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Abstract—Development and testing of automotive embedded 

control systems traditionally depended on the availability of 

prototype vehicles. Automotive manufactures adopted model 

based approaches in order to produce quality products faster. 

Thus, the need of more integrated testing using virtual 

environment in an automated manner becomes a vital element of 

product development.  The full vehicle simulator aims to provide 

a fully integrated environment for verification and validation of 

the embedded automotive software to avoid the dependency of 

the prototype vehicles. The execution of different automated test 

scenarios aims to increase the development of the product faster 

without compromising robustness and quality. This paper deals 

with both the development of full vehicle simulator and the 

concept of the automated modelled test cases.  

Keywords- Hardare-in-the-loop; full vehicle simulator; 

automated modeled test cases, automotive control systems. 

I.  INTRODUCTION  

The embedded software complexity and the number of 
electronic control units (ECU) integrated in modern luxury 
vehicles are radically increased due to the increasing 
distributive functionality, safety requirements and legislation 
for lower emissions. Today’s luxury vehicles include more 
than 60 interconnected ECUs using various network systems 
[1].  Four main domains such as body systems, chassis, powe 
rtrain and infotainment constitute a typical vehicle electrical 
architecture. Mots vehicle functionality is distributed among 
these domains as shown in [2],[3] and [4].  

The power train and chassis domain contains ECUs 
responsible to control systems such as engine management, 
anti-lock brake system, hybrid systems, transmission and 
vehicle dynamics [5] and [6]. These are generally continuous 
control systems and are interconnected using the high speed 
CAN network.  

The body system domain, however, is responsible to deal 
with systems like security, locking, wipers, mirrors, start 
authorization, etc. These control systems are mainly event 
driven with response time slower than the powertrain domain. 
The characteristic of the body domain is that the overall 
functionality (i.e. locking) is distributed to more than one ECU. 
These ECUs are located on one or more network buses [7] and 
[8]. 

The infotainment domain is one of the most popular 
systems nowadays due to its human machine interface nature 

between and the driver and the vehicle. This system usually 
consists of DVD player, amplifier, human machine interface 
console, TV modules and navigation. Other infotainment 
features require communication with the external world using 
external media such as Bluetooth and Wi-Fi. Typically, the 
response time of these systems is very slow due to the nature of 
consumer electronics functionality. The data bandwidth 
required to run an infotainment system is high compared to 
powertrain and body domains. The driver interaction with the 
vehicle makes the infotainment system one of the hottest topics 
in modern automotive industry.  

Distributive functionality shared amongst four domains can 
impact customer’s perception about vehicle quality. Software 
complexity and programme development cycle substantially 
reduced due to continuously customer’s demand for new 
features. Competition amongst vehicle manufactures radically 
increased due to demand for robust and quality vehicle 
systems. Advanced and sophisticated techniques (i.e. 
hardware-in-the-loop) commonly employed to validate the 
embedded software in real time early at the product 
development [4]. The drive to reduce dependency in prototype 
vehicles is still an important initiative for most vehicle 
manufacturers. The usage of prototype vehicles is therefore 
aimed mainly for verification and validation activities close to 
mass production data. Automated virtual testing environment 
promotes more robust, systematic, time efficient and cost 
effective way for software testing. It has the potential to 
uncover possible software failure modes and to perform fault 
diagnostics automated tests prior to development of prototype 
vehicles [8].  

This paper is organised in the following manner: The first 
section deals with introduction and brief literature review in the 
area of automotive control system development and test. The 
second section presents the development of the full vehicle 
simulator within Jaguar Land Rover (JLR). Two case studies 
are considered in the next section. The results and benefits of 
the automated testing are depicted in section four. Section five 
illustrates the discussion about the main benefits of the 
automated modelled test cases. The last section gives some 
concluding remarks of the work presented in this paper. 

II. FULL VEHICLE SIMULATOR OVERVIEW 

The main scope of this section is to describe the structure of 
the full vehicle simulator (i.e. fully integrated hardware-in-the-
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loop platform) suitable for automated functional and non-
functional testing.   

