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1. Dawn of the Data-Rich Era

Among the various recent trends on the appli-
cation of computational methodologies in
chemical engineering, the one that perhaps
shows a great deal of novelty and promise is
the use of cyberinfrastructure (CI) and infor-
matics concepts, in conjunction with intelligent
systems (IS), to support decision-making in all
areas of chemical engineering [1]. Recent trends
further suggest that there is an informatics rev-
olution underway. One is moving from an era of
limited data obtained via time consuming ex-
periments and long duration simulations to one
of a deluge enabled by high-throughput experi-
ments andTeraGrid computing environments—
it’s a dramatic transition from a ‘‘data poor’’ to a
‘‘data rich’’ era. Further, the ever increasing
monitoring of equipment, processes, and pro-
ducts at all scales, from individual units to
enterprise-level supply chains (e.g., use of radio
frequency identifications (RFIDs)), is another
source of such data overload.

For instance, in pharmaceutical drug devel-
opment and manufacturing, the amount and
complexity of information of different types,
ranging from raw experimental data to lab re-
ports to complexmathematicalmodels that need

to be stored, accessed, validated, manipulated,
managed, and used for decision-making are
staggering [2].

But it is not raw data that is of interest. What
is desired are in-depth knowledge and mecha-
nistic, first-principles-based, understanding of
the underlying phenomena that can be modeled
to aid in rational decision making. However,
knowledge extraction and model development
from this data deluge are major challenges. Past
approaches developed in a ‘‘data poor’’ era do
not work well in this new world. The new
environment requires imaginative thinking to
address these challenges. This is where CI,
informatics, and IS will play a crucial role.

Now, CI and informatics maymean different
things to different people; therefore a definition,
however limited, can be helpful. The Atkins
Report [3] uses an analogy to industrial infra-
structure such as transportation, communica-
tion, or power systems to define CI as ‘‘the
infrastructure based upon distributed computer,
information, and communication technology. If
infrastructure is required for an industrial econ-
omy, then we could say that cyberinfrastructure
is required for a knowledge economy.’’ Another
definition, also put forward by National Science
Foundation (NSF)whichmay be considered as a
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working definition, states that CI is the ‘‘inte-
gration of hardware, middleware, software,
data bases, sensors, and human resources, all
interconnected by a network.’’ Obviously, even
this is quite broad, but that is the nature of the
terrain. Nevertheless, it articulates the different
components and stresses the importance of
middleware, integration, and networking (see
Fig. 1).

In a similar vein, for informatics, a useful
working definition is that it is the study of the
structure, algorithms, behavior, and interactions
of systems that store, process, access, manage,
communicate, and use information. While the
discipline of informatics has developed its own
conceptual and theoretical foundations, it also
utilizes foundations developed in other fields.
Informatics is generally seen as a key compo-
nent of CI.

IS, on the other hand, deal with the develop-
ment and application of artificial intelligence
methodologies to problems in chemical engi-
neering. In the 1980s and early 1990s, when the
first papers on expert systems, neural networks,
machine learning, and genetic algorithm meth-
odologies for process systems engineering
(PSE) problems appeared in computers and

chemical engineering, they were viewed with
skepticism. Since then these methodologies
have proven their value by addressing a class
of problems of practical importance that were
previously hard to solve using the traditional
techniques. Artificial intelligence (AI) ap-
proaches have become more mainstream now,
accepted as a part of the modeling arsenal of
PSEs, with several important successes in the
domains of process fault detection and diagno-
sis, molecular products design, process synthe-
sis, process safety analysis, scheduling, and so
on. They are now well poised to make further
inroads as a natural complement to the CI and
informatics approaches.

Much of the past contributions only ad-
dressed different slices of the overall problem
but not the entire picture — data, information,
and knowledge management issues were ad-
dressed separately, leading to stand alone sys-
tems with limited capabilities and significant
integration barriers. In addition, the amount and
complexity of data are orders of magnitude
greater now, which is changing the scope of
the challenge dramatically, resulting in data
warehouses that often become data graveyards.
The time has come, and the appropriate

Figure 1. Representation of a CI
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theoretical frameworks and practical technolo-
gies are emerging, to address this problem in all
by developing more comprehensive CI and
informatics approaches.

However, all this would require some inno-
vative thinking and getting over some miscon-
ceptions. For instance, there is a tendency to
underestimate informatics as just programming
or database management. This would be akin to
stating that chemical engineering is nothing but
chemistry carried out in large vessels, i.e.,
‘‘large-scale chemistry’’. Certainly, there is
chemistry being done in those large process
units, but, there is much more to it. Similarly,
informatics certainly involves programming,
but that’s not all. Certainly, informatics in-
volves data storage and management, but that’s
not all.

