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1. Introduction

According to Wikipedia, optimization is
defined as: ‘‘In mathematics and computer
science, optimization, or mathematical pro-
gramming, refers to choosing the best element
from some set of available alternatives. In the
simplest case, this means solving problems in
which one seeks to minimize or maximize a real
function by systematically choosing the values
of real or integer variables from within an
allowed set . . ..’’ Optimization has well over
10 major subfields, each of which has several
researchers/adherents. For this article, the above
definition which is quite good and pertains to
several disciplines including process systems
will be adopted. In process systems a systematic
and thorough study of a chemical process to
understand the relationship among the possibly
many process variables is done. Although some
of the relationships are observable, for most
processes the understanding of the relationships
is rather limited. Various mathematical formu-
lae (commonly referred to as process models)
have been developed to mimic the observed

relationships. With these process models, one
is equipped to devise ways to systematically
improve the process using process optimization
concepts. This is done by appropriately setting
values of a subset of the process variables at
levels that would make another subset of pro-
cess variables attain their desired values. This
chapter discusses process systems optimization.

A process systems optimization model [1–3]
involves the minimization or maximization of a
function while keeping constraints within
acceptable limits. A fairly general optimization
model is given as

min
x;u

jðz; y; uÞ

wiðz; y; uÞ ¼ 0 i ¼ 1; . . . ;m

cjðz; y; uÞ � 0 j ¼ 1; . . . ; p

z 2 Rnz y 2 f�n1; . . . ; n2gny u 2 Rnu ð1Þ

Here, z and y are vectors of continuous/
discrete valued process variables, respectively.
In several process systems models, each
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member of y tends to take the value of 0 or 1
(y 2 f0; 1gm2 ) indicating the absence or pres-
ence of a process unit. The vector of decision
variables are given by u. Examples of process
variables are z ¼ ½concentration; temperature�T
and u ¼ ½feedconcentration; reactorsize�T . It is
straightforward to convert amaximization prob-
lem into a minimization problem (and vice-
versa). Specifically minw jðwÞ is equivalent to
maxwð�jðwÞÞ. If minimization is considered,
there is no loss of generality.

The function jðz; y; uÞ is more commonly
referred to as the performance objective (e.g.,
profit); it is a measure of how good the design is.
Sometimes there are several competing perfor-
mance objectives as follows: fj1; . . .; jpg; in
such a case a new objective function is formu-
lated from the available set, for example, by
using a weighted average of the set. A more
general combination of the individual objec-
tives leads to a convolution operator [4]. The
set fwiðz; y; uÞg includes material and energy
balances while the set fcjðz; y; uÞg may repre-
sent process constraints such as safety, environ-
mental limitations, and process specifications.
Sometimes the model is more conveniently
expressed as

min
x

jðxÞ

wiðxÞ ¼ 0 i ¼ 1; . . . ;m

cjðxÞ � 0 j ¼ 1; . . . ; p

xL � x � xU ð2Þ

where x ¼ ½z; y; u� and the superscripts ½L;U�
denote lower and upper bounds which are also
called box-constraints.

The strategy for the solution of the optimi-
zation model may either result in a locally
optimal solution or a globally optimal solution.

2. General Optimization Concepts

To be a viable optimization problem at the very
least one degree of freedom is required, in other
words nzþny > mþp (Eqs. 1, 2) and [5] for an in
depth exposition of conditions under which
solutions exist. For now it is assumed the opti-
mization model has a solution.

There are many process optimization formu-
lations that are multimodal, i.e., lead to multiple
local optima. Sometimes one is interested in
finding the best optima and global optimization
algorithms have to be employed [6, 7]. The
methods that are discussed in this section are
local optimization methods. A crude but practi-
cal way to find or get close to global optima
(using local optimization algorithms) is to run
the algorithm for multiple initial starting points
and keeping the best solution. A good collection
of mostly free optimization software can be
found at ! Mathematics in Chemical Engi-
neering, Chap. 10 and the following web sites:

Local optimization: http://www.mat.univie.
ac.at/�neum/glopt/software_l.html [8]

Global optimization: http://www.mat.uni-
vie.ac.at/�neum/glopt/software_g.html [9]

Unconstrained Optimization. For uncon-
strained optimization the equality and inequali-
ty constraint sets fwig; fcjg and the box-
constraints are all absent. For simplicity all
variables are assumed to be continuous (i.e.,
the discrete variable y is absent). The explicit
consideration of discrete variables leads to com-
binatorial optimization [10] and the uncon-
strained optimization problem becomes

min
x

jðxÞ ð3Þ

Several solution approaches have been
developed [11]. The necessary conditions for
optimality is obtained by setting the derivative
equal to zero as follows

!jðxÞ ¼ f ðxÞ ¼ 0 f 2 Rn ð4Þ

Gradient based iterative methods for solving
Equation (4) determine a new improved point as

xjþ1 ¼ xjþajsj ¼ xjþpj ð5Þ

where xj is the current point and aj determines
the step length along the search direction sj,
given as

sj ¼ �Gjgj

gj ¼!f ðxjÞ ð6Þ

Here, gj is the gradient of f ðxÞ at xj. The
choice of the matrix Gj depends on the solution
strategy. Common to most solution approaches
for unconstrained minimization is the following
generic algorithm 1:
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. Step 1: Set j ¼ 0. Give an initial guess x0 and
G0

. Step 2: If j > 0 determine Gj

. Step 3: Find the search direction
sj ¼ �Gjgj gj ¼!f ðxjÞ

. Step 4: Perform a line search along sj; that is,
determine aj such that f ðxjþajsjÞ < f ðxjÞ

. Step 5: STOP with the solution if k!fk � e

. Step 6: Set j ¼ jþ1. Go to Step 2

Line search methods are described in detail
in [12]. If Gj ¼ I (the identity matrix) then
algorithm 1 is the steepest descent method. If
Gj ¼ ðHðxjÞÞ�1 (where HðxÞ is the Hessian
of f ðxÞ), then the algorithm is the Newton
method.

The steepest descent method only requires
the gradient of f ðxÞ and has a linear rate of
convergence close to the solution. On the other
hand the Newton method has quadratic conver-
gence rate close to the solution and is therefore
faster close to the solution of Equation (3).
However, it requires second derivatives (Hes-
sian) of f ðxÞ. To avoid the computational burden
of calculating the Hessian, quasi-Newton meth-
ods were developed, in which some approxima-
tion of the Hessian (or inverse Hessian) is
employed. Quasi-Newton methods have super-
linear convergence rate close to the solution and
require only first derivative information. Final-
ly, steepest descent has global convergence (for
convex, differentiable functions) in the sense
that the method converges from any starting
point as long as first derivatives can be calcu-
lated with enough accuracy. In contrast the
Newton method does not have global conver-
gence for a number of reasons; one of these is the
possibility of HðxÞ becoming singular.

The main distinguishing feature of any of the
above methods is the technique for forming
GðxÞ.

Newton Method. Consider a set of
equations described by the vector quantity
hðxÞ ¼ ½h1ðxÞ; . . .; hmðxÞ�T ¼ 0, where the ex-
pression from Equation (4) is a special case of
this. For hðxÞ ¼ 0, the Jacobian is defined as

J ¼

qh1
qx1

� � � qh1
qxn

..

.
} ..

.

qhm
qx1

� � � qhm
qxn

2
6666664

3
7777775

ð7Þ

Subsequently the update steps in the Newton
method can be written as

xjþ1 ¼ xjþajsj 0 � aj � 1

Jjsj ¼ �hj hj � hðxjÞ ð8Þ

In order to speed up the method in the early
stages of iteration and at the same time improve
convergence of the method close to the solu-
tion, a good rule of thumb is to initially pick the
step length aj to be 1 and systematically reduce
its value. The step length is based on

khjþ1k < khjk

khjk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

h2ij

s
ð9Þ

where hij is the i-th component of hj. In a
vicinity of the solution the algorithm has qua-
dratic convergence; in other words if x* is the
solution of Equation (4), then

kxiþ1�xk � ckxi�xk2:

The Newton method has the following
properties:

. The method requires a good initial approxi-
mation x0. If the latter is bad the method
often converges slowly or does not converge
at all

. It is necessary to solve at each iteration the set
of linear equations in Equation (8) for the
search direction, thus exacting a significant
computational overhead

. There is a need to calculate the Jacobian at
each iteration

Step 3 leads to significant computational
overhead at each iteration because quite often,
the difference approximation is the only viable
way to obtain estimates of the derivatives in the
Jacobian matrix; thus ðnþ1Þ evaluations of hðxÞ
are needed; on the other hand quasi-Newton
methods have less computational burden at each
iteration since they do not require the explicit
evaluation of the Jacobian.

Quasi-Newton Method. In the quasi-Newton
method xjþ1 is assumed to be known and
Equation (7) is used to determine Jj. In Table 1
differences in the Newton and quasi-Newton
methods are shown.

Process Systems Engineering, 3. Mathematical Programming (Optimization) 3



The update steps in the quasi-Newton
method can be written as

sj ¼ �Gjhj ð10Þ

The updated Gj can be computed using the
Broyden–Fletcher Goldfarb–Shanno (BFGS)
[13] formula

Gjþ1 ¼ Gjþ
yjy

T
j

sTj yj
�Gjsjs

T
j Gj

sTj Gjsj

yj ¼ hjþ1�hj ð11Þ

Constrained Optimization. Methods for
solving Equation (2) are considered. Let D be
the feasible region of the problem, thus
D ¼ fx : fðxÞ ¼ 0;cðxÞ � 0g. The Lagrange
function is defined as

L ¼ f ðxÞ�
Xm
i¼1

lifiþ
Xp
j¼1

mjcj ð12Þ

The Kuhn–Tucker necessary conditions
for the minimum of L [12, 13] are given as
follows

qL
qxi
¼ 0 ð13Þ

mj � 0 j ¼ 1; . . . ; p ð14Þ

mjcj ¼ 0 j ¼ 1; . . .; p ð15Þ

wiðxÞ ¼ 0 i ¼ 1; . . .;m ð16Þ

cjðxÞ � 0 j ¼ 1; . . .; p ð17Þ

Let fx; f �g (where f ¼ f ðx�Þ) be the solution
of Equation (2). The equality in Equation (15)
implies that

. If mj > 0 then cjðxÞ ¼ 0

. If cjðxÞ < 0 then mj ¼ 0.

