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1. Molecular Modeling and
Simulation for Chemical Product
and Process Design

1.1. Introduction

Major chemical process industries (CPI) have
experienced a substantial transformation in re-
cent years worldwide due to an increased com-
petition at a global level and a significant pres-
sure from national governments and interna-
tional organizations to develop new sustainable
processes that consume significantly smaller
quantities of energy and other natural resources
and operate under zero (or close to zero) waste
production.

In parallel, major multinational CPI shifted
from low value commodity products to special-
ty products of high added value where the
underlined materials are of considerably higher
complexity in terms of:

. Chemical structure

. Molecular and supramolecular architecture

. Micro- and mesostructure

. Performance in the end-use environment

These are nontrivial changes that require con-
certed effort at different levels: basic research to
develop fundamental knowledge of physical phe-
nomena, applied research to develop physical
models and parameters, and development work
for the generation of new processes that meet the
requirements stated above. Accurate simulation
and optimization methodologies are necessary at
all length and time scales, from the submolecular
level all the way to the macroscopic level where
thermodynamic and computational fluid mechan-
ics models together with advanced numerical
methods are used in a concerted way. A consistent
hierarchical development of physical models is of
outmost importance.

This chapter refers to the development of
molecularmodeling and simulationmethods for
the design of new chemical products and the
improvement of existing and design of new
processes. Molecular simulation was intro-
duced in the 1950s [1, 2] (! Molecular Model-
ing, Chapter 3) as an abstract physical applica-
tion for the primitive computers of the time and
it evolved to a powerful engineering tool more
than 50 years later. At the same time, the need
for further development of simulation methods
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and physically accurate models remains as it
will be seen later in this chapter.

1.2. Elementary StatisticalMechanics

In statistical mechanics (! Molecular Dynam-
ics (MD) Simulation), the properties of a bulk
chemical system are calculated based on the
collective interactions between the molecules
that make up the system. Almost all of the
systems of interest to process systems engineer-
ing (PSE) followBoltzmann statistics and so the
partition function (Q) of a system of constant
number of molecules (N) in a specific volume
(V) and temperature (T) is [3]:

Q ¼ c

Z
dpNdrNexp½�HðrNpN Þ/kBT � ð1Þ

where rN and pN denote the coordinates and
momenta of all N molecules, HðrNpNÞ is the
Hamiltonian of the system and c is a proportion-
ality constant. For a system of N identical (indis-
tinguishable) molecules: c ¼ 1/ðh3NN!Þ where h
is the Planck’s constant. The Hamiltonian pro-
vides the total energy of the system as a function
of the coordinates and the momenta of the mo-
lecules and is given as the sum of the kinetic
energy (K) and the potential energy (U), so that:

HðrNpNÞ ¼
X
i

p2i /ð2miÞþUðrN Þ ð2Þ

The potential energy U depends strongly on
the nature (complexity) of molecular interac-
tions [3]. Intermolecular potentials range from
primitive potentials (such as hard sphere, square
well, etc.) to potentials of moderate complexity
(such as Lennard–Jones, Stockmayer, etc.) and
all the way to complex potentials that account
for intra- and intermolecular interactions, many
body effects (polarizable potentials), etc.

From the partition function, one may calcu-
late macroscopic thermodynamic properties
using the so-called bridge function, which for
the case of the constant NVT system (canonical
statistical ensemble) is [3]:

AðNVTÞ ¼ �kBT ln QðNVTÞ ð3Þ

where A is the Helmholtz free energy. Unfortu-
nately, the partition functionQ can be calculated
analytically only for a very few simple systems
and significant approximations are needed

along the way in order that Equation (3) can
lead to meaningful results [4].

Alternatively, one may calculate a macro-
scopic property P as a statistical average over
all microstates of the system, that is:

hPi ¼

Z
dpNdrNPðrNpN Þexp½�HðrNpN Þ/kBT �Z

dpNdrNexp½�HðrNpNÞ/kBT �
ð4Þ

Even then, calculation of hPi using brute
force numerical integration requires extraordi-
nary computing power. For example, for a 100
molecule system using Simpson’s rule with just
5 equidistant points along each coordinate axis
one needs to evaluate the integrand of Equa-
tion (4) at 10210 points [5].

A much more efficient approach is based on
the observation that some configurations of the
molecular system aremuchmore important than
others, so one should focus on sampling these
important configurations rather than random
configurations. This has been the basis of the
so-called Metropolis Monte Carlo simulation
method discussed briefly below.

1.3. Major Molecular Simulation
Methods

1.3.1. Molecular Dynamics (MD)

In classical (Newtonian) mechanics, the follow-
ing set of equations describes the evolution of
the system over time [6]:

mir€i ¼ f i

fi ¼ �rri UðrNÞ i ¼ l; . . . ;N ð5Þ

where mi is the mass of molecule i and fi is the
force exerted on it. MD consists of solving these
N second order differential equations numeri-
cally using a number of different methods de-
veloped for this purpose. In thisway,MDallows
monitoring of the evolution of the system with
time, and thus, time-dependent structure (poly-
mer chain relaxation, etc.) and physical proper-
ties (such as viscosity, diffusion coefficient,
etc.) can be calculated.MD is usually performed
in the microcanonical (NVE) statistical ensem-
ble; however, the method has been extended to
canonical (NVT), isobaric-isothermal (NPT)
and other statistical ensembles [6]. An impor-
tant parameter concerning the robustness of the
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MD simulation is the time step used for the
numerical integration of the equations of mo-
tion. For systems characterized by a relatively
stiff potential (e.g., the case of chainmolecules),
a typical time step is in the order of 0.1–1 fs. A
number of advanced simulation techniques al-
low the use of different time steps for different
types of forces. For example, a short time step is
used for fast varying forces, such as bond
stretching and bond angle bending and a longer
time step is used for slowing varying forces,
such as nonbonded intra- and intermolecular
interactions. Using state of the art computing
facilities, one may simulate a real system today
(April 2010) for up to a fewmicro seconds. This
is sufficient for the calculation of properties
such as chemical potential and self-diffusion
coefficient in systems that consist of small- and
medium-size molecules. For the calculation
of dynamic properties of long chain molecules
(e.g., polymers with a molecular mass higher
than 10000), alternativemethods are needed [7].

1.3.2. Metropolis Monte Carlo
Simulation

Metropolis Monte Carlo (MMC) simulation is a
stochastic method that allows efficient sampling
of the multidimensional phase space of the
system. In other words, this method allows
‘‘jumps’’ in the phase space and so, no real time
monitoring of the system is possible. In MMC,
the different states of the system are visited with
a probability proportional to the Boltzmann
factor of the energyof the system [5]. The system
goes from one configuration (state) to the next
configuration (state) based on different types of
moves that satisfy microscopic reversibility and
preserve the macroscopic properties of the sys-
tem that are set constant. In this way, MC
simulations are performed in the NVT, grand
canonical (mVT),NPT andmanyother statistical
ensembles, depending on the system (pure fluid
or mixture) and conditions (one phase, two, or
more phases, etc.) examined. In a typical NVT
MMC simulation, particles are displaced ran-
domly one at a time within the simulation box
and the new configuration is accepted or rejected
according to the Boltzmann factor of the energy
difference between the two states, that is:

pNVT ¼ min½1; expð�DU/ðkBTÞÞ� ð6Þ

where DU ¼ U(new) � U(old) is the energy
difference between the old and the new config-
uration. Thermodynamic properties are calcu-
lated based on Equation (4). Additional moves
in the NPT, mVT and other ensembles include
volume fluctuation, random insertion and dele-
tion of particles and so on, and acceptance
criteria are modified accordingly.

Amajor breakthrough inmolecular simulation
was the development of the Gibbs ensemble MC
(GEMC) method which allows the simultaneous
simulation of several phases in equilibrium (e.g.,
vapor–liquid equilibrium) [8]. The method has
been successfully applied to pure components,
binary and multicomponent mixtures, and differ-
ent types of phase equilibria (vapor–liquid, liq-
uid–liquid, vapor–liquid–liquid, etc.) [9].

Development of efficient elementary moves
for long chain molecules has also been a very
active area of research over the last two decades.
A broad range of moves has been proposed for
the efficient relaxation of chain tails, internal
segments, branch points, and even moves that
allow exchange of molecular segments between
two different chain molecules [10]. A combina-
tion of these moves allows today accurate sim-
ulation of polymer melts with a molecular mass
of the order of several thousand.

1.4. Applications

1.4.1. Pharmaceuticals

Hydration energy plays a significant role in
biological processes and is currently an impor-
tant predictive index formolecule availability in
the pharmaceutical industry. During the com-
plex process of driving a molecule from an
aqueous phase to a target protein active site,
the driving force is directly related to the differ-
ence between the hydration energy of the drug
and the drug–protein association energy. More-
over, desolvation of both protein site and drug
molecule occurs during this binding process,
and recently developed docking/scoring meth-
ods estimate this desolvation correction based
on free energy calculations. For some drug
molecules, solvation free energies may be esti-
mated experimentally from concentration mea-
surements in two-phase systems. However, in
most cases this is not possible and so accurate
theoretical or computational approaches are
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needed. Molecular simulation using realistic
potential models is able to provide accurate
estimate of the property of interest and at the
same time a quantitative insight regarding
the molecular mechanisms associated with the
hydration.