Another equally important point to note is
that these looming challenges can not be ad-
dressed by hoping that computer scientists/en-
gineers will somehow address them for us. Once
again, invoking another chemical engineering
analogy, this would be like thinking that since
transport phenomena problems are solved by
using differential equations, mathematicians
would address these core problems of our disci-
pline for us. Again, they can not as they lack the
application domain knowledge.

A similar attitude and approach towards CI
and informatics is needed to foster enabled
solutions to ones challenges. The use of CI,
informatics, and intelligent systems concepts
and techniques in chemical engineering is no
different from the modeling tools which are
historically borrowed, adapted and enhanced
from mathematics (e.g., linear algebra and dif-
ferential equations) or operations research (e.g.,
mathematical programming).

Exciting opportunities exist in developing
modeling environments that can effectively
manage the data deluge from high-throughput
experiments for the discovery of new materials
such as catalysts. Pharmaceutical engineering is
another ripe area where research on new ontol-
ogies and CI-enabled IS for decision support are
already in progress. In the emerging ‘‘smart
plant’’ manufacturing environment of the fu-
ture, opportunities abound for the development
of CI–IS solutions. Systems biology and health-
care informatics are also natural domains for the
CI–IS framework. Risk identification and

management in complex engineered systems is
another such prime candidate with problems
that would require a CI–IS approach. It is quite
obvious that the solutions for our challenges in
achieving sustainable energy systems would
require a CI-IS approach. Global, multiplant-
based, supply chains optimization is another
such candidate.

2. From Data to Knowledge to
Decisions

Addressing the formidable modeling and infor-
matics challenges would require a broader
approach to modeling than what chemical en-
gineers are used to. In common parlance, one
tends to use the terms data, information, and
knowledge more or less synonymously. How-
ever, they do represent different concepts and
that distinction becomes important as formal
methodologies are developed necessary for
automating tasks such as acquisition, represen-
tation, storage, manipulation, modification of,
and reasoning with, data, information, and
knowledge. The formal representation techni-
ques used for data, information, and knowledge
are often quite different, the automation proto-
cols for their exchange are also different, and so
are the algorithms used for manipulating and
reasoningwith them for decision-making. In the
past, these issues did not seem terribly important
as there was a tremendous amount of human
intervention in passing data and information
from one program to another and people took
care of all these barriers. However, given the
increased need to automate such computational
tasks due to the data deluge, as well as due to the
complexity of the problems these issues are
addressed.

Generally speaking, when one mentions
modeling to chemical engineers, people often
think of a system of differential and algebraic
equations (DAEs). However, there is a wider
variety of knowledge representation concepts
leading to other classes of models [4] which
will play an important role in this emerging
future. While it is not the purpose of this paper
to have an extensive discussion on various
modeling concepts, it is, nevertheless, useful
for the theme to outline and summarize the
issues involved.
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One may broadly classify models into
i) mechanism-driven models based on
first-principles and ii) data-driven models.
Again, each of these classes may be further
categorized into i) quantitative and ii) qualita-
tive models. Combinations of these classes lead
to hybrid models.

DAEmodels are suitable for a certain class of
problems that are amenable to such a mathe-
matical description; chemical engineering has
abundant examples of this class. However, there
are other kinds of knowledge that do not lend
themselves to such modeling. For example,
reasoning about cause and effect in a process
plant is central to fault diagnosis, risk analysis,
alarm management, and intelligent supervisory
control. Knowledge modeling for this problem
class does not typically lend itself to the tradi-
tional DAE view of modeling. In some simple
cases perhaps one can, but they are incapable of
addressing real-life industrial process systems
which are often complex and nonlinear with
incomplete and/or uncertain data. Further, even
for simple systems DAE-based models are not
suitable for generating explanations about caus-
al behavior. This problem often requires a hy-
brid model, such as a combination of a graph
theoretical model (e.g., signed digraphs) or a
production system model (e.g., rule-based re-
presentations) and a data-driven model (e.g.,
principal component analysis (PCA) or neural
networks) [5].