Methods for solving the nonlinear program
in Equation (2) are listed below:

1. Successive solution of unconstrained opti-
mization methods (penalty methods [14],
Langrange multipliers methods [15], and
augmented Lagrangian methods [16]

2. Successive solution of quadratic program-
ming subproblems; this method is more
commonly referred to as sequential quadrat-
ic programming (SQP) [1, 17] and! Math-
ematics in Chemical Engineering, Section
10.2

3. Successive solution of nonlinear opti-
mization problems with linear constraints
[18]

Langrange Multiplier Method. For consid-
ering the Lagrange multiplier method [15] the
duality function is introduced

hðl;mÞ ¼ min
x

Lðx;l;mÞ ð18Þ

where hðl;mÞ gives a lower bound of
the optimal value of the objective function in
Equation (2). Therefore

hðl;mÞ � f ðxÞ ð19Þ

The following relation also holds

hðl;mÞ � Lðx;l;mÞ 8x 2 X; 8l; 8m > 0 ð20Þ

hence, in particular

hðl;mÞ � Lðx; l;mÞ ð21Þ

Under some convexity conditions the opti-
mal objective function value from Equation (2)
satisfies

f ¼ max
l;m�0

hðl;mÞ ¼ max
l;m�0

min
x

Lðx; l;mÞ ð22Þ

Thus the constrained optimization problem
is reduced to a two-level optimization proce-
dure. At the first level the unconstrained opti-
mization problem in Equation (18) is solved and
at the second level a problemwith simple bound
constraints is solved as follows

max
l;m

hðl;mÞ
m � 0

ð23Þ

If Equation (18) has a single solution then the
derivatives of hðl;mÞ are calculated as

qh
qli
¼ qL

qli
¼ �fi xð Þ

qh
qmj

¼ qL
qmj

¼ cj x l;mð Þð Þ ð24Þ

Table 1. Comparison of Newton and quasi-Newton methods

xjþ1 Jj Goal

Newton unknown known determine xjþ1
Quasi-Newton known unknown determine Jj

4 Process Systems Engineering, 3. Mathematical Programming (Optimization)



Penalty Method. The outer penalty meth-
od [14] may be used for solving the problems
stated in Equation (2); the following auxiliary
function results

Fðx; ji; g jÞ ¼ fþ
Xm
i¼1

jif
2
iþ

Xp
j¼1

g jQðcjÞ ð25Þ

where ji 	 1; g j 	 1 and QðcjÞ is given by

QðcjÞ ¼
0; if cj � 0

c2
j if cj > 0:

(

Looking for the minimum of Fðx; ji; g jÞwith
respect to x one can show that under certain
conditions the solution of the unconstrained
problem

min
x

Fðx; ji; g jÞ ð26Þ

will tend to the solution of Equation (2) as
ji!¥ and g j!¥ [14]. However, for large ji
and g i the function Fðx; ji; g jÞ is ill condi-
tioned [14]. To partially avoid this problem,
minimization of Fðx; ji; g jÞ for relatively small
values of the penalty coefficients fji; g jg is
carried out. Subsequently, the penalty coeffi-
cients are systematically increased and minimi-
zation of Fðx; ji; g jÞ is repeated. Also, similar to
of the Lagrange multiplier method, the proce-
dure for solving Equation (2) is two-level. Spe-
cifically, minimization of F with respect to x
corresponds to the first (lower) level and the
increment in the coefficients fji; g jg corre-
sponds to the second (upper) level.

TheModified Lagrange FunctionMethod.
For simplicity the case when inequality con-
straints are absent is considered and the modi-
fied Lagrange function is defined as

Fðx; l; jÞ ¼ Lþj
Xm
i¼1

w2
i ð27Þ

where L is the original Lagrange function

L ¼ fþ
Xm
i¼1

liwi

Recalling that fx; f �g is the minimizer of
Equation (2) let l� be the corresponding vector
of Lagrange multipliers. At x� the necessary
condition for optimality of Equation (2) is given
by

rL � rfþ
Xm
i¼1

lirwi ¼ 0 ð28Þ

Note the following

rF ¼ rfþ
Xm
j¼1
ðljþ2jfjÞrfj ð29Þ

Since at x* constraints of Equation (5) are
met then according to Equation (28)

rF ¼ rL ¼ 0 ð30Þ

One can show that for a sufficiently large and
finite j, theminimumofFwill correspond to the
minimum of Equation (2) [16]. In this case,
again, the constrained optimization problem in
Equation (2) is reduced to a two-level procedure
in which a sequence of unconstrained optimiza-
tion problems is solved. Here, to the lower level
minimization of F corresponds

min
x

Fðx; lðiÞ; jÞ ð31Þ

where lðiÞ is the i-th approximation of the
Lagrange multipliers and xi� is the solution of
the problem. On the second level we must
change l in order to obtain the solution of
Equation (2) which is done as follows:

First minimization of F for fixed l is per-
formed. At the minimum point the following
condition is met

rF ¼ 0 ð32Þ

Since at the solution of Equation (2),
Equation (28) must be satisfied, then the follow-
ing approximation for the Lagrange multipliers
can be used:

l
ðiþ1Þ
j ¼ l

ðiÞ
j þ2jwi*

j

wi*
j ¼ wjðxi*Þ: ð33Þ

The modified Lagrange function method
does not have the drawbacks of either the pen-
alty method or the method of Lagrange multi-
pliers. In contrast to the method of Lagrange
multipliers it does not require convexity ofF in
the vicinity of the solution of Equation (2).
Moreover, in contrast to the penalty method
there is no need to systematically increase the
penalty coefficients towards infinity. In other
words, in general F is not ill conditioned.

Sequential Quadratic Programming.
Some text books also refer to sequential
quadratic programming (SQP) as successive
quadratic programming [1]. Recalling that the

Process Systems Engineering, 3. Mathematical Programming (Optimization) 5



Lagrange function for Equation (2) is

L ¼ f ðxÞ�lTfþmTc ð34Þ

the following definitions are needed

xiðx; l;mÞ ¼
qL
qxi

; i ¼ 1; . . . ; n

wiðxÞ; i ¼ ðnþ1Þ; . . . ; ðnþmÞ

8>><
>>:

The vector function x ¼ ðxi;x2 . . . xnþmÞ
can be written as

xðx; l;mÞ ¼ rf�JT1 lþJT2 m
fðxÞ

(
ð35Þ

where J1 and J2 are Jacobian matrices

J1 ¼ qðwi; . . .;wmÞ
qðx1; . . .; xnÞ ¼

qw1

qx1
; . . . ;

qw1

qxn

..

. ..
.

qwm

qx1
; . . . ;

qwm

qxn

0
BBBBBB@

1
CCCCCCA

ð36Þ

Example:

form ¼ 2 and n ¼ 3;

J1 ¼ qðw1;w2Þ
qðx1; x2; x3Þ ¼

qw1

qx1

qw1

qx2

qw1

qx3
qw2

qx1

qw2

qx2

qw2

qx3

0
BB@

1
CCA

J2 ¼
qðc1; . . .;cpÞ
qðx1; . . .; xnÞ ¼

qc1

qx1
; . . . ;

qc1

qxn

..

. ..
.

qcp

qx1
; . . . ;

qcp

qxn

0
BBBBBB@

1
CCCCCCA

ð37Þ

Using theKarush–Kuhn–Tucker (KKT) nec-
essary optimization conditions [19] and !
Mathematics in Chemical Engineering, Section
10.2 one obtains

xðx; l;mÞ ¼ 0

diagðcÞm ¼ 0

cðxÞ � 0

m � 0 ð38Þ

Here, m ¼ ðm1; . . . ;mpÞT , diag(c) is a diag-
onal matrix with elements fc1; . . . ;cpg. Thus
for solving the problem in Equation (2), it is
necessary to find the solution of a system of (nþ
m þ p) nonlinear equations and 2p inequalities
with respect to (n þ m þ p) variables fx; l;mg.

If Equation (2) does not contain inequalities
then theKKT conditions are reduced to a system
of nonlinear equations with (n þ m) variables
fx; lg which can be solved using, for example,
the Newton method. In general, the presence of
the inequalities complicates the problem.

Now an extension of Newton’s method for
solving a set of nonlinear equations is consid-
ered. Let fx�; l�;m�g be the solution of Equa-
tion (38) and f�x; �l; �mg be values at some itera-
tion. Furthermore, the point f�x; �l; �mg is suffi-
ciently close to fx�; l�;m�g such that for small
values fDx;Dl;Dmg
x� ¼ �xþDx; l� ¼ �lþDl; m� ¼ �mþDm ð39Þ

Let g ¼ ðx1; . . . ; xnþm; c1; . . . ;cpÞ and
z ¼ ðx1; . . . ; xn; l1; . . . ; lm; m1; . . . ;mpÞ
then the Jacobian matrix is of the form

J ¼ qg
qz
¼ qðx1; . . . ; xnþm; c1; . . . ;cpÞ

qðx1; . . . ; xn; l1; . . . ; lm; m1; . . . ;mpÞ
ð40Þ

In the matrix J, the first n þ m rows corre-
spond to the functions x1,. . .,xn þ m and the last
rows with indices (n þ m þ 1, . . ., n þ m þ p)
correspond to the functions c1; . . . ;cp. The first
n columns correspond to x, the following m
columns correspond to l, and the last p columns
correspond tom. Thematrix J can be represented
in the following block form

J ¼

qðx1; . . . ; xnÞ
qðx1; . . . ; xnÞ

qðx1; . . . ; xnÞ
qðl1; . . . ; lmÞ

qðx1; . . . ;xnÞ
qðm1; . . . ;mpÞ

qðxnþ1; . . . ; xnþmÞ
qðx1; . . . ; xnÞ

qðxnþ1; . . . ; xnþmÞ
qðl1; . . . ; lmÞ

qðxnþ1; . . . ; xnþmÞ
qðm1; . . . ;mpÞ

qðc1; . . . ;cpÞ
qðx1; . . . ; xnÞ

qðc1; . . . ;cpÞ
qðl1; . . . ; lmÞ

qðc1; . . . ;cpÞ
qðm1; . . . ;mpÞ

0
BBBBBBBB@

1
CCCCCCCCA

ð41Þ

Using the fact that f and c do not depend on
fl;mg, J takes the form

J ¼
G �JT1 þJT2
J1 0 0

J2 0 0

0
B@

1
CA ð42Þ

where G is the Hessian (with respect to x) of L
(G ¼ r2L). Now substitute fx�; l�;m�g from
Equation (39) into the system Equation (38) and
carrying out a second-order Taylor series
expansion of the left-hand side of the system