Recently, a simple thermodynamic cyclewas
proposed to calculate the hydration Gibbs free
energy, DhydG (P,T), of complex solute mole-
cules [11]:

Solute ðwaterÞ ������!Dwater G Dummy ðwaterÞ
DhydG" #DdummyG

Solute ðvacuumÞ ������!Dvacuum G Dummy ðvacuumÞ

where, DwaterG is the Gibbs energy associated
with the mutation of the solute molecules into
molecules of dummy atoms (atoms that do not
interact with their environment) in water,
DvacuumG is the Gibbs energy associated with
the same process in vacuum, and finally
DdummyG can be seen as the hypothetical hydra-
tion Gibbs energy of dummy species. In prac-
tice, these atoms have no intermolecular elec-
trostatic or van der Waals interactions, but
their intramolecular bonded interactions are the
same as in the solute atoms. As a consequence,
DdummyG is equal to zero and one can write
the following equation for the thermodynamic
cycle:

DhydG ¼ DvacuumG�DwaterG�DdummyG ¼ DvacuumG�DwaterG ð7Þ

The term DvacuumG contains only contribu-
tions from intramolecular nonbonded interac-
tions (forces acting between atoms in the same
molecule separated by more than three bonds),
which exist in the solute molecule but not in the
dummy molecule. The thermodynamic integra-
tion approach was used by [11] to calculate
DhydG of barbituric acid and various substituted
barbiturates at 298 K and 0.1 MPa. In Figure 1,
DhydG and the Lennard–Jones contribution to it,
DLJG, are presented as a function of molecular
mass for various mono- and di-substituted
barbiturates.

Using the same methodology, DhydG of vari-
ous n-alkanes [12] and polar compounds [13]
were calculated by [11]. An extensive evalua-
tion of three widely used molecular models
(force fields) to describe the polar compounds,
namely TraPPE, Gromos and OPLS-AA, was
performed. In all cases, the MSCP/E model was
used for water. An overview of the predictions
obtained from the different force fields for the
polar compounds and a comparison with exper-
imental data is shown in Figure 2. For the
relatively simple polarmolecules, such asmeth-
anol and propanol, all force field predictions are
in good agreement with experimental data. For
the case of more complex multifunctional mo-
lecules, including acetylsalicylic acid (ASA)
and ibuprofen (IBP) that are of interest to phar-

Figure 1. MD predictions of DhydG and of DLJG against molecular mass for various mono- and di-substituted barbiturates at
298 K
BA ¼ barbituric acid, MB ¼ methyl barbiturate, EB ¼ ethyl barbiturate, iPB ¼ isopropyl barbiturate, BAR ¼ barbital,
PRO ¼ probarbital, BUT ¼ butethal, PEN ¼ pentobarbital
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maceutical industry, MD predictions from dif-
ferent force fields deviate and the agreement
with experiments is less satisfactory.

1.4.2. Polymer Membranes for Gas
Separation

Polymeric membranes (either glassy or elasto-
meric) are used widely for separation of mix-
tures in chemical industry, medical applica-
tions, etc. A major physical property in such
a process is the permeability (P) of component i
in the polymer membrane defined as the product
of the solubility (S) and diffusivity (D), so that:

P ¼ SD ð8Þ

Separation of a binary mixture of compo-
nents i and j (where i is typically the most
permeable of the two components) by a given
polymer membrane is characterized by the ideal
separation factor, which is the ratio of perme-
abilities for components i and j according to the
expression:

aid
ij ¼ Pi

Pj
¼ Si

Sj

� �
Di

Dj

� �
ð9Þ

where the ratios aS
ij ¼ Si/Sj and aD

ij ¼ Di/Dj

represent the solubility selectivity and the dif-
fusivity selectivity, respectively. In rubbery
polymers aD

ij is less than unity, while aS
ij � 1,

so ideal separation factor is governed by sel-
ectivity of sorption. Polydimethylsiloxane
(PDMS) is a widely used polymer membrane

and so ideal separation factors for various binary
gas and liquid mixtures have been measured.
The separation factor for n-C4H10/CH4 mixture
is used widely as a benchmark for hydrocarbon
mixture separation capability of a given mem-
brane material. A new atomistic force field was
developed for PDMS that accounts for bond
stretching, bond angle bending, dihedral angle
torsion, and nonbonded intra- and intermolecu-
lar interactions [14]. For the nonbonded inter-
actions, the Lennard–Jones potential for short-
range van der Waals repulsive and attractive
interactions togetherwith a long-rangeCoulom-
bic potential were used. The model was shown
to predict accurately the thermodynamic prop-
erties of polymer melts over a wide temperature
and pressure range [14]. It was further used for
polymer–gas mixture simulations. In Figure 3,
pure gas n-C4H10/CH4 solubility, diffusivity,
and permeability selectivities in the range of
273–400 K calculated from MD simulations
together with experimental data from [15] are
shown.

The solubility of hydrocarbons in the poly-
mer matrix was based on the Widom’s test
particle insertion method that allows accurate
calculation of the excess chemical potential of
the solute in the solvent. MD simulation of the
polymer matrix for 5–10 ns followed by several
hundred thousands of solutemolecule insertions
in each polymer configuration (this is a relative-
ly fast post-processing calculation) provides an
accurate estimate of the solubility.

Figure 2. Experimental data and MD predictions of DhydG of various polar molecules using different force fields at 298 K
a) Methanol; b) Propanol; c) Ethylamine; d) Acetone; e) Acetic acid; f) IBP; g) ASA; h) Benzoic acid
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For the calculation of diffusion coefficient,
significant longer MD simulations, on the order
of 100 ns, are needed in order to ensure that the
hydrocarbon molecules diffusing through the
polymer matrix reach the normal diffusing
(Fickian) regime [16]. In this case, the diffusion
coefficient is calculated from the mean square
displacement of the hydrocarbon molecules,
based on Einstein equation.

Figure 3 reveals that solubility selectivity
decreases significantly as temperature increases
while diffusivity selectivity increases but with a
smaller rate. Finally, the ideal separation factor
follows closely the trend exhibited by solubility
selectivity. In all cases, MD predictions are in
excellent agreement with experiments [15] over
the entire temperature range.

For the accurate design of a polymer mem-
brane for the separation of a real mixture, mix-
ture permeability data are needed. It is often
assumed that in rubbery polymers penetrants
permeate independently of one another. How-
ever, this behavior needs to be confirmed for a
given system. Recent experimental data for the

n-C4H10–CH4 mixture in PDMS showed an
increase in CH4 solubility in the presence of
n-C4H10 in the polymer. On the other hand, only
a weak influence of CH4 on n-C4H10 solubility
was reported. In Figure 4, experimental data and
MD predictions are shown for the infinite dilu-
tion solubility coefficient of CH4 in the PDMS–
n-C4H10 mixture at 300 and 450 K. Simulation

Figure 3. n-C4H10–CH4 mixture behavior in PDMS as a function of temperature
A) Solubility (S) selectivity; B) Diffusivity (D) selectivity; C) Permeability (P) selectivity
Open symbols are experimental data [15] and closed symbols are MD predictions

Figure 4. Mixed gas CH4 solubility in PDMS at 300 and
450 K as a function of n-C4H10 weight fraction in PDMS
a) Experimental data [15] at 300 K (open points); b) MD
predictions at 300 K (closed points); c) MD predictions at
450 K (closed points)

Process Systems Engineering, 9. Domain Engineering 7



results are consistent and in good agreement
with experimental measurements [15].

Finally, the diffusion coefficients of a mix-
ture of CH4 and n-C4H10 in PDMS at ambient
conditions are shown in Figure 5 and are com-
pared to pure gas diffusion calculations. Clear-
ly, CH4moleculesmove faster in the presence of
n-C4H10molecules in PDMSmatrix than in pure
polymer. The same behavior is observed for
n-C4H10 in the presence of CH4 molecules. The
presence of a second penetrant species swells
the polymer matrix resulting in an increase in
the diffusion coefficient of the first penetrant.
The swelling behavior of PDMS in the presence
of mixed gases and the consequent increase in
diffusivity and permeability coefficients of the
corresponding gases has also been reported
experimentally by many investigators [15, 17].

1.4.3. Ionic Liquids for Sustainable
Chemical Processes

Ionic liquids (ILs) (! Ionic Liquids) have re-
ceived much attention for use as environmen-
tally benign reaction and separation media. ILs
are molten salts with melting points close to
room temperature. Their most remarkable prop-
erty is that their vapor pressure is negligibly
small, so that ILs are nonvolatile, nonflammable
and odorless. Other characteristics of ILs in-
clude a wide liquid temperature range, a high
thermal and electrochemical stability, a high
ionic conductivity and good solvency proper-
ties. In principle, ILs can be tailored for a

specific application by the right choice of cation
and anion.

It is expected that ILs may revolutionize the
chemical process industry in the years to
come [18]. For example, they are increasingly
used as novel processing media in combination
with supercritical CO2. Due to the negligible
vapor pressure, it is possible to extract organic
products from ILs using supercritical CO2 with-
out any contamination by the IL. Despite the
wealth of experimental data available, more
data are needed for process design, and their
experimental determination is often difficult,
time-consuming and expensive. Therefore, it is
highly desirable to develop predictive methods
for estimating the relevant thermodynamic,
phase equilibrium, and transport properties. At
the molecular level, early molecular simulation
studies focused on the development of accurate
force fields and validation towards the predic-
tion of structure and thermodynamic properties
of ILs inmelt. Recently, thesemodels were used
for the calculation of thermodynamic and trans-
port properties of IL melts and mixtures.