A. Simulator setup and schematics 

The full vehicle simulator consists of three 21 inches 
cabinets and two load tables. The load tables hold vehicle real 
loads and ECUs. Figure 1 show the full vehicle simulator 
which is currently used within the premises of JLR. 
 

 

Figure 1.  Full vehicle simulator at JLR. 

In the following sections the high level requirements 
including the number of input and output (i.e. I/O) channels 
specified for the full vehicle simulator are given. The amount 
of the I/O required to interface with the ECUs to form the 
vehicle architecture clearly demonstrates the complexity of the 
system.  

The main features of this simulation platform can be 
summarized as follows.  

149 ADC; 145 DAC; 275 digital input; 79 PWM , 195 
digital out, 126 digital relay output, 88 PWM output, 24 
resistive channels, 22 special channels for powertrain 
simulation, 110 dedicated power lines and GND, 8 CAN 
channels, 32 LIN channels used to interface with ECU 
hardware. Quiescent current measurements an all power lines 
(i.e. 2 power switches), 1 power supply (i.e. 400A@20V), 
access to CAN and LIN channels for measurements, Serial 
ports from processors (i.e. 3 DS1006 quad processors), 
Integration of the low voltage tester (i.e. LVT), On/Off 
capability on all power lines, Fault insertion and load boards on 
the input channels w.r.t  (with regards to the) simulator, fault 
insertion capability on all CAN and LIN channels, ABS valve 
detection unit, colour coding on the on each I/O type, Special 
software to interact with the simulator (i.e. Control Desk, 
Automation Desk, Motion Desk, CAN/LIN multi-message), 
Measuring point for the main power supply (i.e. 4 banana plugs 
on the front side of the first cabinet). 

The first cabinet (i.e. master cabinet) dedicated for the 
powertrain, chassis and driveline domain (i.e. high speed CAN 
network domain). For instance, engine management system 
(i.e. EMS), chassis control and transmission control ECUs are 

integrated on the master table. Peripheral loads such as 
electronic throttle, injectors, differential and transmission 
solenoids interfaced to ECUs via the master load table to the 
simulator. The aim of load integration is to enable the ECUs to 
functionally operate in as close as possible to the environment 
of the vehicle. Thus, the number of logged diagnostic trouble 
codes substantially reduced. Engine and transmission plant 
models developed and executed in real time in order to provide 
dynamic closed loop control between the EMS module and the 
models of the engine/driveline.     

The second cabinet (Figure 1) is known as first slave to the 
master cabinet. The use of this cabinet is to provide bulk I/O 
(i.e. input and output) channels to powertrain and body tables. 
These I/Os are distributed on both load tables to provide 
enough channels to ECUs for the interface with the simulator.   

The third cabinet (i.e. body systems cabinet) dedicated to 
electronic body systems (i.e. body control module, door 
modules, keyless vehicle module, etc) and is known as the 
second slave of the master cabinet. This domain is dedicated to 
medium speed CAN modules and their LIN slaves (i.e. 
intrusion monitoring system). The second load table (i.e. body 
systems table as shown in Figure 1) is used to accommodate all 
the medium speed ECUs and their peripheral components.. 

B. Integrated model to control the full vehicle simulator 

The VITAL framework is a generic model that built to 
interface with twelve different core processors (three quad 
processors DS10006) of the full vehicle simulator. The aim of 
this framework is to create a structured environment for 
integration of potentially of vehicle electrical components.  
Additional features of this model are summarised below: 

• The model structure allows integration of three 
dSPACE Quad core processors or more. 

• Enables simulation of Multi-CAN/LIN architectures 
and other network protocols (i.e. Ethernet) 

• Exchange of signals between cores of each processor. 

• Selection mechanism for switching between real and 
modelled ECUs 

• Common interface for simulation of ECU loads and 
actuators. 

• Hardware interface between ECUs and simulator 
arranged per dSPACE IO board.. 

The above features offer less development time, more optimal 
model structure resulting in more efficient real time execution. 
In addition to that the model promotes consistency and reduces 
the risk for development errors.    