6 Process Systems Engineering, 3. Mathematical Programming (Optimization)



Equation (38), this system is reduced to

J

Dx
Dl
Dm

0
B@

1
CA ¼

�rLð�x; �l; �mÞ
�fð�xÞ
��cð�xÞ

0
B@

1
CA ð43Þ

and

diagðcþdcÞðmþDxÞ ¼ 0

�mþdm � 0 ð44Þ

where dc ¼ J2Dx.
In order to determine fDx;Dl;Dmg it is

necessary to solve the above system of linear
inequalities. One approach to solving the prob-
lem is to consider the following quadratic
programming problem:

min
y

gT yþ 1

2
yTGy

� �

J1yþ�f ¼ 0

J2yþ�c � 0 ð45Þ

where �w ¼ wð�xÞ; �c ¼ cð�xÞ; g ¼ rf . The
Lagrange function for this problem is

L
_ ¼ gTyþ 1

2
yTGy�vT ðJ1yþ�wÞþuT ðJ2yþ�cÞ

where n and u are Lagrange multipliers corre-
sponding to the equality and inequality con-
straints. The relevant KKT conditions
are

ry L
_ ¼ gþGy�JT1 vþJT2 u ¼ 0

J1yþ�w ¼ 0

J2yþ�c � 0

diagðJ2yþ�cÞu ¼ 0

u � 0 ð46Þ

Substituting the quantities y ¼ Dx;
v ¼ �lþDl; u ¼ �mþDm into Equation (46), one
obtains Equation (43). Thus fDx;Dl;Dmg can
be obtained by solving the quadratic program-
ming (QP) problem to obtain a new point in the
space of x and so on. It should be noted that such
a procedure could diverge just like the Newton
method. Therefore, a modification similar to the

modified Newton method can be used. Specifi-
cally, starting from f�x; �l; �mg one can do a line
search in the space of the variables fx;l;mg
along the direction p ¼ fDx;Dl;Dmg. There are
other line search strategies, e.g., based on a
minimization of the norm of Lðx; l;mÞ. The
Armijo line search has been used extensively [1]
with great success.

In the following an SQP algorithm for Equa-
tion (4) is outlined:

. Step 0: Initialize z, iteration counter i 0, and
other initializations

. Step 1: At the i-th iteration form the Lagrange
function
LðiÞ ¼ f ðxÞ�ðli�1ÞTfðxÞþðmi�1ÞTcðxÞ
where li�1;mi�1 are Lagrange multipliers

. Step 2: Find the Jacobian for f and c, the
gradient rf and the Hessian r2LðiÞ

. Step 3: Solve the QP in Equation (45) to yield
a new search direction pi

. Step 4: Do a line search along pi and find
next iteration point zi ¼ zi�1þaipi

(zi � fxi; li;mig), where ai is the search
length

. Step 5: Check the termination criterion. If the
Karush–Kuhn–Tucker error is less than the
desired tolerance e, STOP with the optimal
solution

. Step 6: Set i iþ1 and go to Step 1

The drawbacks of this variant of the SQP
algorithm consist in:

1. At each search point the Hessian (G � r2L)
needs to be evaluated

2. r2L may not be positive semi-definite,
which means the search direction may not
be a descent direction (i.e. will not lead to the
minimum of Equation (4))

To overcome the first drawback one can
employ a quasi-Newton approximation of the
Hessian, given by the BFGS relations

Bi ¼ Bi�1þ yiy
T
i

yTi si
�Bi�1sisTi Bi�1

sTi Bi�1si
ð47Þ

where i is an iteration counter, Bi is an approxi-
mation of r2L. That is employing G � Bi in-
stead of G � r2L. Here yi ¼ ðrLi�rLi�1Þ,
si ¼ ðxi�xi�1Þ, and Bi is positive definite if
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Bi�1 is positive definite [17] leading to

yTi si ¼ sTi yi > 0 ð48Þ

Consider, for example, the quadratic func-
tion y ¼ zTAzþbTzþc. In this case yi ¼ Az and
sTi yi ¼ sTi Asi. If the quadratic function is posi-
tive definite then A> 0 and Equation (26) holds
for all search points. Since r2L can be indefi-
nite, one cannot ensure satisfaction of Equa-
tion (48) at all search points. Therefore, instead
of the transformation Equation (47), one can
employ the following transformation [17]

Bi ¼ Bi�1þwiw
T
i

wT
i si
�Bi�1sisTi Bi�1

sTi Bi�1si
ð49Þ

where

w ¼ uyiþð1�uÞBi�1si

u ¼
1 if sTi yi � 0:2 siBi�1si

0:8
sTi Bi�1si

sTi Bi�1si�sTi yi
if sTi yi < 0:2sTi Bi�1si

8><
>: ð50Þ

It should be noted that Bi obtained from
Equation (49) will be positive definite if Bi�1
is positive definite.

3. Global Terrain Method

The global terrain method [20, 21] is a deter-
ministic method of global optimization. The
basic idea behind the terrain method is to intel-
ligently explore the terrain of an objective func-
tion by following valleys. The terrain method
does this by moving up and down the objective
function surface using well known numerical
methods for each of its basic tasks (i.e., moving
downhill, moving uphill, accelerating conver-
gence to singular points) and by using eigenval-
ue and eigenvector information to decide what
to do next. The novel aspects of the global
terrain method include (1) the use of well estab-
lished building blocks (numerical methods such
as Newton’s method, a trust region strategy, an
SQP method, etc.) assembled in a unique man-
ner, and (2) a novel SQP corrector formulation
and algorithm for returning iterates to valleys.

The terrain method assumes that the objec-
tive function, j, is a twice continuously differ-
entiable of unknown variables z 2 Rn with a
gradient given by g ¼ gðzÞ and aHessianmatrix
or matrix of second partial derivatives denoted
byH ¼ HðzÞ. It is also assumed that the feasible

region is defined by upper and lower bounds on
variables of the form

zLi � zi � zUi i ¼ 1; . . .; n ð51Þ

where zLi and z
U
i are the lower and upper bounds

on the ith variable, respectively. Other con-
straints (e.g., linear mass balance constraints,
etc.) are handled using projection or
elimination.

It is easiest to view the terrain method by
considering the nonlinear least squares problem.
Let j ¼ jðzÞ and J ¼ JðzÞ denote the Jacobian
matrix of the function j; thus the nonlinear least
squares objective function is jTj. The appropri-
ate global optimization problem then becomes
that of finding all stationary and singular points
of

jTj subject to zLi � zi � zUi i ¼ 1; . . .; n ð52Þ

The corresponding gradient of jTj is

g ¼ gðzÞ ¼ JTj ð53Þ

The corresponding Hessian matrix, HðzÞ, of
j is given by

H ¼ HðzÞ ¼ JTJþ
X

jir2ji ð54Þ

wherer2ji are the element Hessian matrices of
the component functions, ji.

The global terrain method is comprised of
five basic steps:

1. Downhill movement
2. Uphill movement
3. Second-order acceleration to singular points
4. Eigenvalue–eigenvector decomposition
5. Termination criterion

Downhill Movement. Downhill movement
in the terrain method is accomplished using a
trust region strategy [22] and given by

D ¼ �bDNþðb�1Þg ð55Þ

where DN ¼ J�1j is the Newton step and where
b e ½0; 1� is determined by the following simple
rules. If kDNk � R, then b ¼ 1, where R is the
trust region radius. If kDNk > R and kgk � R,
then b ¼ 0. Otherwise, b is the unique value on
[0,1] that satisfies kDk ¼ R. The new iterate is
accepted if it reduces kjk. Otherwise, the new
iterate is rejected, the trust region radius is
reduced and the calculations are repeated until
a reduction in kgk occurs. Furthermore, if

8 Process Systems Engineering, 3. Mathematical Programming (Optimization)



during downhill movement, kgk=kDNk � §,
then quadratic acceleration is used. (See Eq. 59
below).

Downhill movement is terminated when
either kjk � e or kgk � e where e is a conver-
gence tolerance and can result in convergence to
a minimum, saddle point, or singular point of
jTj.

Uphill Movement. Uphill movement con-
sists of predictor–corrector steps. Uphill move-
ment uses Newton predictor steps which can
drift from the valley because of approximation.
To correct for this drift, intermittent SQP cor-
rector steps are used to force iterates back to the
valley.

Predictor Steps: Uphill predictor steps are
Newton steps, DzN , given by

DzN ¼ apJ
�1j ð56Þ

where ap is a step size such that 0 < ap � 1,
which can either remain fixed or be adjusted
using available information. Uphill Newton
steps tend to follow valleys reasonably well but
do drift some. Therefore, corrector steps are
used intermittently to return iterates to the
current valley and are invoked when the angle
test

u ¼ 57:295 arccos ½ðDT
NvÞ=ðkDNkkvkÞ� � Q ð57Þ

is satisfied, where v is the current estimate of the
eigenvector associated with the smallest posi-
tive eigenvalue of H and Q is 5 degrees.

Corrector Steps: Corrector steps are comput-
ed by solving the following nonlinear program-
ming problem

gTg subject to jTj ¼ L ð58Þ

where L denotes the current value of the objec-
tive function contour (or level set).

Second-Order Acceleration. Acceleration
is needed to converge quickly to singular points
and for this second-order Newton steps, given
by

DzN2 ¼ �H�1g ð59Þ

are used.

Eigenvalue–Eigenvector Decomposition.
After a stationary point of the objective function

is found, the terrain method uses an eigen-
decomposition of the Hessian matrix of the
objective function to characterize the stationary
point as a minimum, saddle point, or singular
point and to decide what to do next. If H has all
nonnegative eigenvalues, then the current sta-
tionary point is a minimum and uphill move-
ment is indicated. Uphill movement from a local
minimum or global minimum of the least-
squares function always takes place along a
direction of smallest positive curvature. If, on
the other hand, H has one or more negative
eigenvalues, then the current stationary point is
a saddle point and downhill exploration of the
objective function landscape is indicated next.
Downhill movement from a saddle point to
either a singular point of lower norm or a
solution always takes place along an eigen-
direction, n, of negative curvature.

However, it is important to understand that
only a few eigenvalues and eigenvectors are
needed. For these calculations we use the in-
verse power method together with incomplete
factorization to compute a few eigenvalues and
eigenvectors. Also we never actually form
matrix products like HTH to avoid rounding
errors.