A powerful approach toward the develop-
ment of accurate force fields is to start from the
subatomic level with quantum mechanics cal-
culations. A recent example refers to ab initio
density functional theory (DFT) calculations
(! Process Intensification, 1. Fundamentals
and Molecular Level, Section 2.2.3.1) per-
formed on isolated IL molecules ([bmimþ]
[Tf2N

-], [hmimþ][Tf2N
-], and [omimþ][Tf2N

-])
in order to evaluate the minimum energy struc-
ture and calculate charge density distribution of
the molecule [19]. In Figure 6, schematic repre-
sentation of DFT results are shown. DFT results
were used for the development of a realistic
atomistic force field that was used subsequently
for MD simulations.

ILs have very long characteristic relaxation
times and so longMD simulations are needed in
order to obtain accurate thermodynamic and
dynamic predictions. MD simulations of up to
50 ns on bulk ILs at various temperatures and
pressures were performed by [19]. Volumetric,
dynamic, and transport properties together with
structure properties were calculated. Molecular
conformations from MD simulations were in
good agreement with DFT results. The IL con-
figurations generated from MD were used sub-
sequently for the calculation of the excess

Figure 5. Diffusion coefficient of pure andmixed n-alkanes
in PDMS at ambient conditions. Solid circles correspond to
pure CH4 and n-C4H10 diffusion coefficient in PDMS. Open
symbols correspond to n-alkanes in mixture
a) CH4 mixed with 2% n-C4H10 in PDMS; b) CH4 mixed
with 10% n-C4H10 in PDMS; c) n-C4H10 mixed with 1%
CH4 in PDMS
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chemical potential, and thus solubility, of CO2

in the IL using the Widom’s test particle inser-
tion method. In all cases, excellent agreement
with experimental data was obtained. Represen-
tative results concerning IL self-diffusion coef-
ficient and CO2 solubility in [bmimþ][Tf2N

-]
are shown in Figure 7 and Figure 8, respectively.

1.5. Conclusions

Molecular simulation is a mature computational
tool that can be used reliably by material scien-
tists and chemical engineers for industrial prod-
uct and process design. Highly robust and effi-
cient computer codes have been developed by

Figure 6. Relative electronic energies DE of the isolated ion pairs optimized at B3LYP/6-311þG* level Energies are given in
kJ/mol. Conformer III has been arbitrarily chosen as reference, thus relative energies are calculated by DEi¼Ei� E3. Energies
with zero point energy corrections are given in parentheses

Ionic liquid DE1 DE2 DE4 DE5 DE6

[C4mimþ][Tf2N
�] 0.0; (0.0) 0.0; (0.0) �3.9; (�4.0) þ2.8; (þ2.9) �0.9; (�0.5)

[C6mimþ][Tf2N
�] þ0.6; (þ0.1) þ0.2; (þ0.1) �3.8; (�4.4) þ2.7; (þ3.0) �0.6; (�0.5)

[C8mimþ][Tf2N
�] þ0.1; (þ0.4) 0.0; (0.0) �4.0; (�4.1) þ3.2; (þ2.3) �0.3; (�0.9)

Figure 7. Experimental data (markers) and MD simulation
results (lines) for the self-diffusion coefficient of various
cations at 0.1 MPa
a) C4 mim; b) C6 mim; c) C8 mim

Figure 8. Henry’s law constant of CO2 in [bmimþ][Tf2N
�]

a) Experimental data (blue squares and line);b) Molecular
simulation predictions from TraPPE (red squares); c) EPM2
model (open diamonds) for CO2
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major academic and government laboratories
worldwide and are freely available for research
and development purposes [20–23]. In addition,
specialized computational chemistry andmodel-
ing software companies offer state-of-the-art
user-friendly interfaces to support the rather
complex computer codes [24, 25]. In this respect,
molecular simulations can be performed almost
routinely by nonexperts.

Despite the above, significant challenges still
exist: Accurate force-fields are of outmost im-
portance in order that simulation results resem-
ble the real systems. Although significant ad-
vances have been made in recent years, there is
still need for developments of intra- and inter-
molecular interaction models for highly com-
plex chemical compounds.

As molecular simulation matures, the com-
plexity of the problems where it is applied
increases. Very often, the detailed atomistic
representation of interactions is not necessary
anymore and a more coarse-grained representa-
tion becomes more suitable. In such cases, a
systematic hierarchical approach is needed in
order to parameterize a model consistently.
Finally, one should recognize the fact that com-
parison of simulation predictions against exper-
imental data at various time and length scales is
always necessary in order to validate the model
and the methodology used.

2. Energy Systems Engineering

2.1. Introduction

Excessive energy consumption and conse-
quent greenhouse gas (GHG) emissions have
become two major crucial global issues, and
this situation is most likely to continue in the
next couple of years to come. Driven by this
urgent situation, technologies which can
facilitate a smooth transition from existing
energy systems to more advanced ones are
receiving more and more serious attention.
However, although there already exist many
technical options, they usually differ greatly
from one another in many aspects, and they
are often treated separately by their own tech-
nical or political groups.

The concept of energy systems engineering
as an integrated approach for the energy sys-

tems of the future is introduced by [26].
Energy systems engineering provides a meth-
odological framework to address the complex
energy and environmental problems by an
integrated systematic approach which ac-
counts complexities of very different scales,
ranging from technology, plant, to energy
supply chain, and megasystem. Energy sys-
tems engineering employs systems-based
representations and methods, such as super-
structure-based modeling, mixed-integer pro-
gramming (MIP), multiobjective optimiza-
tion, optimization under uncertainty (see !
Process Systems Engineering, 3. Mathemati-
cal Programming (Optmization) and! Math-
ematics in Chemical Engineering, Chap. 10,
and life-cycle assessment ! Waste, 2. Life-
Cycle Assessment). These methodologies
have been applied in energy systems of very
different nature and scale, including polyge-
neration energy systems, urban energy sys-
tems, hydrogen infrastructure, oil and gas
production, wind turbine, electric power in-
dustry, carbon dioxide capture and sequestra-
tion, and distillation columns [27, 28].

2.2. Methods/Tools/Algorithm

2.2.1. Superstructure-Based Modeling

Superstructure-based modeling is an approach
to simultaneously determine the optimal con-
figuration of a process and its optimal operating
conditions viamathematical programming [29].
It was first proposed to address process synthesis
issues in heat-exchanger networks (HEN) [30],
and widely used in process design thereafter,
and it is regarded as one of the most significant
accomplishments in PSE [31].

Superstructure-based modeling has been
widely used in a broad range of fields. These
fields include heat-exchange networks [30],
separation and distillation [32–34], reactor net-
works [35, 36], water usage and treatment net-
work [37], and energy systems [38, 39].

Superstructure-based modeling usually in-
volves discrete decision making, e.g., inclusion
of a certain type of reactor or not. Simultaneous
modeling of discrete decisions and continuous
terms is usually implemented via MIP.
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2.2.2. Mixed-IntegerProgramming (MIP)

An optimization model with both integer and
continuous variables is denoted as a MIP prob-
lem [40] see ! Process Systems Engineering,
3. Mathematical Programming (Optmization)
and ! Mathematics in Chemical Engineering,
Chap. 10. Integer variables in MIP problems
usually refer to 0–1 variables, also known as
binary variables, only, due to the fact that any
integer variable can be represented in terms of a
set of binary variables.

MIP is widely used in PSE. Typical applica-
tions are, e.g., superstructure-based modeling,
facility location and allocation problems, sched-
uling problems. A canonical form of a MIP
problem is presented as follows:

min
x;y

f ðx; yÞ
s:t: hðx; yÞ ¼ 0

gðx; yÞ � 0

x � 0; x 2 X � Rn

y 2 f0; 1gqx;y ð10Þ

where x is a vector of n continuous variables,
and y is a vector of q 0–1 variables.

Depending on specific forms of the objective
function f, equality constraints h, and inequality
constraints g, MIP problems can be classified into
twocategories:mixed-integerlinearprogramming
(MILP) problems, where the objective function
and all constraints are linear, and mixed-integer
nonlinear programming (MINLP) problems,
where either the objective function or some con-
straints are nonlinear. MINLP problems can be
further classified as convex MINLP problems,
where the objective function is a convex function
and the feasible region is a convex region, and
nonconvex MINLP problems, where either the
objective function is a nonconvex function or the
feasible region is a nonconvex region.

Themostcommonlyusedalgorithmforsolving
MILPproblems is branch andboundmethod [41].
It has a huge number of varieties. Two commonly
used algorithms for solvingMINLP problems are
generalized benders decomposition (GBD) [42]
andouter approximation (OA) [43], bothofwhich
have a large amount of varieties.

2.2.3. Multiobjective Optimization

Multiobjective optimization, or multicriteria
optimization, is to simultaneously optimize a

problem according to two or more (conflicting)
criteria subject to certain constraints (! Energy
Management in Chemical Industry, Section
3.1). Multiobjective optimization is suitable to
be applied to a problem where trade-offs exist
amongst its objective functions and optimal
decisions should be made in the presence of
these trade-offs. Multiobjective optimization is
widely used in various fields, including product
and process design, supply chain design, and
energy systems engineering. A common multi-
objective optimization problem involved with
energy system design is to maximize profitabil-
ity and minimize environmental impacts
simultaneously.

