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Abstract—The problems of stochastic stability and H  control 

for a class of discrete time singular networked control systems 
(SNCSs) with data packet dropouts and nonlinear perturbation 
are investigated in this paper. By modeling the sensor-to-
controller and controller-to-actuator with random data packet 
dropouts as Markov chains, the closed-loop system can be 
expressed as a jump discrete singular system with four modes. A 
sufficient condition for the existence of a controller is established 
in terms of linear matrix inequalities (LMIs), the controller gain 
can be solvable via the cone complementary linearization method, 
and the designed controller guarantees the systems to be regular,   
causal and stochastically stable and satisfies  H  performance. 

In addition, a numerical example is given to illustrate the 
effectiveness of the proposed approach. 

Keywords-singular systems; networked control systems; data 
dropout; H control ; Markov chain 

I.  INTRODUCTION  

Networked control systems (NCSs) have been widely used 
in various industrial areas, with the rapid development of 
computer, network and communication technology. The 
primary advantages of NCSs are simplified system structure, 
lower cost of system integration, ease of diagnosis, remote 
distributed control, and increasing system agility. In an NCS, 
several important issues need to be treated, which include the 
network induced delay and data packet loss, more recently, the 
analysis and synthesis problem of networked systems with data 
dropout and network induced time delays have attracted many 
research interests [1-7]. Due to bandwidth limited communica  
-tion channels, packed loss and time delays are the most 
important and special two issues of NCSs. Generally speaking, 
there were three main approaches for modeling packed loss and 
time delays in the NCSs. The first one is to model the data loss 
and induced delays as a binary switches sequence which obeys 
the Bernoulli process with certain probability, the NCSs in both 
continuous time case and discrete time case with packet loss 
and delays were studied in [5,6]. The second approach is to 
model the process as discrete time Markov jumping systems, in 
which transmission times are varying within a time interval or 
driven by a stochastic process with Markov chain, a class of  
methods for stabilization  
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analysis for an NCS were proposed [3,4]. The third model is to 
view data packet loss as a special time delay system, which 
deals with the stability and controllability [2]. However, it can 
only be used to treat the systems with sense-to-controller 
packet loss or controller-to-actuator packet loss cases.   

In [15], the stabilization problem for a class of NCSs in the 
discrete time domain is studied by modeling the sensor-to 
controller packet loss and controller-to-actuator packet loss as 
Markov chains. It is worth noting that the mentioned literature 
results are still very limited for they are all concerned with a 
nonsingular controlled plant. In real projects, a certain linear 
NCS model provides just an approximate singular of the real 
facts. Recently a few results have been reported for the singular 
NCSs [7, 16]. 

In actual physical networked transmission field, there 
coexist data packed loss and nonlinear perturbation, however, 
the aforementioned articles do not consider the two problems 
simultaneously. The H control problem for discrete time 

singular markov jump systems with data loss and nonlinear 
perturbation is also an important problem, and it is not simple 
extension to stability for the systems over networks.  
Motivated by recent research on singular perturbed systems 
and networked control systems [8-14, 18], this paper considers 
the problems of stochastic stability and H control for a class 

of discrete time singular networked control systems with data 
packet dropouts and nonlinear perturbation. Firstly, we 
consider the case that modeling the sensor-to-controller and 
controller-to-actuator with random data packet dropouts as 
Markov chains, and the nonlinear perturbation satisfying 
Lipschitz condition, the closed-loop system can be expressed 
as a jump discrete singular system with four modes in Section 
II; Next, the state feedback controller design and solvable 
problem are proposed in section III  and section IV; Finally, 
an example is given to illustrate the effectiveness of the 
proposed approach in section V.  

