≤ i ≤ NWP correspond to the

positions of the waypoints between the initial position and the

last vertex, each farther from the initial position than the one

before. The last waypoint is chosen so that it is possible to

reach the terminal set Q from this position within the horizon

N̄P .

An example is presented in Fig. 3, in which two waypoints

were used with a horizon N̄P = 10 for the system dynamics

that will be described in Section V. The planned path contains

three vertices (NV = 2, since the initial position is an addi-

tional vertex): V1 = [0 0]
T

(initial position), V2 = [1.2 0.4]
T

(intermediate vertex) and V3 = [1.6 1.5]
T

(vertex in the

border of the target set). The values for α1 and α2 were 1.583
and 0.385, respectively. This means that the first waypoint

should be between the vertices V1 and V2 and the second,

between V2 and V3, which can be corroborated by the resulting

positions of the waypoints depicted in Fig. 3.
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Fig. 3. Example of determination of the waypoints.

V. SIMULATION SCENARIOS

A kinematic model describing the movement of a vehicle in

two dimensions was employed for simulation. The continuous-

time model equations are:

ṙx = vx, v̇x = ax, ṙy = vy, v̇y = ay (12)

where rx and ry define the position of the vehicle in a hori-

zontal plane with respect to an arbitrary origin. This equation

can be recast in state-space form (ẋ = Acx+Bcu) by defining

the state and control vectors as x = [rx vx ry vy]
T

,

u = [ax ay]
T

. For use in the proposed MPC approach

with trajectory planning, a discrete-time model of the form

x(k + 1) = Ax(k) +Bu(k) was obtained with

A =









1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1









, B =









0.5T 2 0
T 0
0 0.5T 2

0 T









(13)

in which T is the sampling period. For the simulations in this

paper T was normalized to one time unit.

The dynamical constraints imposed on the velocities are

−1 ≤ x2, x4 ≤ 1. As for the accelerations, −1 ≤ u1, u2 ≤ 1.

Constraints 0 ≤ x1, x3 ≤ 2 were also imposed on the position

in order to limit it to the known terrain, over which information

was assumed to be available.

The initial state of the vehicle was arbitrarily set to xT
0 =

[0 0 0 0]T , i. e., it started at rest. The goal was to reach

a terminal set in the form of a rectangle described by the

following inequalities on the positions 1.5 ≤ x1, x3 ≤ 1.7.

As for the obstacles, they were also represented as rect-

angles with 0.6 ≤ x1
1, x

2
1 ≤ 1, 0.1 ≤ x1

3 ≤ 0.8, and

1.2 ≤ x1
3 ≤ 1.6, where the superscript refers to each of the

two obstacles present in the simulations. It is worth noting

that, since only the discrete-time predictions of the position

are considered in the inequalities, this does not avoid stretches

of the continuous-time trajectory crossing the obstacle. One

alternative to handle this issue is proposed in [9], which in-

volves incorporating restrictions on the transition of the vehicle

to each region of the space defined by obstacle inequalities.

However, it involves the introduction of more binary variables,

increasing the complexity of the MILP problem. In this work,

the length and width of the obstacle were expanded. To this

end, an amount determined through the maximal admissible

absolute value of the velocity in each axis was used to

expand the borders of the obstacles. Therefore, the adopted

avoidance constraints were constructed based on the following

expanded obstacles: 0.5 ≤ x1
1, x

2
1 ≤ 1.1, 0 ≤ x1

3 ≤ 0.9, and

1.1 ≤ x1
3 ≤ 1.7.

The weight γ of the fuel in the cost function was set

to 0.1. For the one-step solution, the maximal horizon was

set to N̄OS = 35. Meanwhile, for the planner solution

N̄P = 8 was adopted and the number of waypoints was set to

N̄WP = 3. The computation times were taken as an average of

10 runs of each simulation, in order to eliminate fluctuations

due to external factors. All simulations were carried out in

a personal computer equipped with a Pentium R© Dual-Core

E5400 processor with 2.7GHz clock. For solution of the

MILP, the CPLEX toolbox from IBM ILOG was used in

Matlab environment, under an academic license.

VI. RESULTS AND DISCUSSION

Initially, the simulation was carried out with the controller

employing the one-step solution, i. e., trying to reach the

terminal set from the beginning. The resulting path is presented

in Fig. 4. The terminal set (dark gray rectangle) was reached

successfully and the obstacles (light gray rectangles) were

avoided. Moreover, as shown in Fig. 5, the accelerations ax
and ay (which correspond to the controls u1 and u2, respec-

tively) remained within the ±1 bounds. It took 24 sample

periods to reach the terminal set from the starting position.

The fuel cost was 28.4 and the average computation time was

17.72s. The highest computational time was 4.22s and the

mean computational time was 0.74s. It can also be noted that

a stretch of the continuous-time path crosses the prohibited

region (black rectangle), but not the original obstacle. This

justifies the choice to expand the original obstacle as means

to avoid collisions.

The second simulation introduces the waypoint guidance

using a previously planned path. An arbitrary path that con-

nects the initial position to the terminal set while avoiding

obstacles was employed for illustration, as shown in Fig. 6.

The terminal set was reached successfully and the obstacles

were avoided. Again, as shown in Fig. 7, the accelerations ax
and ay remained within the ±1 bounds. It took 32 sample

periods from the initial position to the terminal set. The

planning phase lasted 0.33s. The maximal computational time

in the control phase was 0.18s and the mean was 0.08s.

Therefore, the total time to plan and execute the trajectory was

about 3.03s, which is much smaller than the time required

by the one-step planner. The fuel cost was 52.57, which is

larger than the one obtained with the one-step solution. In fact,

since the waypoints are restricted to the previously planned
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Fig. 4. Path obtained with one-step solution.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4

−1

−0.5

0

0.5

1

t[s]

u(t)

 

 
ax

ay

Fig. 5. Control signal obtained with one-step solution.

path that avoids the obstacles, and the horizon is shorter,

the minimization of the fuel expense is compromised. It is

interesting to note that the path does not cross the prohibited

region, due to the fact that the waypoints steer the trajectory to

the planned path, which is distant from the expanded obstacles.

If the path planner emphasizes a safe path instead of the one

that demands less fuel or the shortest one, it is likely to obtain

a safer trajectory at the cost of a larger fuel consumption.

VII. CONCLUSIONS

The proposed trajectory planning approach conduced to a

feasible trajectory and reduced considerably the computational

burden. The results showed also that a compromise between

optimality and computation time can be inferred. This is

suggested by the greater fuel cost and maneuver time obtained

with the proposed approach as compared to the one-step MILP

approach.

Future works could include a formulation which provides

robustness to an unknown but limited disturbance in the

trajectory planning phase, as was done in [3] for the MPC

MILP formulation.
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Fig. 6. Path obtained with trajectory planning.
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Fig. 7. Control signal obtained with trajectory planning.
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