A generic mathematical from of a multiobjec-
tive optimization problem is presented as follows:

min
x;y

U

f1ðx; yÞ
f2ðx; yÞ
� � �
fnðx; yÞ

8>>>><
>>>>:

s:t: hðx; yÞ ¼ 0

gðx; yÞ � 0

x � 0; x 2 X � Rn

y 2 f0; 1gq ð11Þ

where x is a vector of n continuous variables,
and y is a vector of q 0–1 variables.

The target of solving a multiobjective opti-
mization problem is to obtain the utility function
U, where n scalar objective functions are to be
optimized simultaneously [44]. Usually, some
conflicts exist amongst the objective functions.
However, if there are no conflicts, then a single
solution can be obtained where every objective
function attains its optimum. In this case, opti-
mizing the objective functions simultaneously
or separately arrive at the same optimal solution.
To avoid such simple cases, multiobjective
optimization problems discussed hereafter al-
ways involve conflicting objective functions.

Typical algorithms for solving multiobjec-
tive optimization problems are parametric
programming [45] and the e-constraint method
[46, 47].

2.2.4. Optimization under Uncertainty

Uncertainty is inevitable and unpredictable in
process planning and design over a long-term
horizon. Because of the very nature of these
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tasks, many parameters obtained at the planning
or design phase are subject to considerable
variability and cannot be predicted with a cer-
tain degree of accuracy. Optimization under
uncertainty takes the impact of uncertain para-
meters into consideration at the planning and
design stage thus improves a plan or design in
terms of both feasibility and operability (see
! Process Systems Engineering, 3. Mathemat-
ical Programming (Optmization)).

2.2.5. Life-Cycle Assessment

Life-cycle assessment (LCA), also known as
life-cycle analysis, is to evaluate and quantify
the environmental impacts of a certain product
or production procedure caused by its existence.
The definition and method of product LCA is
described in detail in (! Waste, 2. Life-Cycle
Assessment).

Depending on the boundaries of a system
where LCA is applied, LCA can be classified
into the following four categories:

. Cradle-to-gate. It accounts for the environ-
mental impacts of a product produced at all
stages before it is sent to the gate of a factory.
These stages usually consist of mining, pre-
processing, and transportation.

. Cradle-to-grave. It accounts for the environ-
mental impacts of a product in its entire life
time, from manufacture up to disposal phase.

. Cradle-to-cradle. It accounts for the environ-
mental impacts of a product in a recycling
process, from the production of a product of a
certain type of material to the production of
another product of the same material.

. Well-to-wheel. It is a specific type of LCA
widely used in fuel and transportation LCA,
accounting for the energy consumption and
emissions production from exploration to fi-
nal consumption. According to the particular
research interest, it can be further divided into
well-to-tank and tank-to-wheel stages, or
well-to-station and station-to-wheel stages.

Depending on the means an LCA impact
factor is evaluated, LCA can be classified into
the following two categories:

. Inventory-based LCA. Most conventional
LCA methods belong to this category. These

methods start from a breakdown of a system
under study into fundamental components
and processes, then extract inventory data of
these components and processes from a huge
inventory database which contains inventory
data of all primary products and processes,
then multiply these inventory data with their
capacity within the system under study and
sum them up to provide the LCA indicator.

. Economic input–output LCA. This method
estimates materials and energy requirements
and environmental emissions in activities of
an economy. It uses information of industry
transactions, i.e., purchases of materials by
one industry from another industry, and infor-
mation of direct environmental emissions of
industries, to evaluate the entire environmen-
tal impacts of a system or process under study.

2.3. Energy Systems Examples

The aforementioned energy systems engineer-
ing methodologies can greatly facilitate the
planning or design of energy systems of differ-
ent types and scales, at different levels, from
different aspects, and according to different
criteria. Some of thesemethodologies have been
successfully applied in energy systems of very
different nature and scale, and have been sum-
marized as follows:

. Polygeneration energy systems [38, 48–51]

. Urban energy systems [52]

. Hydrogen energy systems [53–55]

. Energy systems in commercial buildings [56,
57]

. Electric power industry [58]

. Pulp and paper industry [59–63]

. Oil and gas production [64]

. Wind turbines [65]

. Carbon dioxide capture and sequestration [66,
67]

. Separation and distillation [68]

2.3.1. Example 1–Polygeneration Energy
Systems

A polygeneration energy system is a multiinput
and multioutput energy system that coproduces
electricity and synthetic liquid fuels. Process
design of a polygeneration energy system in-
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volves several typical energy systems engineer-
ing issues, as follows:

. A polygeneration energy system is a very
complex system which comprises many units
and pieces of equipment. For each of these
units and pieces of equipment, there usually
exist many alternative technologies or types
of equipment. Making the optimal selection
from the many alternatives remains a
challenge.

. As public concern over fast increasing GHG
emissions grows, environmental impact of an
energy system has become an important de-
sign criterion. Designing a polygeneration
energy system according to multiple design
criteria (economic, environmental, etc.) poses
another challenge.

. A polygeneration energy system usually has
an operating horizon of several decades, over
which there exist many inevitable and unpre-

dictable uncertainties. Design of a polyge-
neration energy system under uncertainty
makes the task further complicated.

A modeling and optimization framework
for the optimal process design of polygenera-
tion energy systems is proposed by [48–51],
based on the energy systems engineering ap-
proaches presented in the previous section.
First, a superstructure representation of a
polygeneration energy system is constructed,
as shown in Figure 9, where a polygeneration
energy system is divided into many functional
blocks. For each functional block, all alterna-
tive technologies and types of equipment are
included in the superstructure representation,
thus all possible types of process design are
captured.

Based on the superstructure representation, a
MINLP design problem is developed in the
following form:

Figure 9. Superstructure representation of a polygeneration energy system (CCS ¼ Combined combustion system; GCS ¼
Gasification chamber and syngas scrubber; HRSG ¼ Heat recovery steam generator; ASU ¼ Air separation unit
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min
y;d;x

f ðy; d; xÞ

s:t: hdcðy; dÞ ¼ 0

gdcðy; dÞ � 0

hocðy; d; xÞ ¼ 0

gocðy; d; xÞ � 0

d 2 Rm; x 2 Rn; y 2 f0; 1gq ð12Þ

where

. Binary design variables are denoted as y,
which represent the selection (or not) of tech-
nologies or types of equipment for each func-
tional block.

. Continuous design variables are denoted as d,
which represent the capacities of the func-
tional blocks.

. Continuous operational variables are denoted
as x, which represent quantitative decisions to
be made at the operational stage, e.g., flow-
rates, stream compositions and the like.

. Equality design constraints are denoted as hdc,
which involve design variables only, e.g.,
evaluation of initial capital costs.

. Inequality design constraints are denoted as
gdc, which involve design variables only, e.g.,
logical relations between different functional
blocks equality operational constraints hoc,
which involve design and operational vari-
ables, e.g., mass and energy balances.

. Inequality operational constraints goc, which
involves design and operational variables,
e.g., capacity constraints.

In theMINLP design problem, there could be
more than one objective function, i.e., design
criterion. Here, both the economic and environ-
mental behavior of a polygeneration energy
system is evaluated. Net present value (NPV)
is selected to be the economic design criterion,
which comprises the initial capital costs and the
discounted profit obtained over the entire oper-
ating horizon. A cradle-to-gate GHG emissions
indicator is selected to the environmental design
criterion, mainly comprising three parts:

. GHG emissions produced within the process
during operation

. GHG emissions produced throughout mining,
extraction, and other processing stages of
feedstocks

. GHG emissions produced during equipment
production and plant construction

On obtaining these two objective functions, a
multi-objective MINLP problem is formed as
follows:

min
y;d;x

U

(
f1ðy; d; xÞ ¼ �NPV

f2ðy; d; xÞ ¼ GHG

s:t: hdcðy; dÞ ¼ 0

gdcðy; dÞ � 0

hocðy; d; xÞ ¼ 0

gocðy; d; xÞ � 0

d 2 Rm; x 2 Rn; y 2 f0; 1gq ð13Þ

where f1 is the objective function representing
the NPV, and f2 is the objective function repre-
senting the GHG emissions.

Equation (13) is solved using the e-constraint
method. Optimal results are presented on a
pareto curve, as shown in Figure 10. For this
example, there exist 18 different combinations
of technologies, but only four of them appear on
the pareto curve, according to different econom-
ic and environmental design criteria. Each point
on the curve represents a different process de-
sign. A decision-maker can thus pick up any
point from the curve according to their specific
interest or requirements.

In Equation (13), all time-variant parameters
are considered as piecewise constant functions
over the operation horizon, which is discretized
into several time intervals. However, due to the
very nature of the long-term operation horizon,
uncertainty is almost inevitable at the design
stage, e.g., due to external factors, such asmarket
demands for products, prices of feedstocks and
products. Here, all uncertain parameters can be
presented as random variables following given
probability distribution functions p(x).