Notations: Throughout this paper, for real symmetric 
matrices X  andY , the notation X Y  (respectively, X Y ) 
means that the matrix X Y  is semi-positive 
definite(respectively, positive definite); n and n m denote 
the n-dimensional Euclidean space and the set of all n×m real 
matrices, respectively; I is the identity matrix with 
appropriate dimension; the superscript T represents the 
transpose of a matrix; X  refers to Euclidean norm of the 

vector X ;   denotes the set of non-negative integer numbers; 
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    denotes the mathematical expectation, and   denotes 

the matrix entries implied by symmetry of a matrix.                                                 

II. PROBLEM STATEMENTS AND PRELIMINARIES 

In this paper, considering a typical NCS model with data 
packet dropouts exist in the communication links from sensor 
to controller and controller to actuator as shown in Fig. 1.  

 
Fig.1 Framework of networked control system 

The physical process to be controlled is the following 
singular discrete-time nonlinear model: 

( 1) ( ) ( ) ( ) ( , , )

( ) ( ) ( ) ( )

Ex k Ax k Bu k B k f x u k

z k Cx k Du k D k







    
   

                 (1) 

Where ( ) nx k   is the system state, the matrix 
n nE  may be singular, we shall assume that   

( )rank E r n  ,  ( ) pu k   is the control input, ( ) qk  is 

the disturbance input which belongs to 2[0, )L  , and 

( ) mz k  is the system controlled output; ( ) nf   is 

nonlinear uncertain perturbation, with (0,0, ) 0f k  satisfies 

Lipschitz condition; , , , , ,A B B C D D  are known real constant 

matrices with appropriate dimensions.  
Assume the system state can be measured and the data are 

transmitted in a single packet at each time step, the data loss 
information is important for controller design, it is desirable 
that the state feedback controller is  

( ) ( )u k Kx k                                                                          (2) 

which K is the controller gain to be determined.  
 In Fig.1, 1 2,S S are networked switches, and ,   

[ , (0,1)]   are the states, respectively, when 0   , 

there is no data packet loss, then ( ) ( )x k x k , ( ) ( )u k u k ; 

when 1    there exist data packet loss, then  

( ) ( 1)x k x k  , ( ) ( 1)u k u k  .  

Then ( )x k  and ( )u k  can be written as: 

( ) (1 ) ( ) ( 1)

( ) (1 ) ( ) ( 1)

x k x k x k

u k u k u k

 
 

   
    

                                             (3) 

By introducing new state vectors   
( ) [ ( ), ( 1), ( 1)]k x k x k u k       , then the closed-loop 

system resulting from equations (1), (2) and (3)  can be 
expressed as  ( (1,2,3,4)i ) 

( 1) ( ) ( ) ( )

( ) ( ) ( )
i

i

E k A k B k f k

z k C k D k




  
 

    


 
                                   (4) 

Where  

1) 0   ,  1 1

0 0

0 0 , [ ,0,0]

0 0

A BK

A I C C DK

K

 
    
 
 

 

2) 0, 1   ,  2 2

0

0 0 , [ ,0, ]

0 0 0

A B

A I C C D

 
   
 
 

 

3) 1, 0   ,  3 3

0

0 0 , [ , ,0]

0 0

A BK

A I C C DK

K

 
   
 
 

 

4) 1, 1   ,  4 4

0

0 0 , [ ,0, ]

0 0

A B

A I C C D

I

 
   
 
 

 

[ 0 0]T TB B  , 

0 0

0 0 0

0 0 0

E

E

 
   
  

  ( ) [ ( ) 0 0]T Tf k f   

It is noted from above analysis, the closed-loop system (4) 
is component by four sub-systems, so it can be constructed as  
Markov jump systems 

( )

( )

( 1) ( ) ( ) ( )

( ) ( ) ( )
k

k

E k A k B k f k

z k C k D k
 

 

  
 

    
  

                               (5) 

where  ( ),k k   is discrete Markov chains that takes 

values in  1,2,3,4l  . Its transition probability matrix is  

 ij  , which is defined ( ( 1) ( ) )ij P k j k i       with 

0ij   and 
4

1
1ijj




  for all i l .  

Assume the nonlinear ( )f k  of system (4) satisfies   

( ) ( ) ( ) ( )f k f k k H k                                                       (6) 

Hear H is known real constant matrix.  
Remark  2.1   When , 0E I f  , system(5) reduces to 

( )

( )

( 1) ( ) ( )

( ) ( ) ( )
k

k

k A k B k

z k C k D k
 

 

  
 

   
  

                                              (7) 

is a special case of this paper, which discussed in [18]. 
The following definitions will be used in the sequel. 