Termination. Termination is based on the
number of times the terrain method strikes the
boundary of the feasible region. Collisions with
a boundary of the feasible region are used to
signal an end to the usefulness of exploration in
a particular eigen-direction. LUCIA and
YANG [20, 21] base their termination criterion
on something they call limited connectedness.
This means that stationary points are really only
connected to neighboring stationary points
along specific eigen-directions. It is assumed
that the number of important connections be-
tween stationary points along valleys and ridges
is limited to four or less and is related to domi-
nant geometric distortions (i.e.,þ/- the smallest
positive eigen-direction and þ/- the most nega-
tive eigen-direction) caused by the strongest
‘attractions’ between neighboring stationary
points. This makes it possible to dynamically
catalogue connections in a set, C, and to con-
clude that all of the important connections
between stationary points have been explored
whenC is empty. Thus termination occurs when
C is the empty set.
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3.1. Simple Example of the Global
Terrain Method

A two-dimensional example of a nonlinear
continuous stirred tank reactor (CSTR) taken
from [23] is used to illustrate the basic features
of the global terrain method. Figure 1 shows the
contours of the least squares objective function
and the stationary points and their connected-
ness for this example. There is a low lying valley
that runs diagonally across the bottom of the
figure.

Problem Statement. The equations that de-
scribe the behavior of the CSTR are the mass-
balance equation

j1ðx; TÞ ¼ 120x�75kð1�xÞ ¼ 0 ð60Þ

and the energy-balance equation

j2ðx; TÞ ¼ �xð873�TÞþ11ðT�300Þ ¼ 0 ð61Þ

where x denotes the conversion, T is the
reactor temperature in Kelvin and k, the
reaction rate constant, which is given by
k ¼ 0:12 exp ½12581ðT� 298Þ=ð298TÞ�. The
bounds on conversion and temperature for this
example are

0 � x � 1 and 300 � T � 400 ð62Þ

Problem and Solver Attributes. All first and
second partial derivatives are calculated analyt-
ically. The equations are solved to an accuracy
of jTj � 10�16. The maximum number of
downhill steps for each downhill subproblem
is set to 50. The initial trust region radius is
D ¼ 10 and downhill Newton steps are adjusted
automatically using the rule

kDzNk < 0:1D; then ad ¼ minð1; 2adÞ ð63Þ

where ad is the downhill Newton step size.
Otherwise, ad remains the same. The step size
for uphill Newton predictor steps is fixed at
ap ¼ 0:05 and the maximum number of uphill
Newton predictor steps is 10. After 10 predictor
steps, corrector steps are used to force iterates
back to the valley if the angle test indicates drift.
The maximum number of corrector steps per
corrector subproblem is 50. Acceleration occurs
if either the ratio of the Newton step to the
gradient step is less than 10�6 or the Newton
step reverses itself during uphill movement.
The maximum number of acceleration steps is
set to 50.

Problem Solution. Sufficient numerical de-
tails for all subproblems are given so that read-
ers interested in implementing the global terrain
method can validate their implementation of
individual components (downhill trust region,

Figure 1. Connectedness of stationary points for a nonlinear CSTR
a) Local minimum; b) Saddle point; c) Solution
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second-order acceleration, uphill predictor–cor-
rector steps, eigenvalue–eigenvector computa-
tions, etc.) of the terrain method. The starting
value for the unknown variables is x ¼ 0:2 and
T ¼ 328 K.

Downhill Steps (First Set). The initial set of
downhill steps for this example is shown in
Table 2.

All steps in Table 2 are Newton steps and
note that the value of jTj is monotonically
decreasing.

Acceleration occurs after 20 downhill steps
because the ratio of the Newton step to the
gradient step becomes small. Table 3 shows the
second-order Newton acceleration steps con-
verge to a local minimum of jTj. The local
minimum is
z� ¼ ðx; TÞ ¼ ð0:094595; 304:677 KÞ and indi-
cated by the fact that gTg � 10�8. Note jTj and
thus j is not zero! However, gTg is approxi-
mately zero and this implies that g ¼ JTj ¼ 0.
Since j „ 0, this means JT and therefore J is
singular.

The eigenvalues and eigenvectors of the
Hessian matrix, H, at this local minimum are
all positive and shown in Table 4.

Uphill Steps (First Set). Uphill step
are initiated in the eigen-direction

Dz ¼ ð�0:019607;�0:999808Þ and strike the
boundary of the feasible region at
z ¼ ð0:038036; 300 KÞ in 6 iterations. Uphill
steps from the initial stationary point are subse-
quently initiated in the eigen-direction
v ¼ ð�0:019607;�0:999808Þ and take 30 up-
hill predictors step followed by 9 corrector
iterations to get back to the valley. This is then
followed 5 uphill steps where Newton predictor
steps go through a maximum in jTj and trigger
acceleration again, this time to a saddle point.

The acceleration steps to the saddle point are
shown in Table 5. Note that norm reduction
cannot be imposed on acceleration steps. The
saddle point is z� ¼ ð0:774548; 331:507 KÞ.
The eigenvalues and eigenvectors of H at the
saddle point are given in Table 6.

The negative eigenvalue of H indicates that
the stationary point is a saddle point and that the

Table 2. First set of downhill steps for CSTR example

Iteration x T, K xTx

0 0.2 328.0 1.40874 
105
1 0.214034 327.795 1.27280 
 105

2 0.239982 327.370 1.03586 
 105

3 0.283752 326.468 6.77424 
 104

4 0.341531 324.443 2.73817 
 104

5 0.350459 322.000 1.12087 
 104

6 0.331081 319.336 4.62678 
 103

7 0.296777 316.622 1.92990 
 103

8 0.254796 313.927 8.19848 
 102

9 0.207496 311.195 3.61077 
 102

10 0.151637 308.161 1.73688 
 102

11 0.063339 303.541 1.21009 
 102

12 0.063339 303.541 1.21009 
 102

13 0.068223 303.791 1.19814 
 102

14 0.073105 304.041 1.18948 
 102

15 0.077984 304.290 1.18417 
 102

16 0.079702 304.079 1.18313 
 102

17 0.080100 304.399 1.18295 
 102

18 0.080182 304.403 1.18292 
 102

19 0.080198 304.404 1.18291 
 102

20 0.080201 304.404 1.18291 
 102

Table 3. Second-order acceleration to local minimum of CSTR

example

Iteration x T, K xTx

0 0.080201 304.404 1.18291 
 102

1 0.081526 304.426 1.12931 
 102

2 0.083945 304.466 1.04701 
 102

3 0.087935 304.537 9.53293 
 101

4 0.093037 304.638 9.02564 
 101

5 0.094578 304.676 9.00427 
 101

6 0.094595 304.677 9.00427 
 101

Table 4. Eigenvalues and eigenvectors of H at local minimum

Eigenvalues Eigenvectors

2.10713 (0.019607, 0.999808)

3.43487 
 105 (0.999808, –0.019607)

Table 5. Second-order acceleration to saddle point for CSTR

example

Iteration x T, K xTx

0 0.755706 331.709 5.71861 
 103

1 0.806247 334.907 9.89472 
 103

2 0.804901 334.682 9.55795 
 103

3 0.802153 334.253 9.02562 
 103

4 0.796517 333.474 8.38298 
 103

5 0.785435 332.254 7.99690 
 103

6 0.777929 331.711 7.98447 
 103

7 0.774669 331.512 7.98500 
 103

8 0.774548 331.507 7.98501 
 103

9 0.774548 331.507 7.98501 
 103
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next move should be downhill from the saddle.
Also because the location of the first stationary
point is known, it is straightforward to deter-
mine that the correct movement downhill is in a
direction away from the local minimum.

Downhill Steps (Second Set). Next the
global terrain method initiates downhill move-
ment in the direction v ¼ ð0:026170; 0:999658Þ
scaled by 1/l. Table 7 shows the steps of the
second downhill subproblem.

All steps in Table 7 are Newton steps.
Also note that jTj decreases monotonically
and the asymptotic rate of convergence
is quadratic to the global minimum

z� ¼ ð0:963868; 346:164 KÞ. The eigenvalues
and eigenvectors of H at the global minimum
are shown in Table 8.

The eigenvalues in Table 8 show that the last
entry in Table 7 is a global minimum of jTj and
that the next exploration should be uphill ex-
ploration of the least squares objective function
surface.

Uphill Steps (Second Set). Uphill move-
ment from the globalminimum is initiated in the
eigen-direction v ¼ ð0:0041241; 0:999991Þ.
The global terrain uses an additional 291 func-
tion and gradient evaluations, taking 10 uphill
predictor steps and then correcting along the
valley before it strikes the boundary at
z ¼ ð0:999752; 400:0 KÞ and terminates be-
cause it has encountered the boundary twice.

Table 9 gives a summary of the computa-
tional work needed by the global terrain method
on the example problem measured in terms of
iterations and function and gradient evaluations
for the downhill, uphill (predictor and corrector
steps), acceleration, and eigenvalue–eigenvec-
tor computations. Also shown is the number of
function and gradient evaluations need to go
from a stationary point to a boundary of the
feasible region.

The time required for all of the computations
shown in Table 9, including input and output, is
0.16 s on a 3.6 GHz Dell High Precision Work-
station using the Lahey–Fijitsu LF95 compiler.