By incorporating the uncertainty into the
MINLP design problem, the following two-
stage stochastic programming problem results:

min
y;d

fdðy; dÞþEu 2 Q½fsðy; d; uÞ�
s:t: hdcðy; dÞ ¼ 0

gdcðy; dÞ � 0

d 2 Rm; y 2 f0; 1gq
with :

fsðy; d; uÞ ¼ min
x

fsðy; d; x; uÞ
s:t: hocðy; d; x; uÞ ¼ 0

gocðy; d; x; uÞ � 0

x 2 Rn; u 2 Q ð14Þ

where the objective function is split into a
deterministic term fd representing decisions at
the design stage, and the expectation of a sto-
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chastic term fs which depends on the realization
of uncertain parameters u at the operation stage.
Discrete variables y and continuous variables d
are ‘‘here-and-now’’ (design) variables which
should be decided at the first-stage problem
before the realizations of uncertain parameters
u occur, and x is a vector of ‘‘wait-and-see’’
(operational) variables which can be decided at
time interval t of the second-stage problem
where all uncertain parameters have been ob-
served. In the second-stage problem, the
recourse term based on a specific realization of
uncertain parameters is optimized and corre-
sponding corrective actions in terms of values of

x are made. Equation (14) is solved using a
decomposition-based solution strategy.

2.3.2. Example 2–Hydrogen Infrastruc-
ture Planning

Energy systems engineering methodologies
have been applied in hydrogen infrastructure
planning [39, 69]. The problem under study is
illustrated in Figure 11: given a specific region
where several potential production sites and
markets (city as shown in the Figure 11) are
available, obtain the optimal infrastructure

Figure 10. Pareto curve for polygeneration energy systems design
a) H–CH–G–GTH; b) Q–CQ–L–GTH; c) RC–CRC–G–GTH; d) Q–CQ–G–GTH

Figure 11. Illustrative representation of a hydrogen infrastructure planning problem

Process Systems Engineering, 9. Domain Engineering 15



which connects the production sites to markets
via a supply chain from primary feedstocks,
central production, distribution, forecourt re-
fueling, to the final product over a long-term
planning horizon.

This approach addresses the following issues
involved in hydrogen infrastructure planning:

. Planning over a long-term future horizon

. Geological site allocation

. Representing the state of existing infrastruc-
ture, especially the natural gas distribution
network, electricity grid, and existing hydro-
gen production facilities

. All types of available primary feedstocks,
production, distribution, and forecourt refuel-
ing technologies

. Trade-offs between large-scale centralized
production and small-scale distributed
production

. Transitions from one type of supply chain
structure to another over time

. Planning according to both economic and
environmental performance indicators

A superstructure representation of the
modeling framework is shown in Figure 12. It
captures all possible types of primary feed-
stocks, production sites, production technolo-
gies, distribution technologies, forecourt refill-
ing technologies, and potential markets, and
gives the optimal planning scheme over the
entire future planning horizon.

Based on this modeling framework, a multi-
objective optimization was conducted where
NPV was selected as an economic objective and
a LCA-based environmental impact factor as an
environmental objective. A pareto frontier com-
prising the full range of trade-offs between the
economic and environmental objectives was

Figure 12. A superstructure representation of the modeling framework for hydrogen infrastructure planning
a) Gasoline equivalent WTW (well-to-wheel) emissions
SMR-LIQ ¼ Manufacturing of liquid hydrogen via steam methane reforming
SMR-GAS ¼ Manufacturing of gaseous hydrogen via steam methane reforming
NG COMP ¼ compression of natural gas (NG)
GAS-LIQ ¼ Manufacturing of liquid hydrogen via gasification
GAS-GAS ¼ Manufacturing of gaseous hydrogen via gasification
ELC-LIQ ¼ Manufacturing of liquid hydrogen via electrolysis of water
ELC-GAS ¼ Manufacturing of gaseous hydrogen via electrolysis of water
CNG ¼ Compressed natural gas
LIQ ¼ Liquid hydrogen
GAS ¼ Gaseous hydrogen
NG pipe ¼ Natural gas pipeline
H2 PIPE ¼ Hydrogen pipeline
SMR ¼ Onsite hydrogen production via steam methane reforming
ELC-N ¼ Onsite hydrogen production via electrolysis of water using nonrenewable electricity
ELC-R ¼ Onsite hydrogen production via electrolysis of water using renewable electricity
ELC-U ¼ Onsite hydrogen production via electrolysis of water using nuclear electricity
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obtained, shown in Figure 13. Any point on the
pareto frontier represents an infrastructure design
with specific economic and environmental per-
formances, and decision-makers can pick up any
point from this curve as the final design according
to their own specific interest and preference.

2.3.3. Example 3–Energy Systems in
Commercial Buildings

The applications of energy systems engineering
methodologies in polygeneration energy sys-
tems and hydrogen infrastructure planning fo-
cus primarily on the energy production side.
However, energy systems engineering is not
confined within the scope of energy production.
It can also be applied to model and optimize the
energy consumption within a process or system.
Next, its applications in design of the energy
systems in commercial buildings [49] are pre-
sented to illustrate its potential applications on
the energy consumption side.

The energy system in a commercial building
usually comprises both an energy consumption
section and an energy supply section. Energy
demands usually come from requirements for
lighting, HVAC (heating, ventilating, and air
conditioning), and refrigeration. The energy
supply is usually obtained from grid electricity,
district heat, and on-site energy generation, e.g.,
distributed power generation and boilers. Major
issues to be addressed at the design stage are
summarized as follows:

. Selection of technologies. For each type of
energy demands, several types of technolo-
gies or types of equipment are usually avail-
able. Selecting the optimal combination of
them may become a challenging problem
when facing with too many choices. This
issue could be further complicated when in-
volved with other design issues, e.g., integra-
tion between energy consumption and energy
production sectors.

. Integration. Integration amongst different
energy consumption sectors within a system
can reduce the entire energy demand of the
system. For example, heat produced in the
refrigeration sector of a supermarket could
be collected to heat the aisle space, other-
wise an extra amount of energy is required
to meet the heating demand. The integration
issue could become more complicated when
on-site production technologies are also
involved.

. Building design. From an energy saving view-
point, building design should also be involved
at the design phase. For example, sizing and
positioning of windows could be considered
together with the lighting requirement of a
build to minimize it.

. GHG emissions. From an LCA point of view,
emissions from a commercial building come
from two sources. One source is the emissions
produced over the entire operation period, and
the other one is the emissions produced in
manufacturing and transporting equipment
and construction materials. Emissions from

Figure 13. Pareto curve for hydrogen infrastructure planning (WTT ¼ well-to-tank)
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both categories should be considered at the
design phase to give an overall environmental
impact indicator.

To address these issues, a superstructure
representation of the energy system in a com-
mercial building is firstly constructed, as shown
in Figure 14. It comprises an energy supply
section, an energy conversion section, and an
energy savings section. The function of the
energy supply section is to provide electricity
and heat for the entire energy system. The
energy conversion section converts electricity
and heat obtained from the energy supply sec-
tion to all energy demand tasks, such as refrig-
eration, lighting, ventilation, bakery, and space
heating. The energy savings section further
involves available types of energy savings tech-
nologies, such as night blind and weir screen for
the refrigeration subsystem.

Based on the superstructure representation, a
multiobjective MILP problem is formed and
solved to obtain the pareto curve, as shown in
Figure 15. A decision-maker can pick up any
point from the pareto curve according to their
specific design criteria or interest. Once a design
point is selected (e.g., A, B, C, or D), the system
configuration behind it can be obtained directly
from the model results.

2.4. Conclusions and Future
Directions

The introduced methodologies of energy sys-
tems engineering cooperate with each other and
provide a systematic solution strategy for the
planning and design issues involved with any
energy system. These methodologies are illus-
trated via their applications in a simple example
of polygeneration energy systems design. It
shows that energy systems engineering is of
tremendous importance to guide the transition
from our existing generation of energy systems
to a more energy efficient and environmentally
benign one. It is certain that research in this field
will continue and prosper. Some recommenda-
tions for future research directions are summa-
rized as follows:

. The genericmodeling and optimizationmeth-
odologies presented in this section can serve
as a starting point, and more methodologies
which are suitable for energy systems could
be added into the scope of energy systems
engineering. This would certainly extend its
applicable fields and enhance its capability.

. Modelingatamicrolevelcouldbeexplored.The
methodologies introduced here enable model-
ing at strategic planning and process design

Figure 14. Superstructure representation of the energy system in a commercial building
PE ¼ primary energy; GE ¼ grid electricity; DH ¼ district heat; OEG ¼ on-site energy generation; E ¼ electricity; h ¼ heat;
R¼ refrigeration;L¼ lighting;V¼ ventilation;B¼ bakery; SH¼ space heating; P¼ production;ES¼ energy saving;D¼ demand
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levels, which can be regarded as modeling at
megalevel and macrolevel, respectively.
Modeling at a microlevel, e.g., at the molecular
level for biodiesel production, would give a
much better insight to these systems.

. The generic modeling and optimization meth-
odologies introduced in this section could be
used in the control field. Firstly, it canbe used in
an integrated design and control scheme where
both operational and control requirements are
taken into consideration at the design stage.
Secondly, the frameworkcanbe alsoused in the
context of model predictive control.

. Applications in energy value chain modeling
and optimization. For example, bioenergy is
expected to play an important role in the
ongoing transition from conventional energy
system to amore sustainable and environmen-
tally benign one. There also have been many
controversies around bioenergy about its ca-
pability to ameliorate energy security and
climate change, concerning its life-cycle
green-house gas (GHG) emissions and com-
petition on land use with food crops. The
modeling and optimization methodologies
developed in this framework could be used
to guide the planning and design of a bioe-
nergy value chain in terms of analyzing and
quantifying net profit of bioenergy, producing

methodologies and tools for the optimal de-
sign of bioenergy value chains with the right
technologies at the right scale, and providing
policy suggestions to direct the development
of bioenergy.