Definition 2.1 [12] The discrete singular system (5) under 
without disturbance ( ( ) 0k  ) is said to be stochastically 

stable if for any 0
nx  , there exist 0 0( , ) 0x   and a 

scalar  , such that  

 2

0 0 0 00
lim , ( , )

N

kN
x x x  


                                    (8) 

Definition 2.2 [10] For all i l , the discrete singular system 
(5) is said to be 
i . regular if det( )izE A  is not identically zero. 

ii.    causal if deg(det( )) ( )izE A rank E  . 

actuator plant sensor 

controller 

2S

( )u k  

1S

( )u k ( )x k

( )x k  
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iii. stochastically admissible if it is regular, causal and 
stochastically stable. 
Definition 2.3 [11] System (5) with ( ) 0u k  is said to be 

robustly mean square quadratic stability, if there exists a scalar 
0   such that

2 2
( ) ( )z k kg w£ , for any nonzero 

disturbance 2( ) [0, )k L   , where  

 2 0
( ) ( ) ( )T

k
z k z k z k


  ,  2 0

( ) ( ) ( )T

k
k k k  


   

The objective of this paper is to establish a sufficient 
condition such that the closed-loop system (5) is stochastically 
stable and to design a state-feedback controller in the form of 
(2), to satisfy H  performance.  

III. STABILITY  ANALYSIS 

In this section, we analyze the stochastic stability and 
H performance of system (5). Before presenting the main 
results, we introduce the following lemma. 

Lemma 3.1 [10] The system (5) with ( ) 0k   is 

stochastically admissible if and only if there exists 0iP   

such that the following matrix inequalities holds: 

0

0

T
i

T T
i i i i

E PE

A P A E PE

 


 
                                                            (9) 

where   
1

N

i ij ij
P P


    

Now, we propose the results of this section as follows. 
Theorem 3.1 Given scalar 0   for each i l , if and only if 

there exist matrices T
i iP P and 0   such that the following 

matrix inequalities (10) and (11) hold                         
0T

iE PE                                                                              (10) 

2

1

0
0

0

i i i i i i i
T

i

A P A E PE A PB C H

B PB I D

I

I



  




    





 
    
   
 

     

          (11) 

then the SNCs (5) is stochastically admissible and robust 
asymptotically stable , moreover satisfies H performance g  

norm. 

Where 
4

1i ij ij
P P


   

Proof: stochastically admissible and asymptotically stable 
analysis. 
construct the following lyapunov function 

( )( ( ), ( )) ( ) ( )T T
kV k k k E P E k                                        (12)        

when ( ) 0k  , for simplicity ( )k i  , calculating the 

difference of ( , ( ))V k k  along the trajectory of system (5) 

and taking the mathematical expectation, we have 
( ( ), ( )) [ ( ( 1), ( 1))] ( ( ), ( ))V k k V k k V k k          

 1( 1) ( 1) ( ) ( )T T T T
i ik E P E k k E PE k       

 

1

( ) ( )

( ) ( )
i i i i

k kA P A E PE H

f k f kH I

 


   



    
         

min 1

( )
( ) ( )i i i iA P A E PE H
k k

H I
  



  




            

( ) ( )x k x k                                                                       (13)
 

where min ( )   denotes the minimum eigenvalue of matrix ( ) ,  

( ) ( ) ( )k k f k 
       and  min0 min ( )    .   

Inequality (13) implies that  

0
[ (( 1), ( 1))] [ (0, (0))] [ ( ) ( )]

N

k
V k k V x k x k     


       

(14) 

So    
0

1
[ ( ) ( )] [ ( (0), (0))]

N

k
x k x k V  


 


  ,  

let N   then   

0

1
[ ( ) ( )] [ ( (0), (0))]

k
x k x k V  


  


                       (15) 

applying definition 2.1 and lemma 3.1, we can obtain the 
system is stochastically admissible and asymptotically stable. 