3.2. General Optimization Problems

Up to this point the discussion has focused on
nonlinear least squares problems. To use the
global terrain method for any general objective
function, j, it is only necessary to recognize that
the equations to be solved become

gðxÞ ¼ 0 ð64Þ

and therefore j should be replaced with g, J of j
with H of j, and r2ji with r2Gi in the

Table 6. Eigenvalues and eigenvectors of H at saddle point

Eigenvalues Eigenvectors

�92.7333 (0.026170, 0.999658)

8.7427 
 105 (0.999658, �0.026170)

Table 7. Second set of downhill steps for CSTR example

Iteration x T, K xTx

0 0.785408 331.922 7.96902 
 103

1 0.842049 334.605 7.13659 
 103

2 0.866098 336.005 6.28044 
 103

3 0.880198 336.934 5.60146 
 103

4 0.890527 337.676 5.01492 
 103

5 0.898670 338.305 4.49846 
 103

6 0.905347 338.853 4.03999 
 103

7 0.910963 339.341 3.63120E 
 103

8 0.915770 339.781 3.26572 
 103

9 0.919942 340.180 2.93837 
 103

10 0.923599 340.546 2.64479 
 103

11 0.926833 340.882 2.38125 
 103

12 0.929713 341.193 2.14450 
 103

13 0.932293 341.481 1.93168 
 103

14 0.934615 341.749 1.74030 
 103

15 0.938816 342.248 1.40007 
 103

16 0.942257 342.682 1.12769 
 103

17 0.945116 343.062 9.09132 
 102

18 0.947518 343.396 7.33456 
 102

19 0.949555 343.691 5.92067 
 102

20 0.951295 343.952 4.78159 
 102

21 0.954287 344.416 3.02492 
 102

22 0.956483 344.778 1.91955 
 102

23 0.958128 345.063 1.22071
102
24 0.950378 345.288 7.77474 
 101

25 0.961299 345.644 2.74419 
 101

26 0.962368 345.854 9.77472 
 100

27 0.963596 346.103 3.66418 
 10-1

28 0.963869 346.164 1.10322 
 10-5

29 0.963868 346.164 4.01405 
 10-16

30 0.963868 346.164 1.23355 
 10-25

Table 8. Eigenvalues and eigenvectors of H at the global minimum

Eigenvalues Eigenvectors

98.2769 (0.0041241, 0.999991)

1.13079 
 107 (0.999991, �0.0041241)
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right-hand sides of all equations presented [24].
Finite difference derivatives can be used in
place of analytical derivatives and often lead
to successful convergence.

3.3. Advanced Techniques

Advanced techniques such as those that handle
integral path bifurcations and nondifferentiabil-
ity of the objective function can be found in [24,
25]. Integral path bifurcations can be tangent or
pitchfork bifurcations and techniques for deal-
ing with this behavior monitor and exploit
Gauss curvature. Nondifferentiability of the
objective function can occur in process engi-
neering problems in which model switching can
occur (e.g., in phase stability computations
where different phases are modeled using dif-
ferent phase models).

3.4. Applications and Extensions of
the Terrain Method

There are many process engineering examples
described in [24, 25] which include finding

1. The glass temperature of a polymer mixture
2. Equilibrium structures to nanostructured

materials
3. Roots to the SAFT equation
4. All azeotropes of a binary mixture
5. Equilibrium phase compositions and pres-

sure for a retrograde flash
6. The temperature and conversion for nonadi-

abatic CSTRs with isola
7. All solutions to heterogeneous distillation

problems
8. Phase split and phase stability calculations

nonideal mixtures
9. Molecular conformation of small molecules

More recentlyLUCIA et al. [26] have extended
the global terrain method by combining it with
logarithmic barrier functions to solve heat and
mass transfer in a catalyst pellet modeled using
collocation over finite elements.

4. Optimization under Uncertainty
in Process Systems Engineering

The deterministic optimization literature clas-
sifies problems as linear programming (LP),
nonlinear programming (NLP), integer pro-
gramming (IP), mixed integer LP (MILP), and
mixed integer NLP (MINLP), depending on the
decision variables, objectives, and constraints
! Mathematics in Chemical Engineering, Sec-
tion 10.1. However, the future cannot be per-
fectly forecast but instead should be considered
randomor uncertain. Optimization under uncer-
tainty refers to this branch of optimization
where there are uncertainties involved in the
data or the model, and is popularly known as
stochastic programming or stochastic optimiza-
tion problems. In this terminology, stochastic
refers to the randomness, and programming
refers to the mathematical programming tech-
niques such as LP, NLP, IP,MILP, andMINLP.
In discrete (IP, MILP, MINLP) optimization,
there are probabilistic techniques like simulated
annealing and genetic algorithms; these tech-
niques are sometimes referred to as the stochas-
tic optimization techniques because of the prob-
abilistic nature of the method. In general, how-
ever, stochastic programming and stochastic
optimization involve optimal decision making
under uncertainties. Parametric programming
which is a method based on sensitivity analysis
also involves consideration of uncertainties and
provides how optimal decisions and designs
vary with uncertainties.

Table 9. Summary of computational work for global terrain method on example problem

Stationary point Value Iterations (function and gradient evaluations)

x, T, K downhill predictor corrector acceleration eigens

Local minimum (0.094595, 304.677) 20 (20) n.a. n.a. 6 (6) 8 (8)

Saddle (0.774548, 331.507) n.a. 35 (35) 9 (36) 9 (9) 8 (8)

Global minimum (0.963868, 346.164) 30 (30) n.a. n.a. n.a. 8 (8)

Boundary 6 (6) 164 21 (119) n.a. 8 (8)

n.a. ¼ not applicable.
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The need for including uncertainty in com-
plex decision models arose early in the history
of mathematical programming. The first model
forms, involving action followed byobservation
and reaction (or recourse), appeared in the
1950s [27, 28]. The commonly used example
of a recourse problem is the news vendor prob-
lem described below [29]. The news vendor or
news boy problem has a rich history that has
been traced back to the economist EDGE-

WORTH [30], who applied a variance to a bank
cash-flow, problem. However, it was not until
the 1950s that this problem, likemany otherOR/
MS models seeded by the war effort, became a
topic of serious and extensive study by
academicians [31].

Example: The simplest form of a stochastic
programmay be the news vendor (also known as
the newsboy) problem. In the news vendor
problem, the vendor must determine how many
papers (x) to buy now at the cost of c cents for a
demand which is uncertain. The selling price is
sp cents per paper. For a specific problem,
whose weekly demand is shown below, the cost
of each paper is c¼ 20 cents and the selling price
is sp ¼ 25 cents. Suppose we need to solve the
problem assuming the news vendor knows the
demand uncertainties (Table 10) but does not
know the demand curve for the coming week
(Table 11) a priori. Assume no salvage value s¼
0, so that any papers bought in excess of demand
are simply discarded with no return.

Solution: In this problem, the question is how
many papers the vendor must buy (x) to maxi-
mize the profit. Let r be the effective sales andw
be the excess which is going to be thrown away.
This problem falls under the category of sto-
chastic programming with recourse where there
is action (x), followed by observation (profit),
and reaction (or recourse) (r and w). The first
idea to solve this problem is to find the average
demand and the optimal supply x corresponding
to this demand. Since the average demand from
the Table 10 is 70 papers, x ¼ 70 should be the
solution. However, with this solution where
supply is 70 papers per day, the news vendor
will be making a loss of 50 cents per week. This
probably is not the optimal solution. Can we do
better? For that one needs to propagate the
uncertainty in the demand to see the effect of
uncertainty on the objective function and then
find the optimum value of x. The above infor-
mation can be transformed for daily profit as
follows.

Profit ¼ �cxþ 5

7
sp d1þ 1

7
spxþ 1

7
sp x ¼ �cxþ 5

7
sp d1þ 2

7
sp x

if d1 � x � d2

ð65Þ

or

Profit ¼ �cxþ 5

7
sp d1þ 1

7
sp d2þ 1

7
sp x if d2 � x � d3 ð66Þ

Notice that the problem represents two equa-
tions for the objective function (Eqs. 65 and 66);
this results in an objective function that is a
discontinuous function and is therefore no lon-
ger a LP. The optimal solution to this problem is
x ¼ d1 ¼ 50 providing the news vendor with an
optimum profit of 1750 cents per week.

The difference between taking the average
value of the uncertain variable as the solution as
compared to using stochastic analysis (propa-
gating the uncertainties through the model and
finding the effect on the objective function as
above) is defined as the value of stochastic
solution, VSS. If we take the average value of
the demand, i.e., x ¼ 70 as the solution, we
obtain a loss of 50 cents per week, therefore, the
value of stochastic solution, VSS, is 1750 –
(�50) ¼ 1800 cents per week.

Now consider the case, where the vendor
knows the exact demand (Table 11) a priori.
This is the perfect information problem where

Table 10. Uncertainties in demand

j Demand, dj Probability, Pj

1 50 5/7

2 100 1/7

3 140 1/7

Table 11. Weekly demand

Day Demand

Monday 50

Tuesday 50

Wednesday 50

Thursday 50

Friday 50

Saturday 100

Sunday 140
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the solution xi for each day i has to be found. The
problem could be described in terms of xi.

Maximize
xi

profit ¼ �cxiþsalesðr;w; diÞ

subject to

salesðr;w; diÞ ¼ sp riþswi

ri ¼ minðxi; diÞ ¼
xi; if xi � di

di; if xi > di

(

wi ¼ maxðxi�di; 0Þ ¼
0; if xi � di

xi�di; if xi > di

(
ð67Þ

Here each problem (for each i) need to be
solved separately, leading to the following
decisions shown in Table 12.

One can see that the difference between the
two values, (1) when the news vendor has the
perfect information (2450 cents per week) and
(2) when he does not have the perfect informa-
tion (1750 cents per week) but can represent it
using probabilistic functions, is the expected
value of perfect information, EVPI. The latter
is 700 cents per week for this problem.

Maximizing expected profit given that there
are uncertainties associated with demand and
supply is a classic problem in any manufactur-
ing industry including the chemical indus-
try [29]. However, decision making in chemical
manufacturing is not restricted to just supply
and demand cost minimization problems but
involves models that are linear, nonlinear, and
mixed integer in nature.

4.1. Methods and Algorithms

The literature on optimization under uncertain-
ties very often divides the problems into

categories such as ‘‘wait and see’’, ‘‘here and
now’’, and ‘‘chance constrained optimiza-
tion’’ [32, 33]. In ‘‘wait and see’’ one waits until
an observation is made on the random elements,
and then solves the (deterministic problem).
This is the ‘‘wait and see’’ problem of MADANS-

KY [34], originally called ‘‘stochastic program-
ming’’ [35], is not in a sense one of decision
analysis. In decision making, the decisions have
to be made ‘‘here and now’’ about the activity
levels. The ‘‘here and now’’ problem involves
optimization over some probabilistic measure
—usually the expected value.By this definition,
chance constrained optimization problems can
be included in this particular category of opti-
mization under uncertainty. Chance constrained
optimization involves constraints which are not
expected to be always satisfied; only in a pro-
portion of cases, or ‘‘with given probabilities’’.
‘‘Parametric programming’’ is based on sensi-
tivity analysis of optimal solution and is similar
to the ‘‘wait and see’’ problems. These various
categories require different methods for obtain-
ing their solutions. It should be noted that many
problems have both here and now, and wait and
see problems embedded in them.

Here and Now Problems. The ‘‘here and
now’’ problems require that the objective func-
tion and constraints be expressed in terms of
some probabilistic representation (e.g., ex-
pected value, variance, fractiles, or most likely
values). For example, in chance constrained
programming, the objective function is ex-
pressed in terms of expected value, while the
constraints are expressed in terms of fractiles
(probability of constraint violation), and in
Taguchi’s off-line quality control method
[36, 37], the objective is to minimize variance.
These problems can be classified as ‘‘here and
now’’ problems.