Figure 2 show only an example of the VITAL model and 
the closed loop integration method between the real driver door 
ECU and the latch plant model. The plant model in this 
example provides the feedback signals to the driver’s door 
control unit (i.e. DDCU). The door ECU outputs are fed back 
to the door latch model and the feedback of the door latch is 
fed back to the door ECU via the simulator IO channels.. The 

552



door latch plant model developed in Stateflow® is a true 
functional representation of the real latch [9]. 

 

Figure 2.  Hardware interface on VITAL framework for closed-loop control 

More detailed description about the VITAL framework is 
presented in [9] 

III. CASE STUDY (CLOSED LOOP CONTROL OF BODY SYSTEM 

FUNCTIONALITY) 

The aim of this section is to demonstrate two automated test 
scenarios using the fully integrated platform described 
previously. The first scenario is the drive away door locking 
and the second one is the valet mode. 

The drive away door locking function is a security feature 
that locks all the doors automatically when the vehicle speed 
exceeds the threshold speed (i.e. 32Km/h). This feature is 
selectable by the driver, and any operation of the door locks by 
any other means (i.e. master locking switch on the facial panel) 
will unlock the doors [10].  

Valet mode is also a security feature that allows the vehicle 
to be driven with the luggage compartment locked with 
restricted touch screen functionality. This feature is accessible 
directly from the home menu on the touch screen or from the 
vehicle settings screen. The vehicle owner enters a four digit 
Personal Identification Number (PIN) to a soft key pad 
displayed on the touch screen. This PIN must be entered twice 
in order for the valet mode to be enabled. A pop-up screen is 
displayed, confirming that the vehicle is now in valet mode.  
To cancel the valet mode operation, the PIN number must be 
entered once again [10].  

A. System Overview 

The deployment of the drive away door locking and the 
valet mode features is depicted in Figure 3. Several ECUs are 
required to exchange data amongst different domains in order 
to interpreter the customer's operation into low level software 
command (i.e. set the threshold of drive away door 
locking).The simulation environment to deliver these features 
required the integration of the following ECUs and models, 
engine controller; gateway controller; door controllers; 
infotainment control units; engine and driveline real-time 
models.  

The complexity of system integration significantly 
increases due to the following reasons, number of ECUs; the 
scale of the system integration; inter-dependencies across 

functional areas and domains. For instance, the DDCU receives 
the command from the gateway to lock the door latch when the 
EMS transmit the correct vehicle speed from the high speed 
CAN network. An engine model and accurate sensor 
simulation required for the real EMS hardware to assume that 
an engine is in operation and the vehicle is in a drive cycle. 
Although drive away door locking feature appears to the 
customer to be a simple operation the effort required to develop 
the automated virtual environment is certainly a challenging 
engineering task.     

 

Figure 3.  Schamatic of vehicle feature demployment 

B. System Integration 

The full vehicle simulator is interfacing (Figure 3) the ICU 
using resistive signals for simulation of the driver switch-pack 
component which is hardwired back to the ICU (this switch-
pack controls the navigation menu shown in the CCU’display). 
The simulator is also providing resistive signals to the ICU in 
order to emulate driver touch screen selection. High resolution 
camera is integrated with the simulator via serial (i.e. RS232) 
connection to provide feedback acquired by the image 
processing software. This camera is used as feedback sensor to 
capture the results from the instrument cluster and infotainment 
display. Detailed description about multi-camera vision system 
is out of the scope of this paper. 

The two front door modules (i.e. driver and passenger), 
instrument cluster and infotainment display have an interface to 
the medium CAN bus. The two door latches are integrated to 
each door module using hardwire connection. The gateway 
ECU (i.e. ECU that accommodates the core body system 
functionality) is used to pass network signals from medium 
speed CAN bus to high speed. The EMS is interfaced with the 
engine model to high speed CAN in order to provide engine 
and vehicle speed to the rest of the vehicle systems. The rear 
door modules are not assessed on this paper since their 
behaviour is very similar to front doors. 