3. Pharmaceutical Processes

3.1. Introduction

For pharmaceutical companies, drug develop-
ment requires a huge investment (! Pharma-
ceuticals, General Survey, Chap. 4). A study
estimates that the cost to bring a single new drug
to the market costs over $800 million [70]. The
clinical period of a new drug is complex, and
divided into three phases. In phase I, normally a
small number of healthy volunteers are tested to
find safe dosages. In phase II, the drug candidate
is given to a large number of patients. Phase III
trials are more extensive, often carried out at
more than one clinical research centers. Figure 1
shows the probability of entering the next phase
from the previous phase. As can be seen, only
one third of the drug candidates—which have
already passed the drug discovery stage and
preclinical trials—reaches the final stage, phase
III. Furthermore, nearly 40% of the drugs that

Figure 15. Pareto frontier for the energy system design in a commercial building
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pass phase III do not get marketing approval.
Therefore, wise decision-making at an earlier
stage can reduce the development cost dramati-
cally, and methods/tools that support such de-
cisions play a crucial role in drug development.

The three clinical trial phases are closely
related to the development of drug manufactur-
ing, and often proceed concurrently; the optimal
production process design is explored during the
clinical trials, and scale-up is performed simulta-
neously. In phase I, a small-scale pilot facility–in
the order of one-hundredth of production scale–is
usually sufficient, where as in Phase III a pilot
plant of one-tenth production scale is often need-
ed to supply a sufficient amount of the new drug,
which is administered for this large-scale clinical
trial [71]. Therefore, as the clinical tests proceed,
the production volume goes up, and efficient
manufacturing that can supply such an amount
of the drug candidate becomes more critical.

Process systems engineering (PSE) techni-
ques have been applied to these unique issues in
the pharmaceutical industry to aid high-level
decision-making. The complexity of these
problems is recognized as one of the challenges
by the PSE research community [72–74]. Some
examples of recent research activities include
portfolio management for drug research and
development by multistage stochastic optimiza-
tion [75], development of informatics infrastruc-
ture for product development and manufactur-
ing [76], supply chain optimization [77], model-
based design/analysis of PAT systems [78],
and resource investment and scheduling for
new drug product development [79].

3.2. Pharmaceutical Process
Development and Operation

Traditional pharmaceutical manufacturing most-
ly relied on extensive laboratory testing for quali-

ty assurance. In this traditional approach, product
quality was achieved predominantly by restrict-
ing flexibility in the manufacturing process [80].
Manufacturing procedures are treated as being
frozen and changes in the process must be man-
aged through regulatory submissions. As a result,
many production processes are designed and
operated inefficiently, and relatively little effort
has been devoted to innovate and improve them.
In some cases, the amount of product waste as a
result ofmistakes inmanufacturingwas as high as
50%of the productmanufactured [81]. This led to
significantly higher costs and even delays of new
drug development.

In 2002, the US Food and Drug Administra-
tion (FDA) launched the process analytical
technology (PAT) initiative to challenge the
hesitancy to innovate pharmaceutical manu-
facturing [82]. This initiative, a paradigm
change of the FDA to inspect and approve
pharmaceutical processes, promotes better un-
derstanding of drug production processes. Here,
the term analytical should be interpreted broad-
ly; it includes ‘‘chemical, physical microbiolog-
ical, mathematical, and risk analysis conducted
in an integrated manner’’ [83]. For example,
PAT encourages fundamental process under-
standing for on-line or real time process control
to ensure product quality by reducing variability
in the process [82]. Application reports of PAT
of specific processes include batch crystalliza-
tion [84] (! Crystallization and Precipitation,
Section 5.6), freeze drying [85], and fermenta-
tion [86, 87]. A software for design of PAT
systems has also been developed by [88].

Another change in pharmaceutical process
development and operation was brought by the
introduction of quality by design (QbD) [89]. In
QbD, the concept of Design Space has given a
significant impact to the pharmaceutical process
development. The design space is defined as

Figure 16. Drug development phases [70, 71]
a) Phase I; b) Phase II; c) Phase III; d) Registration launch
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‘‘the multidimensional combination and inter-
action of input variables and process parameters
that have been demonstrated to provide assur-
ance of quality’’ [89], which is initially deter-
mined during product development and re-
ported to the regulatory agency. Change of
process parameter values within the design
space usually does not require a regulatory
post-approval process [89]. This enables flexi-
ble changes of manufacturing operations and
wider applications of process automation,
which had been severely limited previously in
this industry.

With such unprecedented changes, a larger
number of advanced PSE techniques are begin-
ning to be applied to pharmaceutical processes.
Some specific PSE technologies are mentioned
in the documents from the regulatory agen-
cies [83, 89], and studies in response to such
demands have been carried out including pro-
cess control [82, 86], process monitoring
[78, 85, 88, 90], and development of multivari-
ate design tools [91]. Furthermore, computer-
aided process design and simulation tools are
beginning to be used in pharmaceutical process
development [92].

Another important trend in the pharmaceuti-
cal manufacturing is a revisit to continuous
processes. Traditionally, pharmaceutical pro-
duction relies on batch processing due to the
low production volume. However, understand-
ing the process dynamics and dealing with the
batch-to-batch fluctuation often become the
bottleneck for efficient production. Thus, the
reliability of continuous processes, in addition
to the higher productivity, is attracting pharma-
ceutical manufacturers.

3.2.1. Crystallization

Although crystallization is widely used in the
pharmaceutical industry, it remains one of the
most poorly understood processes. In particular,
controlling the size and shape of crystals is a big
challenge, which requires substantial experi-
mental, modeling, and computational efforts
(! Crystallization and Precipitation).

The crystal size in a crystallizer can be char-
acterized by the crystal size distribution (CSD).
Estimating the CSD accurately is crucial for
process development of crystallization. Among

the CSD estimation techniques, the sieve analy-
sis is a primary offline technique, but this relies
on good sampling which cannot be always real-
ized. On the other hand, on-line measurement
techniques have been attracting attention in re-
cent years. In particular, focused beam reflec-
tance measurement (FBRM) has been employed
inmany crystallization studies. FBRM is a probe
which can be installed directly in a crystallizer
eliminating the need for sampling (Fig. 17). This
on-line measurement technique obtains the
chord length distribution (CLD). The challenge
here is to find the relationship between the CLD
and CSD. This problem has been recognized by
the PSE community, and techniques based on
projections onto convex sets [93], Monte Carlo
simulation [94], and principal component anal-
ysis [95] have been proposed.

Crystallization consists of two major me-
chanisms, nucleation and growth (! Crystalli-
zation and Precipitation, Section 4.1 and !
Crystallization and Precipitation, Section 4.2).
Nucleation is an event where the solute mole-
cules in the solvent gather and form nuclei. The
rate of nucleation can be modeled as a function
of the concentration of the API in the mother
liquor C, and the the equilibrium concentration
at temperature T , C�ðTÞ:

Rb ¼ kbexp
�16pg3 M

r

� �2

3k3T3 ln C
C�ðTÞ

� �2

0
B@

1
CA ð15Þ

where g is the interfacial tension, and r the
density, M the molecular mass, and k the
Boltzmann’s constant. On the other hand,
growth is the subsequent step where the size of
the nuclei increases. The growth rate GðL; tÞ is
usually expressed in terms of the degrees of
supersaturation C�C�ðTÞ [96, 97]:

G ¼ kg;0exp � Ea

RT

� �
ðC�C�ðTÞÞg ð16Þ

The mass balance can be described by the
population balance equation (PBE). If breakage
and agglomeration is ignored, and it is assumed
that the crystal size can be represented by the
crystal length L, the PBE for a batch crystallizer
is given by [98]:

qnðL; tÞ
qt

þ qðGðL; tÞnðL; tÞÞ
qL

¼ 0 ð17Þ
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where nðL; tÞ is the particle density. The bound-
ary condition at L ¼ 0 is given by the nucleation
rate:

nðt; 0Þ ¼ Rb

Gðt; 0Þ ; ð18Þ

It can be noted that this is a hyperbolic partial
differential equation (PDE), which requires fine
discretization. Therefore, an efficient solution
technique must be employed to reduce the
computational cost to solve this equation, such
as a flux limiter and space-time conservation
element method [98, 99]. In addition to the
computational difficulty associated with the
PBE, there are many model parameters
ðg;Ea; kg;0; kbÞwhichmust be identified for each
application. These parameters can be estimated
by advanced computational techniques such as
design of experiments (DOE) [100] and param-
eter estimation techniques [101, 102]. In esti-
mating these model parameters, it has been
reported that utilizing on-line measurement of
the crystal size increases the reliability [102,
103]. After obtaining the crystallization model,

model-based control and optimization [104,
105] can be applied. These recent research
activities on crystallization are influenced and
encouraged in particular by the PAT initiative.
A generic model-based frameowrk for crystal-
lization modeling, control, and monitoring has
recently been developed by [106].