Then we prove system (5) with zero initial condition, the 
output ( )z k satisfies H  performance. 

Definition    1

0
( ) ( ) ( ) ( )

N T T

k
J z k z k k k   


         (16) 

Through computation, we have  

 1

0
( , ( )) ( ) ( ) ( ) ( )

N T T

k
J V k k z k z k k k    


      

2

0

( ) ( )

( ) ( )

( ) ( )

i i i
N T

ik

k A A PB C k

f k B PB I D f k

k I k



 

 


  


  




     
            
            




  (17) 

where  i i i iA A P A E PE H H      

According to the theorem 3.1, applying Schur complements 
formula  

 
0

(17) 0lim
N

kN
Inequality


 , 

then       0 0
( ) ( ) ( ) ( )T T

k k
z k z k k k    

 
  ,  

so the system has H  performance g  norm. 

This completes the proof. 
Remark 3.1   For systems (7), considered the random data 
packet dropout as Bernoulli process ( 1    or 0   ) 

for state feedback controller designing in [18]. Without 
disturbance ( ( ) 0k  ) for systems (7), a question of robust 

mean square stability of networked control systems with 
packed dropout was investigated in [15], in the theorem 3.1, 
we consider the system with external and nonlinear 
disturbance simultaneously, and establish a sufficient 
stochastic stability condition for state feedback controller 
designing, which is more generality in actual networked data 
transmission  and application. 
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IV. STATE FEEDBACK H CONTROLLER DESIGN 

In theorem 3.1, not given out the controller gain K  solve 
method, in this section, we will present a design method for the 
state feedback controller (2) in terms of LMIs. 

Theorem 4.1 Given scalars 0g > , 0   for each i l , if 

there exist matrices 0iX  , 0iP   and K , such that the 

inequalities (18) and (19) are feasible, then the SNCs (5) is 
stochastically admissible and asymptotically stable, satisfies 
H  performance norm g . 

0T
iE X E                                                                            (18) 

1 2 3 4 5

0

1

0 0

00

0

ij i i i
j l

T

P C DKE

I D

I

H














     
    
     
     
      


              (19) 

where  

1 0

2 0
2

3 0

4 0

( )

( )

( )

( )

i i i i

i i i i

i i i i

i i i i

A M KN

A M KN

A M KN

A M KN









 
 

 
   

 
  

   

1

2
3

3

4

i

i

i

i

B

B

B

B

















 
 
 

   
 
 
 

            

 1 , , ,i i i idiag X X X X        4 0 0 0 0
             

 5 0 0 0iX
   

Proof:  First, in theorem 3.1, we rewrite iA  and iC  as 

0i i i iA A M KN  ,  0i i iC C DKE    

where 

 01 01

0 0

0 0 , 0 0

0 0 0

A

A I C C

 
   
  

 02 02

0

0 0 , 0

0 0

A B

A I C C D

I

 
   
  

 

 03 03

0 0

0 0 , 0 0

0 0 0

A

A I C C

 
   
  

 04 04

0

0 0 , 0

0 0

A B

A I C C D

I

 
   
  

 

 1 2 3 40 , 0 0 0
T TTM M B I M M       

   1 20 0 , 0 0N I N I 
      3 4 0 0 0N N   

   1 30 0 , 0 0E I E I          2 4 0 0 0E E   

Then applying Schur complements formula, inequality (11) 
can be rewritten as an equivalent form (20)

 

 

1 2 3 4 5

0

1

0 0

00

0

ij i i i
j l

T

P C DKE

I D

I

H














     
    
     
 
    

      


             (20) 

where 
1 1 1 1

1 , , ,i i i idiag P P P P         , 2 2 3 3 4 4, ,          

1
5 0 0 0iP

      

Let 1
i iP X   in inequality (20), it yields (19). 

This completes the proof. 
Remark 4.1 It should be noted that inequality (20) are non-
convex due to 1

iP , which can be solved via the cone 

complementary linearization method [17], the controller gain 
solve method converted into the following nonlinear 
optimization problem involving LMI conditions.  