Thus, while one is quite familiar with ODE/
PDE, statistical regression, and mathematical
programming models, one is less so with other
classes such as graph theoretical models (as
noted, used extensively to perform causal rea-
soning in abnormal events identification and
diagnosis, risk analysis etc.), Petri nets (used
for modeling discrete event systems), rule-
based production system models (used in
knowledge-based systems for automating high-
er-order reasoning), semantic network models
such as ontologies (used in materials discovery
and design that utilize complex relational data-
bases, domain-specific compilers, etc.), object-
oriented models such as agents (used in simu-
lating the behavior and decision-making
choices of independent, interacting, entities en-
dowed with complex attributes and decision-
making powers), and so on. In addition, there are
the data-driven quantitative models such as

pattern recognition-based models (e.g., neural
nets, fuzzy logic), stochastic models (e.g.,
genetic algorithm, simulated annealing), etc.

Even though, as far back as the 1960s, the
need for such an alternative modeling philoso-
phy in the context of process synthesis was
recognized [6], not much work on this subject
appeared in the chemical engineering literature
until the 1980s. This renewed interest was pro-
pelled by the progress in knowledge represen-
tation and search techniques in AI as well as in
computing hardware and software. Outstanding
examples from that era are the DESIGN-KIT
system for process engineering [7] and the
DECADE system for catalyst selection [8].
However, the progress was viewed with skepti-
cism. Nevertheless, recognizing the importance
of this alternative philosophy, this need was
highlighted in the CAST award acceptance
speeches in the hope of stimulating further
research [9, 10].

Over the recent decade, much progress has
been made as these methodologies proved their
value by addressing problems of practical im-
portance, which were previously hard, even
impossible, to solve using the traditional model-
ing techniques. These AI-based modeling ap-
proaches have become more mainstream now,
accepted as a part of the modeling arsenal of
PSE, with several important successes in the
domains of abnormal events management, mo-
lecular products design, process synthesis, pro-
cess safety analysis, scheduling, and so on.

Despite all of this progress, the number of
academic researchers developing the alternative
modeling methodologies in chemical engineer-
ing is very small and inadequate considering the
emerging challenges. This is mostly due to two
factors: (i) the barrier of entry is quite high —
requiring a considerable investment in time and
effort to achieve a sufficient level of mastery in
knowledge representation and search techni-
ques, algorithm engineering, databases, compi-
lers, and so on, which are not part of a typical
chemical engineering education program; and
(ii) certain misconceptions about what the in-
tellectual challenges are.

But the crucial emerging trend, borne out of
several necessitating factors, is the ever increas-
ing automation of higher-order reasoning and
decision-making. These activities that were
once considered to be the exclusive domain of
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humans are slowly, but surely, being taken over
by computers. Such automated reasoning and
decision-making will be driven by models, but
these are not going to be limited to DAE-based
models. To be sure, the DAE-based models will
play their useful role wherever they are appro-
priate, but the other kind will play an increas-
ingly important role

In some sense, it would be easier if all our
modeling needs could be addressed by just the
DAE models. It is a much more mature field of
study, with decades of literature on how to
define, formulate, and solve such models. The
alternative modeling philosophy, on the other
hand, are typically used for ill-posed or ill-
structured problems, lacking a unique approach,
and with a certain amount of heuristic element
to them. They often lack the beauty and rigor of
the DAE models. But these deficiencies are
sufficiently compensated for by their ability to
address, though not always, messy, real-life,
industrial problems where they often provide
very good solutions, even optimal ones.

It is important to recognize that these two
approaches, in general, are complementary and
not competitive, even though there are problems
where they do compete. As noted above, if
indeed, there is a DAE-based solution that
would be satisfactory for a given problem, one
should pursue it instead of the other methodol-
ogies. The strength of the alternate modeling
philosophy lies is its ability to address a class of
problems that are not amenable to the DAE
framework. However, one often falls into the
trap of using a particular modeling technique as
the panacea for all problems — e.g., to a PCA
specialist, every problem may seem to require
that particular approach. What is needed is not
such a ‘tool driven’ outlook, but a ‘tool box’
oriented modeling philosophy, where one is
comfortable in using a wide variety of modeling
tools. It is helpful to remind of what Prof.
GEORGEBOX, the statistician from theUniversity
of Wisconsin, once famously said: ‘‘All models
are wrong, some are useful.’’

3. Cyberinfrastructure: Current
Trends and Future Outlook

The emerging ‘‘data rich’’ networked environ-
ment will eventually impact all aspects of CI

and, in fact, the effects are being felt in some
areas already. These effects are spawning new
application domains and opportunities for
modeling skills. The following summary is not
meant to be a comprehensive review but only a
representative survey of some recent develop-
ments that could serve as useful starting points
for interested readers to explore further. First
progress in general purpose environments is
summarized and then domain or application
specific results are outlined.

