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Abstract—Previous numerical simulations have shown that vor-
tex breakdown starts with the formation of a steady axisymmetric
bubble and that an unsteady spiralling mode then develops on top
of this. We study how this spiral mode of vortex breakdown might
be suppressed or promoted. We use a Lagrangian approach to
identify regions of the flow which are sensitive to small open-loop
steady and unsteady (harmonic) forces. We find these regions to
be upstream of the vortex breakdown bubble. We investigate
passive control using a small axisymmetric control ring. In this
case, the steady and unsteady control forces are caused by the
drag force on the control ring. We find a narrow region upstream
of the bubble where the control ring will stabilise the flow and
we verify this using numerical simulations.

Index Terms—flow control, vortex breakdown, passive control,
adjoint, sensitivity analysis

I. INTRODUCTION

Vortex breakdown has been observed in many practical

flows, such as the flow over the leading edge of delta wings

at high angles of attack, the injection of fuel and air into

combustion chambers, and the intense rotating flow found

in a tornado. In all these cases, when the fluid rotates with

sufficient azimuthal velocity (swirl), a stagnation point and

a recirculation bubble form within it. The transition from

the flow without a breakdown bubble to the flow with a

breakdown bubble is labelled axisymmetric vortex breakdown.

In many cases, a spiral structure is seen to emanate and grow

downstream of the breakdown bubble. This is labelled spiral

vortex breakdown.

Vortex breakdown was first observed in the flow over

gothic and delta wings at high angles of attack in 1957 [1].

Since then, several different forms of vortex breakdown have

been observed in a variety of experimental settings such as

tubes, nozzles, and combustion chambers. Investigators often

observed the axisymmetric and spiral modes of breakdown to

occur almost simultaneously. This led to disagreements over

the nature of vortex breakdown. Recent numerical studies of

vortex breakdown in an unconfined domain [2], [3], however,

have confirmed that the basic form of vortex breakdown

is axisymmetric and that the spiral mode is caused by the

self-sustained growth of helical perturbations on top of the

breakdown bubble. This is a global instability.

The importance of the vortex breakdown phenomenon

means that there is a need to understand and control it. In the

past, various open-loop control strategies have been attempted

[4]. These include active flow control using blowing and

suction, and passive flow control using mechanical devices in

the flow. However, their success has always been limited due

to insufficient knowledge of the physical mechanisms that

are at work. To this end, numerical sensitivity analyses have

been successful in predicting how one might control vortex

shedding off cylinders and other blunt bodies at moderate

Reynolds numbers [5]–[8]. These sensitivity analyses use

adjoints to calculate the receptivity of the flow to external

forcing and the sensitivity of the flow to internal feedback.

They can provide information about the effect of steady and

harmonic forces on the unstable mode. Hence they have been

used to predict where a control device should be placed to

either suppress or promote vortex shedding.

In this paper, we carry out a similar analysis around the

axisymmetric vortex breakdown state and predict how the

spiral mode of vortex breakdown might be suppressed or

promoted. In Section II, we consider the stability of the

axisymmetric breakdown state and show that spiral vortex

breakdown is caused by a linear global instability. In Section

III, we use adjoints to evaluate the effect of a small control

force on the growth rate of the unstable mode and identify

the regions of the flow that are most sensitive to a control

force. In Section IV, we apply these results to the simple case

of passive control using a small axisymmetric control ring.

Finally, in Section V, we discuss how these techniques can

be applied in practice.

This study is at Re = 200 and the primary motivation

is scientific. There are important industrial motivations,

however. Vortex breakdown occurs in wingtip vortices behind

aircraft, in vacuum cleaners, and in gas turbine combustion

chambers. In the case of combustion chambers, hydrodynamic

instabilities in the flow can lock into acoustic resonances

within the combustion chamber, causing high amplitude

thermoacoustic instabilities, which can be catastropic. This

fundamental study of spiral vortex breakdown will reveal the

regions of the flow where control would be most effective.

This could help designers devise effective control strategies.
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Fig. 1. Non-dimensional inlet velocity distributions for the Grabowski profile:
the solid line represents the axial velocity, the dashed line represents the
azimuthal velocity for a swirl value of Sw = 0.915.