3.2.2. Chromatography

Chromatography is often the only choice for
separation of thermally sensitive compounds
such as proteins, or structurally similar com-
pounds; it requires only a slight difference in the
affinity for adsorbent particles. Figure 3(a)
shows a traditional batch chromatographic pro-
cess, where the purified products A, B, andC are
fractionated at the outlet ðx ¼ LÞ of the column.
The feed mixture is supplied at the top of the
column which is packed with solid adsorbent
particles. Then the mixture is eluted with des-
orbent, which can be water or organic solvent

Figure 17. Batch crystallization of paracetamol [84]
A) Lab-scale crystallizer; B) Paracetamol crystals; C) Experimental setup of FBRM
a) Computer; b) Temperature probe; c) Agitation; d) Cooling fluid (water); e) Batch crystallizer; f) FBRM
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(s). Because of the difference in the affinity for
the adsorbent, the migration speeds of the com-
ponents are different and the components sepa-
rate from each other as they move towards the
bottom. Due to its batchwise operation, the
throughput, or the feed processing rate, is often
small. Furthermore, it consumes a large amount
of desorbent which dilutes the product, and thus
the evaporation cost can be high.

To overcome these drawbacks, simulated
moving bed (SMB) chromatography (! Chro-
matographic Reactors, Chap. 2) has been devel-
oped by the Universal Oil Products (UOP) in the
1960’s, and applied to the separation of xylene
isomers. After their patent expired, its applica-
tion areas expanded into sugar separations, in
particular for the production of high-fructose
corn syrup. In the past decade, applications in
the pharmaceutical industry have been gaining
attention. In particular, separation of enantio-
mers has been found to be one of the most
effective applications. Figure 19 shows an SMB

process for active pharmaceutical ingredients
(API) purification. An SMB system consists of
multiple columns connected to each other mak-
ing a circulation loop (Fig. 18B). Between every
column, there are inlet ports for feed and des-
orbent streams, as well as outlet ports for extract
and raffinate streams. The feed and desorbent
are supplied continuously and at the same time
extract and raffinate are drawn continuously
through the ports. These four inlet/outlet ports
are switched simultaneously at a regular interval
in the direction of the liquid flow. This system
does not reach a steady state but a cyclic steady
state (CSS), where the concentration profiles
change dynamically, but the profiles of both
liquid and solid phase at the beginning of a
cycle are identical to those at the end of the
cycle.

Established mathematical models for chro-
matography can be found in literature. Compre-
hensive reviews are given by [107, 108]. One of
the modeling approaches is the linear driving

Figure 18. Chromatographic separation processes
A) Batch process; a) Chromatographic column
B) Simulated moving bed (SMB) process; a) Direction of valve switching
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force (LDF) model, where the mass transfer
between the liquid and the adsorbent particles
is described by a linear relationship character-
ized by themass-transfer coefficient. In the LDF
model, the mass balance equations in the liquid
and adsorbent phases are given by the following
two PDEs, respectively:

eb
qCiðx; tÞ

qt
þð1�ebÞ qqiðx; tÞqt

þu
qCiðx; tÞ

qx
¼ 0 ð19Þ

ð1�ebÞ qqiðx; tÞqt
¼ Kapp iðCiðx; tÞ�Ceq

n ðx; tÞÞ ð20Þ

where eb is the void fraction, Ciðx; tÞ is the
concentration in the liquid phase of component
i, qiðx; tÞ is the concentration in the solid phase,
u is the superficial liquid velocity,Ceq

i ðx; tÞ is the
equilibrium concentration in the liquid phase,
and Kapp i is the mass-transfer coefficient, re-
spectively. In addition to the mass balance
equations, the isotherm that describes the equi-
librium between the liquid and adsorbent con-
centrations must be specified. One of the most
widely employed isotherms is the Langmuir
isotherm:

qi x; tð Þ ¼ aiC
eq
i ðx; tÞ

1þbiC
eq
i ðx; tÞ : ð21Þ

To find the optimal design and operation of
SMB and batch chromatography, several ap-

proaches have been developed based on PDE-
constrained numerical optimization of the rig-
orous dynamic chromatographic model.
Stochastic optimization approaches as well as
Newton-based approaches have been pro-
posed [109–111]. Alternatively, this problem
can be formulated as a multiobjective optimiza-
tion problem to evaluate more than one objec-
tives, such as throughput, purity, and desorbent
consumption, and obtain the pareto optimal
set [112, 113].

For SMB chromatography, many new im-
proved operations have been proposed to en-
hance the performance. Traditional SMB sys-
tems keep the liquid velocities constant during
a step, and then switch the four inlet/outlet
streams at the same time. In PowerFeed sys-
tems, however, the velocities become time-
variant. Optimization of PowerFeed can be
formulated as an optimal control problem [79,
114]. Moreover, VARICOL systems perform
asynchronous valve switching, where the four
inlet/outlet ports are switched independently,
not simultaneously [115]. A comprehensive
summary of modifications to SMB can be
found elsewhere [111, 116]. Since the number
of operating parameters is larger in such
systems, finding the operating and design
parameters in such improved SMBs relies
on a systematic and efficient optimization
approach [117].

Due to the complex dynamics of the chro-
matography, model-based feedback control
of a batch process is very challenging. Fur-
thermore, the poor observability of chro-
matographic processes makes automatic con-
trol more difficult; although the temporal
concentration profiles at the outlet of the
column can be observed by a detector, the
spatial concentration profiles inside the col-
umns cannot be monitored directly. A few
recent control strategies that tackle these
challenges for batch processes can be found
elsewhere [118–120]. For SMB chromatogra-
phy, there has been considerable advance in
recent years in model-based control techni-
ques including linear and nonlinear model
predictive controllers [121–123]. Further-
more, several experimental techniques for
stable monitoring of the purity have been
proposed which improve the controller
performance [124].

Figure 19. Simulated moving bed chromatographic pro-
cess for API purification (courtesy of AMPAC Fine
Chemicals, Rancho Cordova, CA, USA)
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3.3. Conclusion

There are many exciting research challenges in
the pharmaceutical industry where PSE techni-
ques can contribute. This is being accelerated by
the recent changes in drug manufacturing initi-
ated by the regulatory agencies. The introduc-
tions of PAT and QbD have brought a signifi-
cant impact to the PSE community, and current-
ly many advanced PSE technologies such as
process modeling, control, optimization, and
decision-making support which can meet the
unique demands from this industry are being
developed.

4. Biochemical Engineering

4.1. Introduction

Process systems engineering (PSE) offers many
tools for the chemical engineer. Today, for
example, modeling, simulation, and process
evaluation tools are routinely applied to design
and optimization problems in the bulk chemi-
cals and fuels sector, where small process im-
provements yield significant economic returns.
In recent years there have been an increasing
number of bioprocesses implemented and these
provide a different type of challenge for PSE.
This chapter has a focus specifically on biopro-
cesses, and especially on the use of PSE tools for
the design and development of bioprocesses.

Bioprocesses have found application in the
production of high-value products such as phar-
maceuticals (and their intermediates). The pro-
cess engineering emphasis in these cases is on
rapid process implementation, rather than opti-
mized development [125, 126]. However, in
recent years bioprocesses have also been in-
creasingly applied to bigger volume products
such as fine chemicals, bulk chemicals, and

biofuels, which are the new sectors of industrial
(also called ‘‘white’’) biotechnology. Today
there are significant new opportunities in white
biotechnology for processes based on renew-
able resources such as biomass and clean pro-
cesses with reduced solvent inventories, renew-
able catalysts, and mild conditions for reaction
and separation [127]. In addition to the direct
process improvements, bioprocesses have also
frequently been justified on the basis that they
are processes with potentially lower environ-
mental impact than their chemical synthetic
counterparts. The main synthetic operations in
bioprocesses include fermentation, microbial
catalysis, and enzyme catalysis (see Table 1).
Downstream options are dependent on the
nature of the product (i.e., macromolecular or
low molecular mass compounds (‘‘small mole-
cules’’). Small molecules are frequently pro-
cessed in a similar way to other chemical pro-
ducts, although dilute aqueous solutions bring
specific problems which need to be addressed,
both from the viewpoint of process optimization
and the environmental footprint. For instance,
the downstream processing of some small mol-
ecule bioprocesses could include large amounts
of organic solvents for extraction from aqueous
solutions. In these cases, the organic solvents
require processing, recycle, control and ulti-
mately safe disposal. Macromolecules require
more specialist operations such as filtration or
chromatography. However, in all cases the mo-
lecules are frequently sensitive to extremes of
pH and temperature, placing specific restric-
tions and constraints on processing methods.
Biocatalyst recovery (frequently for recycle)
also necessitates filtration and centrifugation.

It is clear from the above that a range of
questions need to be addressed when imple-
menting new processes, and specifically biopro-
cesses. For example:When should a bioprocess,
rather than a chemical process be implemented?

Table 1. Process features of the three major types of bioprocess for chemicals production (I) represents options for immobilized enzyme

Feature Fermentation Microbial catalysis Enzymatic catalysis

Yield on substrate low medium high

Catalyst recovery and/or recycle potentially via a continuous process recycle via filtration via immobilization

Reactor options stirred tank

bubble column

stirred tank

bubble column

stirred tank

packed bed (I)

fluidized bed (I)

membrane
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If a bioprocess is to be implemented, can the
existing infrastructure (feedstock, utilities, and
plant) be used? How can a process plant be
adapted for different biomass sources available
in different geographical regions? What is the
optimum biorefinery? What options exist for
process integration? What are the environmen-
tal, health, and safety issues of bioprocesses in
comparison with chemical processes? What is
the environmental footprint of a bioprocess
compared with its chemical counterpart? How
can bioprocesses be designed to maximize pro-
cess efficiency, minimize environmental im-
pact, as well as maximize sustainability?Which
variables can be measured on a bioprocess?
How can control contribute to more efficient
operation of the bioprocess?