4

, ,
1

min ( )
i i

i iP X
i

tr P X



  

s )(18) (19)ubject to i and , ) 0i

i

P I
ii

I X

 
 

 
                      (21) 

The   sub-optimal H  controller gain K  can be found 

using the following algorithm: 
Algorithm 4.1 

Step 1 Find an initial feasible set 0 0 0( , , )P X K  satisfying 

(21), let 0k  . 
Step 2  Solve the following LMI problem 

4

, ,
1

min ( )

s )(18) (19), ) 0

i i

k k
i i i iP X

i

i

i

tr P X P X

P I
ubject to i and ii

I X








      


 

Step  3  let  1 1 1, ,k k k k
i i i iP P X X K K      

Step 4 If k N , where N  is the maximum numbers of 
iterations allowed, give up and stop. 

Step 5 If ( , , )P X K satisfy (21), then stop, if not, let 

1k k    go to step2. 

V. ILLUSTRATIVE  EXAMPLE 

In this section, we present a numerical example to illustrate 
the theoretical results developed earlier. Consider the system 
(1) with the following matrices borrowed from [18] example 3, 
we have the parameters 

1 0 1 1
,

0 0 1 0.5
E A

   
        

, 
6 0.03 0.01

,
2 0 0.01

B B

   
    
   

 

   0.1 0.05 , 0.01 0.01C D    , 
1

0.5,
1

D H
 

   
 

 

Applying augmentation matrix method, it can be obtained 
parameters of system (5)  
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01

1 1 0 0 0 0

1 0.5 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

A

 
   
 

  
 
 
 
  

02

1 1 0 0 6 0

1 0.5 0 0 2 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

A

 
   
 

  
 
 
 
  

03

1 1 0 0 0 0

1 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

A

 
   
 

  
 
 
 
  

04

1 1 0 0 6 0

1 0.5 0 0 2 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

A

 
   
 

  
 
 
 
  

 01 03 0.1 0.05 0 0 0 0C C   

 02 04 0.1 0.05 0 0 0.5 0C C   

 1 2 6 2 0 0 0 0M M 

 3 4 0 0 0 0 0 0M M   1 1 0 0 0 0 0N 

 2 0 0 1 0 0 0N   3 4 0 0 0 0 0 0N N 

 1 1 0 0 0 0 0E   

 3 0 0 1 0 0 0E  ,  2 4 0 0 0 0 0 0E E   

The transition probability matrix is given as  
0.3 0.5 0.1 0.1

0.2 0.3 0.5 0.0

0.1 0.7 0.0 0.2

0.6 0.1 0.2 0.1

 
 
  
 
 
 

 

applying algorithm 4.1 to this example, it can be obtained 

min 0.175  , the controller gain matrix  

0.2490 0.4263

0.2328 0.4256
K

 
   

 

In the initial condition (0) [1 1]x    and (0) 1  , the 

external disturbance ( )k  is assumed to be,  

0.2, 10 15

( ) 0.2, 15 25

0,

k

k k

else


 

   



 

the system state response and control output trajectory are 
given in Fig.2 and Fig.3, respectively. 

 
Fig.2 The state response of system 

 
Fig.3 The control output of system 

from the simulation, it shows the asymptotical stability of the 
closed-loop system.  

For system (1), when , 0E I f  , in [14] only considered 

the networked control systems are modeled as a Markov jump 
linear system with two operation modes, compared with 
references [15, 16, 18], our result has more generality in 
practical application. 

 
CONCLUSION 

In this paper, the problem of robust H control of discrete 

time singular systems over networks has been investigated, 
both the data packed dropout and nonlinear disturbance are 
considered, the system communication link failure is modeled 
as markovian jump singular systems with four models, based 
on the Lyapunov function method and LMI technique, an 
approach has been developed to design a state feedback H  

controller, such that the closed-loop system is stochastically 
stable and preserves a guaranteed H performance. An 

example is shown that the approach presented in this paper is 
effective.  
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