C. Event driven control Logic  

Event driven control logic is a discrete programming 
method that is based on the conditional transition between 
operating modes. This method is used in this paper to model 
the automated control sequence of the infotainment displays 
selection. 
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1) Automatic navigation on instrument cluster 
This control logic is employed for automatic selection of 

the drive away door locking threshold. The model is divided in 
two main parts.  

The first part deals with the simulation of a button (i.e. up, 
down, left, right and OK button) from the driver's switch pack. 
Figure 4 shows a snapshot of this model which represents one 
event of the OK press button. The event sequence is required to 
alter the simulator's resistive output from idle (X Resistance) to 
pressed position (Y Resistance). The transition between the 
two states delayed for 500 milliseconds. This allows the 
instrument cluster to process the request received from the 
infotainment control unit. A counter is implemented to capture 
the complete sequence. It is also used as a transitional 
condition to another event (i.e. simulation of down button). In 
addition to counter, the camera feedback is used as an 
alternative transitional condition. The camera is trained to 
identify the main menu pattern. This menu is displayed after 
pressing the OK button. Figure 4 shows that either the camera 
feedback or the counter conditions must be satisfied in order to 
continue the sequence. 

 

 

Figure 4.  Automatic navigation through the instrument cluster menu 

The second part (not shown in this paper) of this control 
logic is the evaluation of the menu position via the camera's 
feedback. The camera is placed to point directly the instrument 
cluster. It is trained to recognise five different positions of the 
drive away door locking settings menu. The control logic 
identifies the menu selection and responds to the driver's 
choice. For instance, different sequence is employed in order to 
set 32Km/h when the default position is on OFF mode and 
different sequence when the value is 5Km/h. The difference is 
due to the number of down or up button event presses. Similar 
concept is used to control the automatic selection of valet 
mode. 

2) Valet Mode 
The driver inserts twice a predefined four digit code to ICU 

touch screen in order to set the vehicle to valet mode. The 
automatic sequence requires selection steps on the ICU menu 
before the driver enters the PIN number. An event driven 
control logic is developed using Stateflow® to achieve this 
automated selection 

 

Figure 5.  Automatic control of infotaiment display (i.e. valet mode selection) 

Figure 5 shows only the sequence to set the valet mode on. 
The first state defines the initial conditions and determines the 
idle mode. On this mode the control logic provides the idle 
resistive output to ICU via the simulator's restive channel. The 
sequence starts when all the initial transitional conditions are 
satisfied. Delay of 800ms is implemented between the states 
after the idle mode. This allows the ICU to process the request 
from the driver and the infotainment graphics. Exit conditions 
are implemented on every stage of the sequence to ensure 
smooth execution avoiding stagnation points. On this particular 
example a medium speed CAN signal is used to inform about 
the valet mode status instead of camera feedback. 

D. Control desk interface 

Control desk layouts are developed in order to control the 
full vehicle simulator (i.e. 20 controlDesk® tabs) via graphical 
user interface. Figure 6 shows only a sub-set of the main 
working layout. This is dedicated to control the automated 
selection of the drive away door locking. It is also shown that 
the camera mode and image processing job is controlled from 
this layout. The manual mode of the driver's switch pack is also 
part of this interface as shown in Figure 6.  
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Figure 6.  Graphical user interface for automated drive away door locking 

selection mode. 

A Similar graphical user interface is developed to control 
the automated valet mode selection. However, this is not 
shown in Figure 6.  

E. Manual test scenario description  

A manual test scenario is performed to set the drive away 
door locking threshold from OFF mode to 32Km/h. The 
flowchart in Figure 7 depicts the manual sequence.  

 

Figure 7.  Flowchart of manual drive away door locking from OFF to 

32Km/h 

The sequence starts from a warning free instrument cluster. 
Figure 7 shows the exact sequence required for the instrument 
cluster to display the driver away door locking settings menu. 
Since this is a submenu, it is required to navigate three layers 
below the main menu. An extra delay is introduced on every 
conditional state (approximately 2.5 seconds) to allow the 
camera to process the captured image.  Based on the camera 
feedback, the control logic decides about the status and the 
progress of the automated sequence. Similar manual test 

scenario is produced for the valet mode. The only difference is 
that the navigation is through the resistive touch screen of the 
infotainment display. The flowchart for the valet mode 
selection is not shown in this paper. 