II. THE FLOW CONFIGURATION AND THE GLOBAL

STABILITY ANALYSIS

We study the motion of a viscous fluid in a cylindrical

domain with length Xmax and radius Rmax, using cylindrical

coordinates (x, r, θ). The flow has density ρ, pressure p,

temperature T , and velocity u = (ux, ur, uθ)
T . We describe

the motion of the flow using the Navier–Stokes equations in

the low Mach number limit. This allows for density variations

in the flow but excludes acoustic waves. These equations can

be expressed in terms of the momentum m = ρu, temperature

and pressure as

∂q

∂t
= Nq, (1)

where q ≡ (mx, mr, mθ, T, p)
T

is the state vector and N is

a nonlinear differential operator representing the action of the

equations on the state vector. The density, ρ, is not included in

the state vector because it can be derived from the temperature,

T .

Along x = Xmax and r = Rmax, we choose boundary

conditions so that we model flow into a semi-infinite domain

in the downstream and radial directions. At the inlet to the

domain, we impose velocity profiles that have been used to

study vortex breakdown numerically in the past [9]. This

Grabowski profile, shown in Figure 1, has uniform density and

temperature. The ratio of the azimuthal to axial velocities at

r = 1 defines the swirl parameter, Sw. The Reynolds number

is defined in terms of the nominal vortex core radius and

uniform axial velocity. In this study, we keep Re = 200.

We obtain a steady axisymmetric laminar baseflow, q̄, or

equilibrium point of the equations (1) such that

N q̄ = 0, (2)

Fig. 2. Steady baseflow at Sw = 0.915 and Re = 200. The domain extends
radially from −8 ≤ r ≤ 8 but only a portion is shown here. There is a small
axisymmetric breakdown bubble around x = 2.5.
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Fig. 3. Spectrum of the linear operator L for m = −1 for the baseflow in
Figure 2, showing the 25 least stable eigenvalues. One mode, coloured black,
is just unstable.

Figure 2 shows the steady baseflow at Sw = 0.915. There is

a breakdown bubble around x = 2.5. The evolution of small

perturbations q′ around this field is governed by

∂q′

∂t
= Lq′, (3)

where L represents the Navier–Stokes equations linearized

about the base-flow q̄. We decompose the perturbations into

Fourier modes in time and the azimuthal direction

q′(x, r, θ, t) = q̂(x, r)eimθ+λt, (4)

where m (without a subscript) is the azimuthal wavenumber,

and λ ≡ σ + iω contains the growth rate, σ, and frequency,

ω. We study the linear dynamics of the flow by analyzing

the eigenvalues of L. These are given by solving the matrix

eigenvalue problem

λq̂ = Lmq̂, (5)

where Lm is the linear operator for the azimuthal wavenum-

ber m. Each of these eigenvalues has a corresponding two-

dimensional eigenfunction, q̂(x, r). We label each eigen-

value/eigenfunction pair a direct global mode. If σ > 0, the

mode is linearly globally unstable. In this linear analysis, the

flow tends to the form of the global mode with highest σ in

the long-time limit and therefore this mode determines the

system’s overall stability.

Figure 3 shows the eigenvalue spectrum for m = −1 at

Sw = 0.915, for which there is one unstable global mode. All
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Fig. 4. Spatial structure of the most unstable eigenmode for m = −1,
showing the real part of the axial, radial and azimuthal momentum in the top
half of the domain.

other azimuthal wavenumbers are stable. The spatial structure

of the unstable global mode is shown in Figure 4 using the

real part of the axial, radial and azimuthal momentum. The

imaginary part of the global mode is 1/4 wavelength out of

phase because this mode grows and advects downstream.

III. SENSITIVITY TO A CONTROL FORCE

We now consider open-loop control of the unstable

eigenvalue. Depending on the application, engineers might

want either to suppress the unstable mode (to delay transition,

for instance) or to promote it (to increase mixing, for instance).

To begin with, we evaluate the effect of a small control

force on the unstable eigenvalue. We model the control force

by adding mass, momentum and energy source terms to the

right-hand side of equation (1):

∂q

∂t
= Nq + F. (6)

Here, the forcing terms have been grouped together as F.

The control force has a steady component (F̄) that acts on

the base flow (q̄) and a linearized perturbation (f ′) that acts

on the linear operator (L) . We model the effects of these

two components separately [10].

A. The sensitivity to steady forcing

The eigenvalue of the global mode, λ = σ + iω, is a

function of the base flow fields (q̄) and these are, in turn,

functions of the steady components of the forcing terms (F̄).

