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Abstract—This paper focuses on the development of a 
multivariable predictive controller for vibration suppression of a 
flexible manipulator using piezoelectric actuator. To the best of 
the authors knowledge, the predictive controller for active 
vibration suppression has been rarely studied, so making it a 
prime area research to explore. A two-step procedure performed 
to develop the detailed model of the whole structure. First a 
dynamic model of the structure without piezoelectric film 
actuator is developed using the combined Lagrange-Assume 
modes method. Second the influence of the actuator is 
incorporated by calculating generalized applied force on the 
substructure. 

Keywords-Active Vibration Control; Flexible Structures; Model 
Predictive Control 

I.  INTRODUCTION 

Design of flexible smart structures for vibration 
suppression and noise control represents a major challenge in 
the past two decades. Such structures are used in a variety of 
applications including robots, industrial machine design and 
tooling, aircraft systems, civil engineering structures and the 
space stations. 

The flexible structures are generally lighter in weight, 
designed to use less material in order to be more transportable. 
They need less power for motion and therefore can be driven 
by smaller actuators resulting in less cost. Flexible structures 
are characterized by a significant number of closely spaced, 
lightly damped low frequency modes. 

We focus on the algorithms which were recently developed 
and applied on motion control and active vibration damping of 
flexible structures. Lee and Moon [1] used two separate 
feedback loops for position and damping. They concluded that 
the controller is simple but robust, since it cancels out 
nonlinear and uncertain dynamics by acceleration feedback, 
and adds more damping by base motion feedback. Knotnic [2] 
used the linear quadratic regulator (LQR) and the acceleration 
feedback control method for vibration suppression. 
Chevallereau and Aoustin [3] applied nonlinear control laws 
for vibration control. Banks [4] used a linear quadratic 
Gaussian (LQG) compensator control with proper orthogonal 
decomposition to control a cantilever beam with a piezoelectric 
patch. Chen [5] applied the LQR algorithm and studied the 
optimum layout of the piezoelectric materials based on control 
performance specifications and a cost function. Robust control 

approaches such as H control design, robust pole assignment 

and D-stability constraints have often been applied to the 
problem of controlling large flexible space structures [6]. 

The strategies mentioned above all provide reasonable 
suppression of structural vibration. However, the feedback loop 
controller is difficult to apply to MIMO systems. Also, LQR 
and LQG controllers need a very accurate plant model for good 
control while the H controller can't easily handle 

multivariable constraints in the manipulated variables. 

II. MODELING 

A. Modeling of bending vibration 

In this section the vibration of a flexible beam in the 
direction perpendicular to its length is considered. Such 
vibration is often called transverse vibration or flexural 
vibrations. Fig.1 illustrates a cantilevered beam with the 
transverse vibration [7]. 

From mechanics of materials, the beam sustains a bending 
moment M(x,t), which is related to the beam deflection by: 

 t)(x,xxwcsEIt)M(x,   

A model of bending vibration may be derived from 
examining the force diagram of an infinitesimal element of the 
beam as indicated in Fig. 1. 

 

 

 

 

 

 

 

 

Figure 1.  Simple beam in transverse vibration and a free body diagram of a 
small element as it is deformed by a distributed force 
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Assuming the deformation to be small enough such that the 
shear deformation is much smaller than w(x,t) so that the sides 
of the element dx do not bend, a summation of forces in the y 
direction yields: 


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Here V(x,t) is the shear force at the left end of the element 
dx, V(x,t)+V(x,t)dx is the shear force at the right end of the 
element dx, f(x,t) is the total external force applied to the 
element per unit length, and the term on the right side of the 
equality is the inertial force of the element. 

Next the moments acting on the element dx about the z axis 
through point Q are summed. This yield: 
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It is assumed that the rotary inertia of the element dx is 
negligible. Simplifying this expression yields ((dx)2 is assumed 
to be almost zero): 


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Substitution of this expression for the shear force into (2) 
yields: 
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Further substitution of (1) into (5) and dividing by dx 
yields: 
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If no external force is applied so that f(x,t)=0 and (6) 
simplifies so that free vibration is governed by: 


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Equation (7) is based on the classical undamped Euler-
Bernoulli beam theory. 

To solve (7), w(x,t) can take the following expanded 
separated form with the chosen deflection mode shapes 

)(xi and the modal amplitudes )(tqi : 
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By substituting (8) into the equation of motion (7) and after 
rearrangement yields: 
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where the partial derivatives have been replaced with total 

derivatives. (Note: 2244 /,/ dtqdqdxd   ). i is the 

natural frequency of vibration of mode i. 