IV. TEST AUTOMATION 

The purpose of the automated testing is to execute the 
existing manual test cases in a repeatable manner. MXvDEV® 
test automation software is used to model the automated test 
cases.  

A. Execution of the automated test sequence 

Both automated sequences are executed and the results are 
captured in a graphical manner. Figure 8 and Figure 9 present 
the test results for drive away door locking and valet mode, 
respectively.  

 

Figure 8.  Automated test results for drive away door locking to 32Km/h 

For presentation purposes, only half duration of both 
scenarios are presented in Figures 8 and 9. 

 

Figure 9.  Automated test results to disable the valet mode. 

The desired signals are graphically modelled as shown in 
Figures 8 and 9. It is difficult to distinguish the differences 
between the actual and desired signal. This is due to exact 
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match of the two signals. For that purpose, the expected signal 
(i.e. sixth signal in Figure 9) is altered at the start of the 
sequence. A time delay is implemented on x-axis (time axis) at 
the first 500 milliseconds of the test in order to deliberately 
make the test cases result a fail (i.e. a shadowed area).  

V. DISCUSSION 

The evaluation of the test results has shown that both case 
studies (i.e. Figures 8-9) were executed successfully in an 
automated manner. These scenarios performed with zero 
tolerance on the y-axis. The expected signal has identically 
matched the actual measured. Occasional deviations observed 
on x-axis (i.e. time), where slight time variations (i.e. 
milliseconds) occurred. This is due to the time delays of the 
real time processor to fetch and process the results. Thus, 
signal delay of few milliseconds was introduced in the area of 
interests (i.e. shadowed areas on x-axis) to avoid failures of the 
test case. 

The benefits of the modelled test cases are summarised 
below: 

• Accurate definition of the test case in terms of time and 
signal definition. 

• Graphical representation of the signal during the test 
execution. 

• Reduced test case duplication due to test case re-use. 

• Less specialised knowledge is required to analyse the 
test results. 

• The graphical definition of the test case can uncover 
failure modes associated with the functional 
requirements prior to the test execution.   

• Test cases can be linked to system requirements. 

• Visualisation of signal tolerances (i.e. y-axis). 

• The review of the automated test case and scenarios is 
significantly minimised. 

The creation of the modelled test cases require well defined 
design verification plan and signal specification standards to be 
in place. This approach of automation helps JLR to move test 
creation using tabular format to one with graphical 
representation. 

In addition to the above remarks regarding the creation of 
automated test cases, the deployment of the full vehicle 
simulator has demonstrated the following potentials. 

• Most Electrical functional requirements can be 
validated prior to prototype build. 

• Distributed functionality validation is decoupled from 
single software release. 

• Drive cycles which have functional safety 
implications, can be executed in a controlled test 
environment. 

• The product design can be evaluated and altered early 
in the programme before commitment to tier 1 is made. 

• Early feature demonstration can help towards concept 
selection and decision making. 

• Enables cross functional team working and explores 
opportunities towards “what can we do better and 
how?”  

Although the aforementioned characteristics clearly deliver 
competitive advantage to an OEM, there are points to be 
considered before full deployment takes place. 

• Significant upfront capital investment is required to 
purchase the hardware and software simulation 
components. 

• Early engineering effort is required to develop product 
engineering specification. 

• Engineering mind set shift from manual vehicle testing 
to automated simulation based testing. 

VI. CONCLUSION 

The purpose of this paper was to present a fully integrated 
hardware-in-the-loop environment for validation of distributive 
vehicle functionality. The automated modelled test cases 
concept is introduced with the execution of two case studies. 
The successful execution of both scenarios has proven that the 
entire vehicle functionality can be modelled and executed on 
the full vehicle simulator. 
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