The eigenvalue can, thus, be considered to be a function of

the steady component of the forcing terms, λ = f(F̄). We

wish to find the gradient of the functional λ(F̄) [8, Fig.9] for

the unstable flow in §II. We investigate the variation of the

eigenvalue, δλ
F̄

, with respect to small variations of the steady

forces, δF̄. The change in the eigenvalue is given by

δλ
F̄

= 〈∇
F̄
λ, δF̄〉, (7)

where ∇
F̄
λ is a complex function that we call the sensitivity of

the eigenvalue to steady forcing. The notation 〈a,b〉 denotes

an inner product over a volume V ,

〈a,b〉 =
1

V

∫

V

aHb dV, (8)

where aH denotes the Hermitian (i.e. complex conjugate

transpose) of a.

We calculate the sensitivity function by formulating a La-

grangian problem for λ. The nonlinear and linearised Navier–

Stokes equations act as constraints in this problem,

L = λ − 〈q̄+,N q̄ − F̄〉 − 〈q̂+, λq̂ − Lmq̂〉 (9)

The Lagrange multipliers, q̄+ and q̂+, are the adjoint base

flow and adjoint global mode fields respectively. We are

interested in the functional derivative of L with respect to F̄.

To find this, we first set the functional derivatives of L with

respect to all other variables to zero. This leads to a set of

equations that defines an eigenvalue problem for the adjoint

global mode, a set of equations for the adjoint base flow fields

and the normalization condition 〈m̂+, m̂〉 + 〈T̂ +, T̂ 〉 = 1.

The analysis then shows that the sensitivity of the eigenvalue

to the steady forcing terms is given by the relevant adjoint

baseflow field. For example, the sensitivity to momentum

forcing is given by the adjoint baseflow momentum, m̄+.

The adjoint base flow fields are complex valued. The real

part represents the sensitivity of the growth rate, σ while the

imaginary part represents the sensitivity of the frequency ω to

small changes in the steady forcing. They provide information

about the most sensitive regions for control based on the

physical mechanisms that cause the instability.

The adjoint base flow equations contain terms from the

steady base flow, the direct global mode and the adjoint global

mode. These need to be calculated before the adjoint base

flow equations can be solved. The procedure for obtaining

the sensitivity to steady forcing involves the following steps:

1. Obtain a steady base flow (Equation 2 and Figure 2).

2. Obtain the direct global mode by solving the direct

eigenvalue problem (Equation 5 and Figure 4).

3. Obtain the adjoint global mode by solving the adjoint

eigenvalue problem.

4. Normalize the adjoint global mode.

5. Solve the adjoint base flow equations to obtain the

sensitivity of that global mode to steady forcing.
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(a) Sensitivity to steady momentum forcing

(b) Sensitivity to unsteady momentum forcing

Fig. 5. Sensitivity to steady and unsteady forcing for the marginally unstable
mode. Darker regions are more sensitive. The thick black line indicates the
vortex breakdown bubble. The quantities plotted are (a) The adjoint baseflow
momentum ||m̄+|| and (b) the adjoint global mode momentum ||m̂+||

B. Sensitivity to unsteady forcing

The change in the eigenvalue due to a small linearized force

(δf ′) that acts on the linear operator L is given by

δλf ′ = 〈∇f ′λ, δf ′〉, (10)

where ∇f ′λ is labelled the sensitivity of the eigenvalue to

harmonic forcing.

As for the steady forcing terms, the sensitivity of the

eigenvalue to harmonic forcing is given by the relevant

adjoint global mode fields. The change in the eigenvalue is,

thus, simply obtained by projecting the linearized force onto

the adjoint global mode fields. The largest change is obtained

when the forcing frequency is equal to the frequency of the

linear global mode [8, §4.1].

C. Results of sensitivity analysis

Figures 5a and 5b show the sensitivity of the marginally

unstable eigenvalue to steady and harmonic forcing

respectively. We notice that, for both types of forcing,

the flow is most sensitive just upstream of the breakdown

bubble. This shows where a control force will have the

greatest effect. The scales in the plot indicate that the

sensitivity to steady forcing is almost an order of magnitude

greater than the sensitivity to harmonic forcing.