CI developments have been along the lines of
concepts, methodologies, and tools required for
two broad categories of needs:

1. Data modeling and management
2. Knowledge modeling and management

CI typically involves:

. Hardware: Progress in hardware generally has
been in developing high-performance and
parallel computing environments such as the
TeraGrid

. Software: Software integration includes mid-
dleware between different software or pro-
gramming languages

. Middleware: Middleware are systems that
connect multiple applications through the use
of a common data model. Use of a common
information model makes it possible for
greater flexibility and efficiency.

. Networking: Networking usually exploits
the internet and wireless communication
technologies

. Domain knowledge components in an inte-
grated environment

3.1. General Purpose Tools and
Environments

Modeling and Simulation. While efforts
such as the computer-aided process engineer-
ing-open (CAPE-OPEN) standard, which define
interfaces between physical property packages,
numerical solvers, and unit operation libraries,
have been underway for a decade, issues of
interoperability have been gaining a great deal
of importance. In an extension of CAPE–OPEN
a framework (COGents) for combining
and assembling CAPE-OPEN compliant
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components using software agents was com-
posed by BRAUNSCHWEIG [11]. Similarly, com-
ponent-based hierarchical explorative open pro-
cess simulator (CHEOPS) [12] is a conceptual
framework for process model integration.
CHEOPS includes a neutral model representa-
tion (conceptual objectmodel), a toolwrapper, a
modeling tool, a formulation bridge (to convert
between two model formulations), and solution
algorithms.More recent advances in this project
are described in [13].

LIMSandDataWarehouses. Vast amounts
of data and information are frequently entered
into laboratory information management sys-
tems (LIMS) (! Laboratory Information and
Management Systems (LIMS)) and electronic
laboratory notebooks (ELN) [14], which are
repositories of raw data. Important recent prog-
ress towards storing and managing such large
data sets include the virtual laboratory (VL)
project at the University of Amsterdam [15] and
XSIGMA [16]. However, most current LIMS
and ELN solutions utilize database schemas,
which often limit the capacity for the descrip-
tion of complex relations between information
entities. This is addressed by developing do-
mains-specific ontologies as discussed below.
Data warehouses [17] use specialized database
schemas to abstract and store a copy of data
from several sources, and enable those data to be
queried through a single query.

Ontologies, Languages, and Compilers.
Addressing the challenges in modeling and
informatics requires a departure from the appli-
cation-centric approach of the past to an infor-
mation-centric framework. In this new para-
digm, the underlying data, information, and
knowledge are modeled explicitly, independent
of the tools that use these. Instead of encoding
such information in objects in a particular pro-
gramming language or tool specific constructs,
the information is explicitly described. Howev-
er, to describe the information explicitly, the
syntax (i.e., structure) as well as semantics (i.e.,
meaning) of the information must be defined.
The explicit description of domain concepts and
relationships between these concepts is known
as an ontology [18].

Recent developments in the field of ontology
have created new software capabilities that

facilitate the implementation of the informa-
tion-centric infrastructure. Compared to a data-
base schema which targets physical data inde-
pendence, and an XML schema which targets
document structure, an ontology targets agreed
upon and explicit semantics of information.As a
result, while the functionalities of this infra-
structure can be implemented in a traditional
client-server framework, the main benefits of
this ontology-driven architecture are its open-
ness and semantic richness.

One recent development is the Purdue ontol-
ogy for pharmaceutical engineering (POPE) to
support automated decision-making by intelli-
gent systems for pharmaceutical product and
process development and manufacturing [19].
POPE is composed of several ontological sub-
systems that formally model data, information,
and knowledge regarding experiments, materi-
als, chemical species and reactions, expert
knowledge, unit operations, and mathematical
models using the web ontology language
(OWL) [20]. A particularly innovative contri-
bution in POPE is the creation of amathematical
models ontology that represents mathematical
models as well as their underlying assumptions.
This framework separates the declarative
and procedural components of mathematical
models creation, manipulation, and solution.
Figure 2 shows a viewof someof the ontological
relationships in POPE.