The spatial equation comes from rearranging (9), which 
yields: 
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By defining: 
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And considering the boundary conditions for this problem 
correspond to those of a clamped-free beam [8]: 
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General solution of  (10) can be obtained as: 
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The quantities Li are the real roots of the equation: 

 0)cosh()cos(1  LL ii   

These quantities determine the natural frequencies of the 

beam as follows: 
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i
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Table (I) shows the calculated i and i for the first four 

modes of vibration. The temporal equation comes from 
rearranging (9), which yields: 

 0(t)qω(t)q i
2
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A simple procedure for including damping is to add it to the 
temporal equation after separation of variables. So the modal 
damping can be added to (16) as follows: 
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2
iiiii    

Where i is the ith modal damping ratio. The damping 

ratios i are chosen based on experience or on experimental 

measurements. Empirical results in [8] show that the damping 
factor of the first mode is 0.01. The higher order modes were 
assumed to have the same damping factor. The solution, for an 
under damped mode becomes: 
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Where Ai and i are constants to be determined by the 

initial condition. The robot link transverse displacement, 
approximately obtained, as a solution of the damped Euler-
Bernoulli beam theory is finally expressed by [7]: 
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B. Robot Dynamic Model  

In order to obtain a set of ODE of motion to describe the 
dynamics of the flexible link manipulator, N differential 
equations must be satisfied [8]: 

TABLE I.  CALCULATED i AND i FOR FIRST FOUR MODES 

Modes 
i

 i  (rad/s)  

First mode 1.8751 9.7474 
Second mode 4.6940 61.0838 

Third mode 7.8547 171.0406 
Fourth mode 10.9955 335.1738 
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Where L is the so called Lagrangian which is given by: 

 UTL   

T represents the kinetic energy of the system and U its 
potential energy that can be found in [8]. The schematic of the 
system is shown in Fig. 2. 

The joint angle and modal coordinates iq can form a new 

vector q~ of the system’s generalized coordinates as: 

  T
N2111)(N q  q q θq~   

Substituting the expressions for kinetic and potential energy 
into (20) and performing the required operations, one obtains 
the following matrix equation, which is a set of N+1 ode that 
model the dynamic behavior of the system: 

 mfv(t)q~K(t)q~H(t)q~M    

vm is the voltage applied to the motor. The mathematical 
derivation of the mass (M), damping (H) and stiffness (K) 
matrices also the expressions for energies of one link 
manipulator can be found in Appendix (B).The parameter f in 
(23) is defined as: 

  Tu11)(N 0  0 0 kf   

where ku is the torque constant and vm is the voltage applied 
to the motor. The model in (23) does not include the effects of 
the piezoelectric films, which will be derived in the following 
section. 

C. Analysis of Beam-Piezoelectric Interaction 

Piezoelectric film could be used as an actuator or a sensor 
by applying a voltage or measuring the open circuit voltage, 
respectively. If the piezoelectric film is used as a sensor, the 
open circuit voltage of the sensor is given by [9] as: 
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Figure 2.  Schematic of the system 
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Where the ith modal coefficient is: 
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The physical characteristics of the beam and piezoelectric 
films and motor for simulations are given in Appendix A. The 
variable d31 is the transverse piezoelectric charge to stress ratio, 
Ec is the Young’s modulus of the film, Cc is the capacitance of 
the piezoelectric film, )(xc is the shape function of the film, 

Wc is the maximum width of the piezoelectric film, tb is the 
thickness of the beam. If the piezoelectric film is used as an 
actuator, its effect on the dynamic model is through the passive 
stiffness (negligible in this work) and the force produced by the 
actuator. The generalized force associated with ith mode is [9]: 

 pii vfF   

vp is the voltage applied to the actuator. The coefficient of 
the generalized force is defined as: 
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Introducing the effect of piezoelectric films, the new 
system dynamic model can be described as: 

 mSvf(t)q~K(t)q~H(t)q~M    

Where the new modal force coefficient matrix fS , since one 
film were used as actuator in this work, becomes: 
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For modeling and control purposes it is convenient to write 
the model of the system in state-space form as follows: 
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Where the matrices A and B are defined in terms of the 
stiffness, mass and damping matrices K, M and H, 
respectively, and the force vector fS : 
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Where the state vector x includes the system’s coordinates 

q~ and q~ as: 
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The observation matrix C, which relates the state space to 
the output space, has to be obtained based on the available 
sensor. It includes the potentiometer encoder gain and the 
coefficients of the open circuit voltage for sensor that is 
expressed as: 
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Where its second row is obtained by evaluating (26) with 
the parameters of the sensor patch [8]. 