Is it possible to propagate the uncertainty
using moments of input uncertainties (such as
mean and variance) thereby obtaining a deter-
ministic representation of the problem? This is
the basis of the chance constrained program-
ming method, developed very early in the his-
tory of optimization under uncertainty, princi-
pally byCHARNES andCOOPER [38]. In the chance
constrained programming (CCP) method, some
of the constraints likely need not hold as was
assumed in earlier problems. CCPs can be

Table 12. Supply and profit

Supply Profit

50 250

50 250

50 250

50 250

50 250

100 500

140 700
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represented as follows:

Optimize jðx; uÞ ¼ P1ðjðx; uÞÞ ¼ Eðzðx; uÞÞ ð68Þ

PðgðxÞ � uÞ � a ð69Þ

In the above formulation, Equation (69) is the
chance constraint. In chance constraint formu-
lation, this constraint (or constraints) is (are)
converted into a deterministic equivalent under
the assumption that the distribution of the un-
certain variables, u, is a stable distribution [39].
Normal, Cauchy, Uniform, and Chi-square are
all stable distributions that allow the conversion
of probabilistic constraints into deterministic
ones. The deterministic constraints are in terms
of moments of the uncertain variable u (input
uncertainties).

MARANAS et al. [40, 41] have used chance
constraint programming to solve (1) a chemical
synthesis problem of polymer design and (2) a
metabolic pathways synthesis problem in bio-
chemical reaction engineering.

Wait and See Problems. In contrast to ‘‘here
and now’’ problems, which yield optimal solu-
tions that achieve a given level of confidence,
‘‘wait and see’’ problems involve a category of
formulations that shows the effect of uncertain-
ty on optimum design. A ‘‘wait and see’’ prob-
lem involves deterministic optimal decisions at
each scenario or random sample, equivalent to
solving several deterministic optimization pro-
blems. Parametric programming is one way to
solve the ‘‘wait and see’’ problems [42, 43].

The difference between the ‘‘here and now’’
and ‘‘wait and see’’ solutions is the EVPI. The
concept of EVPI was first developed in the
context of decision analysis and can be found
in classical references [44]. In the above prob-
lem, there was action (x), followed by observa-
tion (profit), and reaction (or recourse) (r andw).
Recourse problems with multiple stages (simi-
lar to the multiperiod problems in chemical
engineering) involve decisions that are taken
before the uncertainty realization (here and
now) and recourse actions which can be taken
when information is disclosed (wait and see).
These problems can be solved using decompo-
sition methods.

As can be seen from the above description,
both ‘‘here and now’’ and ‘‘wait and see’’ pro-
blems require the representation of uncertainties

in the probabilistic space and then the propaga-
tion of these uncertainties through the model to
obtain the probabilistic representation of the
output.

4.2. Uncertainty Analysis and
Sampling

The probabilistic or stochastic modeling [45]
iterative procedure involves:

1. Uncertainty quantification which involves
specifying the uncertainty in key input para-
meters in terms of probability distributions

2. Sampling the distribution of the specified
parameter in an iterative fashion

3. Propagating the effects of uncertainties
through the model and applying statistical
techniques to analyze the results

Uncertainty Characterization and Quanti-
fication. In general, uncertainties can be

characterized and quantified in terms of proba-
bilistic distributions. The type of distribution
chosen for an uncertain variable reflects the
amount of information that is available. For
example, the uniform and log-uniform distribu-
tions represent an equal likelihood of a value
lying anywhere within a specified range, on
either a linear or logarithmic scale, respectively.
Further, a normal (Gaussian) distribution re-
flects a symmetric but varying probability of
a parameter value being above or below the
mean value. In contrast, lognormal and some
triangular distributions are skewed such that
there is a higher probability of values lying on
one side of the median than the other. A beta
distribution provides a wide range of shapes and
is a very flexible means of representing vari-
ability over a fixed range. Modified forms of
these distributions, uniform* and log-uniform*,
allow several intervals of the range to be distin-
guished. Finally, in some special cases, user-
specified distributions can be used to represent
any arbitrary characterization of uncertainty,
including chance distribution (i.e., fixed proba-
bilities of discrete values).

It is easier to assume the upper and lower
bound of uncertain variables and, hence, uni-
form distribution is the first step towards uncer-
tainty quantification. Most of the papers in
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chemical engineering use this simplistic ap-
proach and use upper and lower bounds of
uncertain variables. Few studies [46–48] iden-
tified most likely values and use triangular
distributions. Extensive data which are obtained
from DECHEMA and represent realistic
quantification of uncertainties related to
UNIFAC parameters are used by GANI and
DIWEKAR [49, 50].

Interval methods are also proposed [52–54]
for handling uncertainties where there is no
information about uncertainties. For interval
methods, interval mathematics is used to prop-
agate the uncertainty through themodel. For this
purpose, the use of probability boxes (P-box
methods) instead of just intervals is pro-
posed [54]. However, these methods are not yet
applicable to large scale or black box models.

Sampling Techniques. One of the most
widely used techniques for sampling from a
probability distribution is theMonte Carlo sam-
pling technique, which is based on a pseudo-
random generator used to approximate a uni-
form distribution (i.e., having equal probability
in the range from 0 to 1). The specific values for
each input variable are selected by inverse
transformation over the cumulative probability
distribution. Crude Monte Carlo methods can
result in large error bounds (confidence inter-
vals) and variance. Variance reduction techni-
ques are statistical procedures designed to re-
duce the variance in the Monte Carlo esti-
mates [55]. Importance sampling, latin hyper-
cube sampling (LHS, [56, 57]), descriptive
sampling [58], and Hammersley sequence sam-
pling (HSS) [59–61] are examples of variance
reduction technique.

Importance Sampling. In importanceMon-
teCarlo sampling, the goal is to replace a sample
using the distribution of u with one that uses an
alternative distribution that places more weight
in the areas of importance. Obviously such a
distribution function is problem dependent and
is dificult to find. One of the examples of
importance sampling in chemical engineering
is the Metropolis criterion used in molecular
simulations [62].

The following two sampling methods pro-
vide a generalized approach to improve the
computational efficiency of sampling.

Latin Hypercube Sampling. The main ad-
vantage of Monte Carlo methods lies in the fact
that the results from anyMonteCarlo simulation
can be treated using classical statistical meth-
ods; thus results can be presented in the form of
histograms, and methods of statistical estima-
tion and inference are applicable. Nevertheless,
in most applications, the actual relationship
between successive points in a sample has no
physical significance; hence, the randomness/
independence for approximating a uniform dis-
tribution is not critical [63]. Moreover, the error
of approximating a distribution by a finite sam-
ple depends on the equidistribution properties of
the sample used for U(0,1) rather than its ran-
domness. Once it is apparent that the uniformity
properties are central to the design of sampling
techniques, constrained or stratified sampling
techniques become appealing [64].

LHS [56, 57, 65] is one form of stratified
sampling that can yield more precise estimates
of the distribution function. In LHS, the range of
each uncertain parameter Xi is subdivided into
nonoverlapping intervals of equal probability.
One value from each interval is selected at
random with respect to the probability distribu-
tion in the interval. The n values thus obtained
for X1 are paired in a random manner (i.e.,
equally likely combinations) with n values of
X2. These values are then combined with values
of X3 to form n-triplets, and so on, until n k-
tuplets are formed. Inmedian LHS (MLHS) this
value is chosen as the mid-point of the interval.
MLHS is similar to the descriptive sampling
described by [58]. In chemical engineering LHS
is used in early stochastic modeling and optimi-
zation frameworks [45, 47, 66].

The main drawback of this stratification
scheme is that, it is uniform in one dimension
and does not provide uniformity properties in k-
dimensions. Sampling based on quadrature, cu-
bature techniques [67], or collocation techni-
ques [68] face similar drawback. These sam-
pling techniques perform better for lower di-
mensional uncertainties. Therefore, many of
these sampling techniques use correlations to
transform the integral into one or two dimen-
sions. However, this transformation is possible
only for limited distribution functions when the
uncertain variables are tightly correlated. For
highly correlated samples similar to what has
been observed in thermodynamic phase
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equilibria, a sampling technique based on con-
fidence region estimates [69] can be used.

Hammersley Sequence Sampling. HSS,
based on Hammersley points, was developed
by [59, 60]; the technique uses an optimal
design scheme for placing the n points on a k-
dimensional hypercube. This scheme ensures
that the sample set is more representative of the
population, showing uniformity properties in
multidimensions, unlikeMonteCarlo, LHS, and
MLHS techniques. It is clearly observed that
HSS shows greater uniformity than other strati-
fied techniques such as LHS, which are uniform
only along a single dimension and do not guar-
antee a homogeneous distribution of points over
the multivariate probability space. Similar be-
havior is observed for correlated samples also.
The implementation of correlation structures is
based on the use of rank correlations [57, 65].
Some of the new variants of HSS include the
HSS2 and latin hypercube Hammersley sam-
pling (LHHS) [61, 70, 71].

4.3. Optimization Algorithms

Numerical optimization techniques constitute a
fundamental part of theoretical and practical
science and engineering as can be seen from
the number of papers published each year in
literature. Although in real world systems un-
certainties cannot be ignored, the literature on
optimization under uncertainty methods and/or
applications is sparse as compared to any other
optimization area. This can be attributed to the
fact that in optimization under uncertainty area,
one has to pay attention to uncertainty analysis
as well as optimization.

Decomposition Algorithms. Even a linear
problem in optimization under uncertainty (e.g.,
the news boy problem) results in nonlinearities
(discontinuous function) due to the probabilistic
functional. A decomposition method is a com-
mon approach to solve such problems. In de-
composition approach, the problem is decom-
posed into a master problem and a subproblem.
The master problem is a simplified (usually)
linear approximation of the complete problem
and this approximation is derived from a num-
ber of subproblems. First proposed for mixed

integer problems, Bender’s decomposition [72]
forms the basis for decomposition algorithms
proposed for deterministic mixed integer pro-
gramming and stochastic linear as well asmixed
integer programming problems [73, 74]. The
two main algorithms commonly used in the
stochastic programming literature for stochastic
linear (and mixed integer) programming with
fixed recourse are the L-shaped [75–77] and the
stochastic decomposition methods [78, 79]. The
L-shapedmethod is used when the uncertainties
are described by discrete distribution. On the
other hand, the stochastic decomposition meth-
od uses sampling when random variables are
represented by continuous distribution func-
tions. Although chemical engineering applica-
tions involve a large number of stochastic linear
programming (and stochastic MILP) problems,
researchers in chemical engineering have not
exploited these generalized algorithms. On the
other hand, they have used specific structure of a
particular problem (e.g., flexibility) to derive
different decomposition schemes and/or
bounds [80–83]. The domain (flexibility) spe-
cific nature of the problem restricts the applica-
bility of these methods.