IV. PASSIVE CONTROL USING A SMALL CONTROL RING

In this section, we extend the results from the previous

section to the specific case of a thin axisymmetric control ring

that is placed in the flow. The force on the flow is equal and

opposite to the drag force that the control ring experiences. In

a cylindrical co-ordinate system, this force can be modelled by

the force on a small circular cylinder. As a simple model, the

steady and unsteady components of the force due to a cylinder

(a) Magnitude of steady component of control force ||F̄||/α

(b) Magnitude of unsteady component of control force ||̂f ||/α

Fig. 6. Magnitude of the steady and unsteady force from a control ring
placed in the flow. Darker regions have higher magnitude. The thick black
line indicates the vortex breakdown bubble.

placed at (xc, rc) are given by

F̄(x, r) = −α||ū||ū δ(x − xc, r − rc), (11)

f ′(x, r, t) = f̂(x, r)eλt, (12)

f̂(x, r) = −α

(

ū · û

||ū||
ū + ||ū||û

)

δ(x − xc, r − rc)(13)

where α is a measure of the magnitude of the force.

Figures 6a and 6b show the magnitude of the steady and

unsteady force as a function of the location of the control

ring. The steady component is largest near the inlet because

the baseflow velocities are high there, whereas the unsteady

component is largest further downstream because the ampli-

tude of the global mode is maximum there. We also notice

that the unsteady component of the force is about an order

of magnitude greater than the steady component. However,

we know from equations (7) and (10) that the effect of the

control ring on the unstable eigenvalue depends on the overlap

of figures 5 and 6. We substitute the expressions in equations

(11) and (13) into equations (7) and (10). The total change in

the eigenvalue is given by the sum of the contributions from

the steady and unsteady components

δλtotal = δλ
F̄

+ δλf ′ . (14)

In Figure 7, we plot the change in the eigenvalue as a

function of the location of the control ring showing the total

change as well as the contributions from the steady and

unsteady components of the force on the same color scale.

These figures identify the locations where passive control

using the control ring would be most effective. There is a

narrow region upstream of the bubble where the control ring

will stabilise the flow and a much larger region downstream

of the bubble where the control ring will destabilise the flow.

These figures also show that the contribution from the steady

component is significantly larger than the contribution from

the unsteady component.

V. DYNAMICS OF THE CONTROLLED SYSTEM

We now verify whether the behaviour predicted by our

linear sensitivity analysis actually occurs. We model the
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Fig. 7. The change in the eigenvalue as a function of the location of the
control ring, from top (a) Total change, (b) Contribution from the steady
component of the force and (c) Contribution from the unsteady component of
the force. The figures have the same color scale. Light regions indicate regions
of stabilisation, whereas dark regions indicate regions of destabilisation. The
thick black line indicates the vortex breakdown bubble.

presence of a small control ring at (xc, rc) = (0.66, 0.33).
This corresponds to the centre of the region of stabilisation

in Figure 7(a).

We choose a value of α = 0.1 and add the forcing term

in equation (11) to our nonlinear equations. We obtain a

new steady baseflow and study the linear dynamics of the

controlled system. Figure 8 compares the spectrum of the

controlled system with that of the uncontrolled system.

We notice that the unstable eigenvalue has been stabilised.

Our linear sensitivity analysis predicts the eigenvalue of

the system with a control ring at (xc, rc) = (0.66, 0.33)
to be −0.021 + 2.120i which agrees well with the value

obtained from the stability analysis of the controlled system,

−0.018 + 2.119i.

The dynamics of the controlled and uncontrolled system

can also be seen in Figure 9. We superpose small amplitude

random-noise perturbations on the steady baseflows for the

controlled and uncontrolled systems and monitor the energy

of these perturbations over time. In the uncontrolled system,

following some initial transient phase, these perturbations

grow linearly. In the controlled system, these perturbations

decay linearly.

VI. APPLICATIONS AND FURTHER WORK

In the previous section, we demonstrated that this approach

to the control of spiral vortex breakdown works in theory.

We now consider some of the practical issues related to this

approach.

Practical engineering applications feature flows at much

higher Reynolds numbers than that considered in this paper.

In such cases, obtaining a steady baseflow would be very

difficult and it might be easier and more relevant to carry out

a sensitivity analysis around the mean flow. This would not

be mathematically rigorous but could still provide valuable
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Fig. 8. Spectrum of the linear operator L for m = −1 for the uncontrolled
(o) and controlled (+) baseflows, showing the 25 least stable eigenvalues.
The marginally unstable eigenvalue in the uncontrolled flow is stable in the
controlled flow.
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Fig. 9. The evolution of the energy of perturbations for m = −1 on top of
the baseflows for the uncontrolled (dashed) and controlled (solid) system.

practical information for designers.