III. CONTROLLER FORMULATION 

Model-based predictive control (MPC) is based on the 
principle of minimizing an objective function J that contains a 
vector of future errors e over a prediction horizon p, resulting 
in changes on m control actions every sampling instant. The 
error vector e is evaluated as the difference between a 
prediction of each output variable of the process and a set point 
trajectory r. If the controller focuses exclusively on set point 
tracking, it might choose to make large manipulated-variable 
adjustments. These could be impossible to achieve. They could 
also accelerate equipment wear or lead to control system 
instability [10]. Thus, the Model Predictive Controller also 
monitors a weighted sum of controller adjustments, calculated 
according to the following equation: 
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In this work, there are two inputs to the system, one to the 
motor vm and one to the actuator vp, and two outputs from the 
system, one is the motor or joint angular position which is 
measured by a high precision potentiometer that provides an 
analog voltage signal v , the second is the beam vibration 

which is measured by a piezoelectric sensor that provides an 
analog voltage output voc. So in (35), 

T
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In this study, Wy has unit diagonal terms so that all future 
errors are equally weighted while the diagonal terms in 

uW are set to the move suppression. The general MPC 

architecture can be illustrated in Fig. 3. The future inputs 
)}|1(,),|({ kkmukku   (optimal sequence) are 

calculated by minimizing the cost function subject to the 
following constraints on inputs to the motor and 
actuator: 200200,5050  pm vv . 

IV. SIMULATION RESULTS 

A. Open loop 

The open loop response simulation due to a step input on 
the motor is shown in Fig. 4. The open loop response 
simulation due to a step input to the piezoelectric actuator is 
shown in Fig 5. It is clearly seen from the open loop test that 
the piezoelectric actuator has very little effect on the motor's 
joint angle and the sensor signal is oscillating with the beam's 
natural frequency. 

B. Close loop 

In the previous section we developed a model for the 
system to be controlled. In this section for simulation purposes 
we utilize a model as process for generating the data (see Fig. 
3), considering four modes of vibration. Moreover the 
controller needs an approximate linear model to predict the 
future behaviors of the plant. We utilize a model as model 
predictor in Fig. 3 by considering only the first mode of 
vibration. 

 

 

 

 

 

 

Figure 3.  General MPC architecture 

 

 

 

 

 

 

 

 

 

Figure 4.  open loop test due to 40V motor input 

 

 

 

 

 

 

 

 

Figure 5.  open loop test due to 200V actuator input 

The value of prediction horizon p and control horizon m is 
based on the number of discrete sampling intervals required to 
reach within 95% of the plant output steady state. For many 
models, there is not much change beyond m=3~5, but p must 
be chosen as large as possible so that the value of p-m be 
greater than the settling time [11]. The motor is rotated and 
controlled to an angular set point using a multivariable 
predictive controller. During rotation, the beam’s vibration is 
suppressed until angular rotation of the motor has been 
completed. Fig. 6 and Fig. 7 illustrate simulation results 
comparison between predictive control and conventional PI 
control when positioning the manipulator to 57 degree 
(assumed prediction horizon for both output is p=70 and the 
control move horizon for both inputs is m=5). It can be seen 
the vibration is suppressed by motor and piezoelectric actuator 
effectively. Predictive controller signal to motor and actuator 
are shown in Fig. 8. 

 

 

 

 

 

 

 

Figure 6.  Joint angle comparison between  MPC control (line) and PI control 
(dashed line) 

 

 

 

 

 

 

Figure 7.  Displacement comparison between MPC control (line) and PI 
control (dashed line) 
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Figure 8.  MPC controller signal to motor (upper) and to actuator 
(lower)Prepare Your Paper Before Styling 

V. CONCLUSIONS 

As stated in the introduction, the aim of this paper is to 
present a vibration control design methodology based on 
predictive control strategy. This methodology is illustrated by 
the design of a controller for a flexible cantilever beam. The 
advantage of this methodology over existing methodologies is 
that adjustments can be made on the prediction of beam 
vibration that takes into account the effects due to 
nonlinearities in the system. This study successfully 
demonstrates that predictive control can be applied to suppress 
vibration on a flexible beam, making it an excellent candidate 
for future research on topics such as intelligent control using an 
array of sensors and actuators, as well as controller tuning 
specifically for other applications such as a multi-jointed 
flexible structures. 

APPENDIX A 

This appendix contains the parameter values for the beam, 
motor and piezoelectric films. 

TABLE II.  BEAM PROPERTIES 

Material Aluminum 

Density  (Kg/m3) 2700 
Young’s modulus E (N/m2) 6.9×1010 

Length×Width×Thickness (m) 1×0.035×0.0019 

TABLE III.  MOTOR PROPERTIES 

Motor fixture inertia Jh (Kg.m2) 0.14 

Friction coeff. Bm (Nm/rad) 0.95 
Motor torque constant ku (Nm/V) 0.06 

Encoder gain k  (V/rad) 0.3979 

TABLE IV.  PIEZOELECTRIC FILM PROPERTIES 

parameters Sensor Actuator 

Charge constant d31 (C/N) 23×10-12 175×10-12 

Young’s modulus Ec (N/m2) 2×109 6.5×1010 

Length×Width×Thickness (mm) 250×35×1 150×35×1 

Capacitance Cc (F) 2.7×10-6 2×10-8 

Shape function c  1 1 
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