Stochastic Nonlinear Programming. Since
engineering models are usually nonlinear, and
uncertainties are not restricted to uniform or
normal distributions, the algorithms and ap-
proaches presented above have restrictions that
limit their application potential to large-scale
problems in the various domains of chemical
engineering. In order to develop a more general
approach the better optimization of nonlinear
uncertain systems (BONUS) algorithmwas pro-
posed [84, 85], which uses sampling and re-
places the inner model evaluation loop with a
reweighting scheme. Deterministic NLP pro-
blems use quasi-Newton’s methods and require
calculation of derivatives with respect to each
decision variable, at each optimization iteration.
These methods are widely used and the codes
aremade robust over the years. BONUS extends
these algorithms to stochastic NLP problems.
BONUS provides significant reductions inmod-
el iterations.

Discrete Optimization under Uncertainty.
Many chemical engineering applications in-
volve discrete decision variables (mixed integer
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problems). Although decomposition methods
have been used to solve these problems, the
applicability of these algorithms to solve pro-
blems of real world scale is very limited in [86].
This is mainly due to the fact that most of these
methods rely heavily on convexity conditions
and simplified approximations of the probabi-
listic functions containing uncertainties. Var-
iants of probabilistic methods like the stochastic
annealing algorithm [87] show great promise in
this regard. In the stochastic annealing algo-
rithm, the optimizer not only obtains the deci-
sion variables but also the number of samples
required for the stochastic model. Furthermore,
it provides the trade-off between accuracy and
efficiency by selecting an increased number of
samples as one approaches the optimum. Sto-
chastic annealing and its recent variants
have been used to solve real world problems
such as:

. Nuclear waste-management problem [88]

. Computer-aided molecular design, and poly-
mer design under uncertainty [89]

. Greener solvent selection [50]

. Methylene chloride process synthesis [90]

New variants of genetic algorithms based on
the theory used in stochastic annealing, were
developed and applied to solvent selection and
recycling problems [91–93].

Parametric programming is based on the
sensitivity analysis theory, distinguishing from
the latter in the targets. Sensitivity analysis
provides solutions in the neighborhood of the
nominal value of the varying parameters,
whereas parametric programming provides a
complete map of the optimal solution in the
space of the varying parameters. Theory and
algorithms for the solution of a wide range of
parametric programming problems have been
reported in the literature [43].

4.4. Applications

Problems in chemical engineering are linked to
the life cycle of the process that extends from
raw material selection (chemical synthesis),
process development (process synthesis and
design) through the planning and management

of the production process. Process design starts
with chemical synthesis where the chemical
pathway from reactants to the product is defined
at the laboratory scale. Process synthesis trans-
lates the chemical synthesis to a chemical pro-
cess. It involves decisions about process unit
operations and connections.

In general, process design activities start at
this level and process simulation is the last step
in computer-aided process design which pre-
dicts the behavior of the process if it was con-
structed. Incorporation of pollution prevention,
operability, and other concepts into design and
development at the initial stages lead to pro-
cesses that are less cost intensive, thereby re-
ducing the technical and economic risks. There-
fore, process synthesis remains an important
step in analyzing and designing environmental-
ly benign processes. Furthermore, researchers
have realized the importance of including the
chemical synthesis in the process design, and
methods for solvent selection, molecular design
are gaining importance [50]. Most of the current
systems analysis approaches focus on the simu-
lation step. This is because several simulation
programs (like the ASPEN simulator [94]) and
models are available to describe these basic
phenomena. However, this is the last step in
decision making, as it predicts the behavior of
the plant (or strategy) if it was constructed (or
implemented). As the envelope extends to in-
clude process synthesis, chemical synthesis, or
management and planning considerations, the
ability to include uncertainties become impor-
tant. Unlike the traditional process designwhere
engineers are looking for low cost options,
objectives of optimization in greener and robust
design is not restricted to maximizing profit but
includes several other criteria like reliability,
flexibility, operability, controllability, environ-
mental and ecological impacts, safety, and qual-
ity need to be considered at the different stages
of analysis.

Stochastic Objectives and Constraints The
formulation of objective function is one of the
crucial steps in the application of optimization
to a practical problem [95].

The earliest work related optimization under
uncertainty in chemical engineering used the
‘‘here and now’’ formulation where expected
value of cost is used as the objective function for
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a given level of risk [96–98]. Soon researchers
realized the importance of including operability
considerations like feasibility and flexibili-
ty [99–102] in the optimal design problem.
Flexibility is concerned with the problem of
ensuring feasible steady-state operation over a
variety of operating conditions. On the other
hand, reliability is concerned with the probabil-
ity of normal operation given that failures can
occur, while safety is concerned with hazards
that are consequence of failure. The other as-
pects of operability are controllability which
deals with the concept of quality and stability
of the dynamic response of the system.

Earlier approaches to obtaining flexible de-
sign dealt with finding overdesign factors [98].
By introducing the concept of flexibility index, a
well-structured optimization problem that could
be easily converted to a mini–max deterministic
problem, was provided [102]. Flexibility index
is defined as a scalar matrix whose value for any
fixed design characterizes is equal to the size of
the region of feasible operation in the space of
uncertain parameters. The basic assumption
behind the definition of flexibility index is that
the uncertainty parameters vary within upper
and lower boundswith equal probability (equiv-
alent to uniform distribution). These parameters
are assumed to vary independently. Geometri-
cally, this approach corresponds to inscribing
within the feasible region a hyper-rectangle
which is centered at the nominal point. The size
of the feasible region is then characterized by
the lengths of the sides of the rectangle, which in
turn define the lower and upper bounds of the
parameter. This hyper-rectangle then defines
the actual ranges for each uncertain parameter
overwhich the feasible operation can be guaran-
teed. The maximum hyper-rectangle that can
expand around the nominal parameter point
touches the boundary at a vertex of the hyper-
rectangle. This concept was extended further to
stochastic flexibility expressing it in terms of
probability of feasible operation. The design for
‘‘optimal flexibility’’ falls under the category of
‘‘here and now’’ problem.On the other hand, the
flexibility index or stochastic flexibility with
multiperiod optimization problems involve
‘‘wait and see’’ decisions and solution of a
deterministic optimization problem for each
scenario so that one gets a probabilistic repre-
sentation of optimal solutions.

Many researchers use flexibility synony-
mous to uncertainty analysis. For example,
solution techniques for optimization under un-
certainty was categorized into three categories
by [42]:

1. Multiperiod
2. Stochastic programming
3. Parametric programming [103]

It should be noted that these categories are
related to the optimal flexibility and flexibility
index problems and cannot be generalized for
all optimization under uncertainty problems in
engineering or operations research. Further, the
flexibility is one of the concepts in this field and
is still an abstract measure [104]. The problem
of flexibility is a well structured problem ame-
nable to solutions using deterministic ap-
proaches with decomposition [80–82] or using
new approximation to derive the probabilistic
functions describing the effect of uncertain-
ties [105]. Further, the concept of flexibility is
also extended to include reliability and control-
lability in a similar fashion, demanding similar
approaches. However, controllability also deals
with the concept of quality control.

The aim of a control system is to keep the
process output specifications on target, despite
changes in the process input. In such an ap-
proach, the control engineer is often presented
with difficult control problems that may require
extensive and expensive modifications to both
process and control system hardware to obtain
satisfactory performance of the control system.
Furthermore, the effectiveness of the control
system is highly dependent upon the nominal
values of the operating variables and the me-
chanical design which are set by the designer of
the processing unit. Parameter design method-
ology is an off-line quality control method,
popularized by TAGUCHI [36], for designing
products and processes that are robust to un-
controllable variation at the design stage. In
parameter design the objective is to find settings
of the product or process design parameters
which minimize an average quadratic loss func-
tion defined as the average standard deviation of
the response from a target value. The rapid
growth of interest in the Taguchi approach over
the last few years led to a great expansion in the
number of published case studies relating to
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different areas of industrial activities [106].
Although the popularity of the Taguchi ap-
proach seems to be pervasive in all engineering
branches; application of this procedure to chem-
ical industries was not widely reported until
1990. BOUDRIGA [107] presented one of the first
systematic studies of using different statistical
approaches to the problem of off-line quality
control for chemical processes. DIWEKAR and
RUBIN [37] posed this problem as a stochastic
optimization problem where the objective is to
minimize output variance from the specified
nominal value. This approach is the basis of
robust design. A similar approach (objective
function) was used for dynamic models [108].
However, this approach is derived from the
financial literature using the mean-variance op-
timization models for portfolio optimization
[109].

In view of growing environmental concerns,
there is a critical need for designing large chem-
ical processes with environmental considera-
tions. Earlier design under uncertainty stud-
ies [46, 47] focused on design for the environ-
ment, included environmental considerations as
probabilistic constraints in terms of risk of
exceeding the specified emission limits. These
papers considered the end-of-pipe treatments
like new environmental control technology de-
signs. Nowadays, industries are practicing the
art of pollution prevention, which involves fun-
damental changes in the processes to minimize
the formation of pollutants, as opposed to pol-
lution control, involving end-of-pipe treatment
of process emissions. This alsomeans instead of
including environmental considerations as con-
straints, they should be included as objectives
like minimum environmental impacts. Current
methodologies, such as the generalized waste
reduction algorithm (WAR), provide a first step
towards evaluating impacts such as ozone de-
pletion, global warming and acid rain poten-
tials [110, 111]. However, environmental im-
pacts must also be weighted and balanced
against other concerns, such as their cost and
long-term sustainability. These multiple, often
conflicting, goals pose a challenging and com-
plex optimization problem, requiring multi-
objective optimization under uncertainty
[90, 93, 94, 110, 112, 113]. Environmental
considerations are also translated into specific
objectives for problems like expected value of

solvent selectivity in the solvent selection prob-
lem [49, 96], and minimizing expected value of
‘‘glass’’ formed in vitrification of nuclear waste
problems [88].