The utility of such an environment might be
illustrated with an example. A typical problem
scenario in pharmaceutical manufacturing is
considered, onewhere the recent batch of tablets
have failed the dissolution test–a critical test
where one evaluates how well a sample tablet
dissolves in 250 mL of buffer. Current
approaches to diagnosing and resolving this
important product quality problem requires a
detailed and thorough investigation, comparing
current batch records with those of previous
batches, proposing failure hypotheses, analyz-
ing and checking hundreds to thousands of
pages of documentation on raw material prop-
erties, process operating conditions, design spe-
cifications, modeling assumptions (made a few
years ago when the models were originally
developed for this manufacturing process and
the model development engineer is no longer
with the company), and even the original lab
data on dissolution (experiments conducted
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several years ago and data were recorded as
entries in hard to read laboratory notebooks).
Using a POPE-like ontological informatics sys-
tem, such data, information, and models would
be readily accessible through the ontological
relationships for an operator or a design

engineer to make the right decisions at the right
time. Such a system would greatly empower
human decision-making in real-time by screen-
ing vast quantities of data and information to
find better solutions, thereby reducing the time
to complete a complex reasoning task.

Figure 2. View of some of the ontological relationships in POPE
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3.2. Recent Progress in some
Application Domains of Chemical
Engineers

Computational Chemistry. GridChem [21]
is a Java desktop application that includes a
client, a grid middleware server, and a set of
distributed, high-end computational resources.
Computational chemistry tools are connected,
through the GridChem client portal that under-
takes job management, to a middleware server
that handles data management. The middleware
server is connected to computational grids like
GLOBUS, Condor, and MyProxy. Both the
middleware server and GridChem client portal
are connected to long-term storage.

The collaboratory for chemical kinetics [22]
provides a web environment which includes a
database of chemistry documents, tools for
search like Tableseer and chemistry entity
search as well as access to a globus grid envi-
ronment for grid computation. NorthWest
Chemistry (NWChem) [23] is another impor-
tant software system for computational chemis-
try on a grid.

MolecularProductsDesign andDiscovery.
Molecular products design deals with the im-
portant and difficult problem of discovering and
designing new materials and formulations with
desired properties. This encompasses a wide
variety of products such as fuel and oil addi-
tives, polymeric composites, rubber com-
pounds, paints and varnishes, catalysts, etc.
Recent research efforts are beginning to address
the informatics and multiscale modeling chal-
lenges [24] in this domain. One such attempt is
the multiscale model-based informatics frame-
work called Discovery Informatics [25]. The
discovery informatics framework has led to the
successful development of automated, rational,
materials design systems in several industrial
applications, such as gasoline additives, formu-
lated rubbers, and catalyst design [26–28]. As
noted above, the richness and complexity of the
underlying chemistries in this domain has led to
important advancements in knowledge repre-
sentation, languages, compilers, molecular
structure search engines, chemical entities
extraction systems, and so on. A recent contri-
bution by [29] shows the value of the informat-
ics-based approach in catalytic chemistry.

There is considerable literature in domains
such as drug discovery or bioinformatics [30,
31]. Themodeling and informatics challenges in
other application domains such as smart
manufacturing plants [32, 33], enterprise-wide
optimization [34], sustainable energy and envi-
ronmental systems, pharmaceutical engineer-
ing, nanoscale engineering, engineering virtual
organizations [35] etc., require CI-based
solutions.

4. Decision Support Systems

A broad definition of a decision support system
(DSS) states that a DSS is a computer-based
system that aids the process of decision mak-
ing [36]. There have been several other attempts
at providing an all inclusive definition while
covering specific characteristics and behavior of
these systems [37–42]. DSS have been classi-
fied into communications-driven, data-driven,
document-driven, knowledge-driven, and mod-
el-driven DSSs [43]. The last two categories are
usually synonymous with the term ‘expert sys-
tems’ which is a classical branch of AI [44].

Within the domain of PSE, decision support
systems have been developed and used in areas
including process modeling, optimization, sim-
ulation, design, and fault diagnosis. Most of
these efforts consisted of reasoning over a
knowledge base encoded in software program-
ming languages as rules of thumb [45–48].
Some of them use the term DSS loosely to
represent techniques (e.g., spreadsheet-based,
simple datamanipulation and visualization) that
aid decision-making at a low level but do not
have the ’intelligence’ to propose or suggest
actions in a given situation [49]. Here, the
discussionwill be restricted to those that support
decision-making at a higher level and reason
over the domain knowledge that is part of a CI.