The control ring concept that we have used here is a simple

model for a control device. An example of something similar

that could be used in practice is a hot wire that forms an

axisymmetric ring centred on the axis. The sensitivity of the

location of the hot wire to the temperature and velocity can be

obtained from the relevant adjoint fields, (namely, the adjoint

temperature T̄ + and the adjoint momentum m̄+. We have

chosen to demonstrate this technique for vortex breakdown in

an open domain. However, it can just as easily be applied to

the control of vortex breakdown in a closed vessel (such as

a combustion chamber). In this case, the adjoint pressure p̄+

can be used to obtain the sensitivity to mass injection. This

would offer insight into how active control techniques such

as blowing or suction could be used to control spiral vortex
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breakdown.

The tools that have been developed here are now being

applied to study swirling flows with variable density and

combustion. The overall aim of this project is to develop the

capability of producing sensitivity maps of real fuel injectors

in combustion chambers. These sensitivity maps would give

information about where the design should be changed to

promote or suppress certain flow behaviours, taking into

account the physical mechanisms that act in the flow.

VII. CONCLUSIONS

In this paper, we have considered a theoretical approach

to the control of spiral vortex breakdown. We have shown

that spiral vortex breakdown is caused by an unstable

eigenmode that grows on top of the steady axisymmetric

vortex breakdown bubble. We have used a Lagrangian

approach to identify regions where the flow is most sensitive

to small steady and unsteady (harmonic) forces. We have

found that the regions upstream of the vortex breakdown

bubble are most sensitive to steady and unsteady forces.

We then considered passive control using a small control

ring placed in the flow. We have identified regions where this

control device should be placed to stabilise or destabilise the

flow. We have found that there is a narrow region upstream

of the bubble where the control ring will stabilise the flow.

We have verified this using numerical simulations.

The results from this study have shown that a linear sen-

sitivity analysis can provide useful information for control,

based on the underlying physics of the flow. This technique

can be easily extended to control spiral vortex breakdown in

more complicated geometries.

ACKNOWLEDGEMENT

U. A. Qadri is grateful to Trinity College, Cambridge

for financial support. The numerical computations were per-

formed using the Darwin Supercomputer of the Univer-

sity of Cambridge High Performance Computing Service

(http://www.hpc.cam.ac.uk/), provided by Dell Inc. using

Strategic Research Infrastructure Funding from the Higher

Education Funding Council for England.

REFERENCES

[1] D. H. Peckham and S. A. Atkinson, “Preliminary results of low speed
wind tunnel tests on a gothic wing of aspect ratio 1.0,” Aeronautical
Research Council, Tech. Rep., 1957.

[2] M. Ruith, P. Chen, E. Meiburg, and T. Maxworthy, “Three-dimensional
vortex breakdown in swirling jets and wakes: direct numerical simula-
tion,” Journal of Fluid Mechanics, vol. 486, pp. 331–378, JUL 10 2003.

[3] F. Gallaire, M. Ruith, E. Meiburg, J. Chomaz, and P. Huerre, “Spiral
vortex breakdown as a global mode,” Journal of Fluid Mechanics, vol.
549, pp. 71–80, FEB 25 2006.

[4] A. M. Mitchell and J. Délery, “Research into vortex breakdown control,”
Progress in Aerospace Sciences, vol. 37, no. 4, pp. 385–418, 2001.

[5] D. Hill, “A theoretical approach for analyzing the re-stabilization of
wakes,” AIAA Paper 92-0067, 1992.

[6] O. Marquet, D. Sipp, and L. Jacquin, “Sensitivity analysis and passive
control of cylinder flow,” Journal of Fluid Mechanics, vol. 615, pp.
221–252, NOV 25 2008.

[7] P. Meliga, D. Sipp, and J.-M. Chomaz, “Open-loop control of compress-
ible afterbody flows using adjoint methods,” Physics of Fluids, vol. 22,
no. 5, MAY 2010.

[8] D. Sipp, O. Marquet, P. Meliga, and A. Barbagallo, “Dynamics and
control of global instabilities in open flows: a linearized approach,”
Applied Mechanics Reviews, vol. 63, no. 030801, 2010.

[9] W. J. Grabowski and S. A. Berger, “Solutions of Navier-Stokes equations
for vortex breakdown,” Journal of Fluid Mechanics, vol. 75, no. JUN11,
p. 525, 1976.

[10] O. Marquet, D. Sipp, L. Jacquin, and J.-M. Chomaz, “Multiple timescale
and sensitivity analysis for the passive control of the cylinder flow,” in
AIAA Paper 2008-4228, 2008.

661