Chemical Synthesis (! Process Systems
Engineering 4. Process and Product Syn-
thesis, Design, Analysis, Chap. 6) Chemi-

cal synthesis involves search for molecules
possessing desired physical, chemical, biologi-
cal, and health properties for easy manufacture
of products. Group contributionmethods rely on
experimental data and theoretic formulations to
assign numerical values to chemical groups,
which form the basis building blocks for com-
puter-aided chemical synthesis. By combining
these building blocks, it is possible to determine
a wide range of characteristics for any given
chemical. The reverse approach, computer-
aided molecular design (CAMD)! Molecular
Modeling uses group contribution techniques to
determine physical characteristics by generat-
ing test molecules using primary building
blocks. CAMD uses a set of groups as a starting
point. These groups are uniquely designed to
generate all possible molecules by exploring all
combinations. The properties of each group and/
or the interaction parameters between groups
can be theoretically calculated, experimentally
obtained, or statistically regressed. There are
three main CAMD approaches: generation-and-
test, mathematical optimization, and combina-
torial optimization approaches. All methodolo-
gies for CAMDare exposed to uncertainties that
arise from experimental errors, imperfect theo-
ries or models and their parameters, improper
knowledge, or ignorance of systems. In addi-
tion, available group parameters may not be
present, and current group contribution models
(GCM) cannot estimate all necessary properties.

A technique for designing polymers under
uncertainty was developed by [40]. This ap-
proach uses MINLP formulations, where the
chance constraints represent the probability of
meeting the target values. Following traditional
chance constrained programming techniques, a
deterministic equivalent is obtained. Two for-
mulations are presented: (1) stochastic property
matching identifies molecules that meet all
characteristics with a given probability a, (2)
stochastic property optimization determines the
molecules that have a maximum value for a
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given property with probability awhile all other
probabilities are met with given probability. A
generalized framework to solve the same poly-
mer design problem based onHSS sampling and
stochastic annealing was presented [89]. The
framework allowed them to study:

. Impact of uncertainties

. Effect of various probability distributions
including stable and nonstable distributions
(as CCP does not allow nonstable distribu-
tions), mixed distributions, and

. Different forms of objective functions

The framework presented a set of solutions to
choose from instead of a single optimal solution,
providing flexibility to the designer.

SINHA et al. [115] proposed that locally opti-
mal solutions to the traditional CAMD problem
are potential sources of uncertainties. To bypass
this, a global optimization algorithm is pre-
sented. The CAMD is modeled as a MILP, and
a case study is presented. Solvent selection
using a CAMD approach that selects environ-
mentally benign molecules through group com-
bination tools have been analyzed by [49, 50,
91]. This is the first study where the uncertain-
ties in group contribution methods are system-
atically characterized using available literature
and experimental data. New variants of stochas-
tic annealing are developed and used to find
environmentally benign solvents. They also
coupled process synthesis along with chemical
synthesis to obtain environmentally friendly
and cost effective solutions [92, 116].

Process Synthesis and Design ((! Process
Systems Engineering 4. Process and Prod-
uct Synthesis, Design, Analysis, Chap. 2))

Process synthesis translates the chemical syn-
thesis to a chemical process. It involves deci-
sions about process unit operations and connec-
tions. In general, process design activities start
at this level and process simulation, which is
shown to be the last step in computer-aided
process design, predicts the behavior of the
process if it was constructed.

One of the main goals in synthesis problems
is to establish methodologies for selecting opti-
mal flowsheet configurations. Approaches to
process synthesis problems essentially fall un-
der the following areas:

1. Thermodynamic approach
2. Evolutionary methods
3. Hierarchical approach, based on intuition

and engineering judgment
4. Optimization approach based on mathemat-

ical programming techniques

The optimization approach to process syn-
thesis involves (a) formulation of a conceptual
flowsheet incorporating all the alternative pro-
cess configurations (superstructure) and (b)
identification of an optimal design configuration
based on optimal structural topology and the
optimal parameter level settings for a system to
meet specified performance and cost objectives.
Once the superstructure is known, combinato-
rial optimization methods like MINLP algo-
rithms can be used to solve the synthesis prob-
lem. The first step in the solution of the process
synthesis problem is to develop the superstruc-
ture containing all alternative designs to be
considered for the optimal solution. The design
of new processes is, however, complicated by
the fact that technical and economic uncertain-
ties arise, which lead to uncertainties in the
prediction of plant performance and overall
plant economics. An example where such tech-
nical and economic uncertainties occur and are
not treated or characterized rigorously, is in the
design of integrated environmental control pro-
cesses for advanced power systems [45]. Since
the conceptual design of any chemical process
involves the identification of possible flowsheet
configurations, design methods must also ad-
dress the issues of process synthesis under
uncertainty, as it has important implications on
process viability, and other quality measures
such as controllability, safety, and environmen-
tal compliance.

The literature in the area of process synthesis
and process design under uncertainty have been
concentrated on two focused application areas:

1. Pollution prevention by design
2. Designing for flexibility

Pollution Prevention by Design. The earli-
er papers in design under uncertainty with pol-
lution prevention focus dealt with integrated
environmental control systems for coal-based
power systems. Thework continued and extend-
ed to address synthesis problems in this
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area [45–47]. Nuclear waste management posed
a very hard synthesis problem [117]. This is a
large-scale, real world problem related to the
environmental restoration of Hanford site. Con-
version of high-level radioactive waste into
glass is crucial to the disposal of toxic waste
dumps generated over 40–50 years at the Han-
ford nuclear waste site. The procedure essen-
tially consists of mixing the sources of wastes
into blends, to which appropriate glass formers
(frit) is added to make glass. The objective is to
maximize the amount of wastes per glass log, by
keeping the amount of frit added to a minimum.
Processibility and durability conditions require
that certain restrictions on crystallinity, solubil-
ity and glass properties are met. Increasing the
number of wastes, increases the combinatorial
size of the problem. The combinatorial, non-
convex nature of the problem was hard to solve
even for the deterministic optimization meth-
ods. Uncertainties associated with the tank con-
tents and models caused further problems and
demanded new algorithms [88]. The new sto-
chastic annealing algorithm provided optimal
and robust solution to this problem in the face of
uncertainties with reasonable computational
time. A multiobjective extension of this prob-
lem to include policy aspect was possible due to
these new algorithms. This new algorithm was
also used for methylene chloride process
synthesis [90].

Designing for Flexibility (! Process Sys-
tems Engineering 4. Process and Product
Synthesis, Design, Analysis, Chap. 3; !
Process Systems Engineering, 5. Process
Dynamics, Control, Monitoring, and Iden-
tification). Process flexibility is an area that

received significant attention, as it ensures that
processes are operational and safe when ex-
posed to variations in operating conditions. The
studies include distillation network design, heat
exchanger network synthesis [82], reactor net-
work synthesis [105], and batch processing
plant design and operation for waste
treatment [118].

Management, Scheduling, and Planning
(! Process Systems Engineering 8. Plant
Operation, Integration, Planning, Schedul-
ing and Supply Chain) Most problems in

management, scheduling, and planning include

combinatorics (discrete choices and decisions)
and uncertainties [104, 119]. These problems
belong to batch processing due to time depen-
dent nature of these chemical processes. Batch
processing is generally used in high-value
added, low-volume speciality chemicals and
pharmaceuticals. Uncertainties abandon in
batch plant operation. Although batch proces-
sing is facedwith all kinds of uncertainties,most
of the literature in this area deals with demand
uncertainties.

In general the scheduling problem is to de-
termine a time-based assignment of tasks to
equipment so that no process constraints are
violated. The problems in the domain of process
scheduling and planning can be conveniently
described by resource–task–equipment net-
work. The process design and retrofit problems
add longer time horizons to the scheduling
problems and include decisions regarding addi-
tions of equipments. Supply chain management
problems extend the scheduling problem in the
spatial dimension and consider the coordinated
management of multiple facilities and the ship-
ment of materials through an associated trans-
portation network. The product and research
pipeline management problem has much over-
lap both with supply chain management and
process scheduling problems. These problems
are closely related to pharmaceutical industries
where new drugs and products are invented
regularly. Obviously these problems have great
deal of uncertainty. Research management in
general is also related to prioritization and
reducing uncertainties. The chemical engineer-
ing literature is concentrated in problems in
batch scheduling and planning including design
and retrofit problems [104, 119]. Supply chain
management problems are rare [120], and re-
search management problems have only recent-
ly being studied [48, 122–124].

4.5. Future Directions

Research in all aspects of optimization will
continue at a fast pace. However, the solution
strategies for optimization models with smooth
functions, continuous derivatives and continu-
ous-valued optimization variables appears to be
maturing especially with regard to locally
optimal solutions. Evolutionary methods (e.g.,
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genetic algorithms, simulated annealing,
particle swarm optimization, etc.) for global
optimization have made a lot of inroads into
engineering applications for two main reasons:
(a) they are conceptually easy to understand and
easy to program into a computer working code,
(b) they are capable of handling a mixture of
continuous-valued and discrete-valued optimi-
zation variables, and (c) they are capable of
handling nonsmooth functions, for example,
those that appear in material, energy and mo-
mentum balances. However, these evolutionary
methods have the drawback of not being able to
prove that they have reached a globally optimal
solution and that their theoretical foundation is
not as well-developed as deterministic methods.
The challenge is for researchers in deterministic
optimization to reach out to users of evolution-
ary methods, for example, researchers in the
biological and life-sciences areas.

Research into optimization under uncertain-
tywill continue to grow at a rapid pace. Formost
problems in life sciences, physical sciences, and
engineering, the presence of uncertainty is the
overwhelming norm and researchers can no
longer pretend uncertainty does not matter or
is insignificant. Multiobjective optimization in
which several conflicting criteria need to be
optimized is another growth area. In the current
age when we have to build sustainable systems
that have to maximize profit, minimize resource
use, do minimal harm to the environment, make
policymakers happy and get the politics towork
out right, multiobjective optimization will have
to be the modus operandi.

Interval and P-box methods will also be
focus of future articles. In this keyword, we did
not treat time-dependent uncertainties which
have been recently studied for batch process
design [125–128] and sustainability [129] ‘‘see
also the special issues on ‘‘energy and sustain-
ability’’ (Computers and Chemical Engineer-
ing, 35(8), 2011); ‘‘energy systems engineer-
ing’’ (Computers and Chemical Engineering, 35
(9), 2011)’’. These areas present new trends in
optimization under uncertainty.
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