An example of the use of a CI for decision
support is PHASuite [50, 51]. In this effort,
hazard and operability analysis (HAZOP) was
automated to aid and guide human experts. The
domain knowledge required for this (equipment
models, process models, safety related knowl-
edge), was organized based on ontologies [18]
and represented in Microsoft Access databases.
The knowledge thus stored could be accessed by
a variety of tools for a variety of applications.
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Information sharingwas ensured by the creation
of translators or dictionaries that converted
input information (Batch Plus simulation files,
XML files, CAD files, etc.) into ontologies and
output information from the ontologies into
external documentation tools (PHAPro). Proce-
dural knowledge was written in Visual Cþþ
which carried the knowhow for using the de-
clarative knowledge in the ontologies. This
knowledgewasmanaged using case-based tech-
niques that associated new scenarios to ones
already present in the knowledgebase using the
manner in which cases were represented and
organized. An automated functionality to add
and modify the knowledgebase was also made
part of this commercial tool. The reasoning over
this ontological knowledgebase was carried out
using the concept of colored Petri nets which are
complex bipartite graphs used to represent dis-
crete event systems. A two level, two layer
reasoning methodology was proposed, namely,
an operation level and an equipment level with a
Petri net layer and a safetymodel layer as part of
each level. The implementation of this commer-
cial decision support tool for hazard and opera-
bility analysis was further tested with a typical
batch process in a pharmaceutical company.
Figure 3 shows the major components of
PHASuite.

Another DSS that uses declarative knowl-
edge representation has been developed in the
area of process monitoring and utilities optimi-
zation [52]. In this work, an agent-based
approach was developed for decision support
in performance prediction, monitoring, sched-
uling, and resource optimization. A task ontol-
ogy and agent communication ontology defined
the required concepts and relations which the
heuristic rules and inferencing were embedded
in Java agent development framework (JADE).
Ontologies were represented in a resource de-
scription framework (RDF) file using OntoEdit.
Various agents reasoned over the ontological
knowledgebase based on the heuristic rules,
process data, and models in heterogeneous for-
mats. Figure 4 shows a schematic of the pro-
posed system.

Two other notable contributions in the appli-
cation of CI towards decision support are those
by [53, 54]. Although these efforts have shown
case studies in pharmaceutical engineering, one
can easily see the extension of the proposed

ideas and technologies to PSE in general. In the
work by ZHAO et al. [53], the domain knowledge
pertaining to pharmaceutical solid dosage for-
mulation, namely, the process or unit operation
related knowledge and the material related
knowledge was represented in OWL. OWL
unlike other forms for representing ontologies
is semantically rich and inherently supports
constraint enforcement and rule-based reason-
ing. The guidelines for drug product formula-
tion were represented in guideline interchange
format (GLIF), a platform independent guide-
line representation and execution format within
the ontological framework. The end result of
this effort was a prototype automated decision
support tool that aided human experts in the
selection of ingredients for a solid dosage
form [19].

To perform reasoning and data consistency
checks [54] focus on the underlying semantics
of an ontological CI. OWL supported axioms
were used to check the consistency of informa-
tion input to a process ontology. Semantic web
rule language (SWRL) rules were written to
enforce certain rules that provided inferencing
capabilities. With the combination of these
technologies, a compliancemanagement frame-
work in the pharmaceutical processing domain
was created, namely OntoREG. The resulting
framework ensured information integrity, rea-
soned over ontological process and regulatory
knowledge, and alerted users about missing
information and regulatory violations in the
process knowledge.

5. Summary

Driven by powerful convergent forces of tech-
nologies, the coming data deluge poses unprec-
edented challenges and opportunities in model-
ing and informatics fronts. While computer
scientists and information technologists can
help, the demands imposed by the chemical
engineering domain-specific knowledge and
constraints, which are unlikely to be understood
and appreciated by outsiders, make it clear that
only chemical engineers can address these chal-
lenges — in particular, these need to be ad-
dressed by the PSE community as it is the one
best positioned to do so. However, addressing
these would require discarding some traditional
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misconceptions about informatics and non-
DAE-based modeling methodologies, and fos-
tering innovative approaches towards a wider
class of knowledge modeling. Great opportu-

nities for making field defining intellectual
contributions await one in inventing chemical
engineering domain-specific CI components
such as ontologies, compilers, molecular

Figure 3. Major components of PHASuite
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structure and semantic search engines, chemical
entities extraction systems, languages for
modeling chemical reaction pathways, model-
ing and knowledge management environments,
visualization, virtual organizations, cybersecur-
ity systems, and so on. Naturally, all these also
provide one with opportunities for new business
ventures in high-end modeling and informatics
products and services. This is a long, adventur-
ous, and intellectually exciting journey that
have only barely begun, but progress in this
will revolutionize all aspects of chemical engi-
neering for years to come.
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