Many of these questions can currently be
addressed qualitatively, but to have real value
it is necessary to assess the questions on a
quantitative basis. In order to achieve this ef-
fectively therefore, computer-based tools are
required. In addition, models are needed. Over
the last decades, PSE has already developed
many of the appropriate tools, and those tools
often rely on models. Nevertheless, some fur-
ther developments are required. For example, in
the case of bioprocesses an extra option avail-
able to the engineer is the improvement of the
catalyst itself. This requires models which take
into account catalyst properties. In addition, one
emerging consideration is measuring the rela-
tive sustainability of processes, and one can see
life cycle inventory and assessment (LCI/A)
modeling tools and methods as a logical exten-
sion of PSE. LCI/Amethodologies allow for the
estimation of environmental impact across the
entire life cycle of a process or product. LCI/A
estimations rely heavily on the characterization
of the process and its unit operations using
modeling and simulation techniques, which are
key competences within PSE.

This chapter will first introduce the three
different types of bioprocesses that are of in-
dustrial relevance. PSE methods and tools can
be applied in the bioprocess design phase–using
process models and design PSE tools–as well as
to improve the process operation–using process
monitoring and control methods and tools. Pro-
cess monitoring, with focus on applications
on bioprocesses, is already summarized in !
Process Systems Engineering, 5. Process Dy-

namics, Control,Monitoring, and Identification,
Chap. 2 andwill therefore not be discussed here.
Process control issues are highlighted
in ! Process Systems Engineering, 5. Process
Dynamics, Control, Monitoring, and Identifica-
tion, Chap. 2 and! Process Systems Engineer-
ing, 5. Process Dynamics, Control, Monitoring,
and Identification, Chap. 3 for continuous and
batch/fed-batch processes, respectively. The
chapter only pays limited attention to data-driv-
en modeling, where applications of data-driven
models in the area of soft sensors is highlighted,
since this is one of the areas where probably
data-driven models will become increasingly
important in the future. The main focus of this
chapter, however, will be on mechanistic mod-
els, and on the current and future use of those
models within the design of sustainable biopro-
cesses. This is likely to be one of the most
promising R&D areas at this moment, where
PSE methods and tools will contribute tremen-
dously to embed design principles during the
early stages of process development and design.
Future trends are highlighted as well, where
relevant.

4.2. Industrial Biotechnology
Processes

Before describing the PSE tools and some of
their applications in more detail, it is important
to highlight the most relevant industrial biopro-
cesses. Three major types of bioprocess can be
identified dependent on the nature of the biocat-
alyst. These are outlined in the following sec-
tions and the key process features are summa-
rized in Table 1.

4.2.1. Fermentation Processes

For a significant number of chemicals, the use of
fermentation has become a standard alternative
to fossil-based feedstocks and technology. Nev-
ertheless the possibility of growing microbial
cells on a variety of sugars (derived from re-
newable biomass) has reinvigorated interest in
this area. The consequence is that fermentation
at a large scalewill becomemore common in the
future chemical industry. Many different types
of fermentation process (using different strains
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to produce different products) can take place in
the same process plant which is a significant
advantage. The plant is relatively simple and the
challenges lie in adequate mixing (sometimes
with materials having complex rheology), suit-
able oxygen input (for aerobic processes), and
process control. Downstream, the separation
process depends on the product, but will nearly
always need to avoid high temperatures and
extremes of pH. The solvent in such a process
is water, meaning that the dilute product stream
combined with the presence of many other
products presents a significant process engi-
neering challenge. Both, large molecular mass
and low molecular mass products can be made
by fermentation. The processes either focus on
low molecular mass products which can subse-
quently be used as platform chemicals or bio-
fuels or high molecular mass compounds such
as enzymes (for application in a range of indus-
tries, including detergents, textiles, and food
ingredients) or therapeutic proteins.

4.2.2. Microbial Catalysis

In fermentation, by definition, the catalyst is
growing during the process. This means that
some of the reactant (or substrate)will inevitably
be diverted from the product towards the cata-
lyst, lowering the yield. An alternative (for
nongrowth associated products) is to grow the
cells first and subsequently carry out the reaction
to increase the yield. This also enables the
possibility of growth and reaction on different
substrates (reactants) or under different condi-
tions (such as temperature or pH) in each stage.
Likewise the optimal cell concentration for con-
version can be selected [128] after growth and

suitable media for effective product recovery
chosen. For processes requiring oxygen it can
be highly important to select the optimal cell
concentration in order to avoid oxygen-transfer
limitations. Several tools are now available for
evaluating the oxygen supply issues in such
reactions [129, 130]. The three potential routes
usingmicrobial catalysis are shown in Figure 20.

4.2.3. Enzyme Processes

The presence of so many products at the end of
fermentation or microbial catalysis is a conse-
quence of the complexity of cells, where many
enzymes catalyze reactions giving a spectrumof
products as well as decreasing the yield of the
desired product on the reactant. An alternative,
for short pathways, is to isolate the enzymes and
then immobilize them on a solid support or
behind a membrane or via aggregation, such
that they are large enough and have the right
properties to be recycled (like a heterogeneous
catalyst). In this way a yield of product on
catalyst of around 5–10 t/kg immobilized bio-
catalyst can be achieved, which typically is
sufficient to enable commercial implementation
at an industrial scale. Such an approach has been
widely used to assist in the synthesis of high-
value compounds such as pharmaceuticals and
a more limited number of well-known lower-
value products such as high fructose corn syrup
(HFCS). Many of these processes have also
been modeled [131]. Enzymatic processes can
also be carried out using soluble enzymes (i.e.,
nonimmobilized), although these present chal-
lenges in terms of separating and recycling the
catalysts (enzymes) when compared with the
immobilized enzyme processes.

Figure 20. Alternative process scenarios for use of microbial cells for nongrowth associated biocatalysis
a) Route 1: Combined fermentation and microbial catalysis; b) Route 2: Fermentation separated from microbial catalysis; c)
Route 3: Fermentation separated from microbial catalysis with intermediate processing to change catalyst concentration

Process Systems Engineering, 9. Domain Engineering 27



Traditionally, single enzymes were used for
catalysis. However, multiple enzyme mixtures
are nowadays becoming attractive for catalyz-
ing the production of several compounds at an
industrial scale. A classification of multien-
zyme-catalyzed processes was proposed recent-
ly [132], including reaction and process con-
siderations for mathematical modeling of mul-
tienzyme processes operated in a single reactor.

4.3. Modeling of Bioprocesses

Mechanistic and empirical (data-driven)model-
ing approaches complement each other. Biopro-
cesses are usually represented by a combination
of both where mechanistic models gradually
replace empirical models as more knowledge
about a process or a unit operation becomes
available [133]. Empirical models represent
input–output relationships in a data set without
requiring detailed knowledge of an underlying
mechanism. Usually, an empirical model can
only accurately predict conditions represented
by the data set that was used to build the model.
Empirical models are useful in a process control
context, where software sensors often rely on
empirical models for the prediction of variables
that are not measured directly due to on-line
measurement difficulty or excessive sensor cost
as will be explained in more detail in the fol-
lowing sections.

4.3.1. Modeling of Bioprocesses–
Mechanistic Models

Mechanistic process models (! Biotechnolo-
gy, 5. Monitoring and Modeling of Biopro-
cesses, Section 5.3) for fermentation and bio-
catalytic processes are developed based on
mass, heat, and momentum balances, supple-
mented with appropriate mathematical formu-
lation of mechanisms (e.g., kinetic expressions
to reflect process dynamics). Specifically for the
description of bioprocesses, the kinetic expres-
sions themselves are often empirical, providing
a simplified and idealized view of a complex
biological mechanism. Unlike empirical mod-
els, mechanistic models usually offer better
extrapolation capabilities, which is critical in
a process modeling context, where one is often

interested in investigating the process perfor-
mance under different operating conditions on
the basis of simulations with a dynamic model.

Sufficient process knowledge is a necessity
in order to optimize the design or the operation
of a bioprocess. A mechanistic model captures
that process knowledge in a structured
way [134]. The model therefore has great value
in planning experiments, or in determining
which critical process variables necessitate tigh-
ter control [135–137].

Within the fermentation field, development
of mechanistic models has a long history. Early
work involving quantitative descriptions of bac-
terial growth dates back to the 19th century, and
a broad spectrum of modeling techniques
are available today [138]. For more detailed
reviews on models and model types, a number
of key publications can be suggested on fermen-
tation models [139–142], on specific modeling
approaches for enzyme production kinet-
ics [143], on mechanistic model studies for
biocatalytic processes [144], and on modeling
cellulase kinetics [145]. Finally, the opinion
article of [146] highlights both the history and
the future of mathematical modeling in bio-
chemical engineering.

Assuming a homogeneous reactor environ-
ment, a generally accepted classification of
mechanistic models of cell populations is pre-
sented in Figure 21 [139, 146].Moving between
models in Figure 21 is determined by the as-
sumptions behind the mechanistic model. For
example, if the assumption of a homogeneous
reactor environment does not hold, then a dis-
tributedmodel is needed (i.e., amodelwhere not
only time, but also space (1-, 2- or 3D), forms an
independent variable). Unsegregated models
are common, and rely on an average cell de-
scription. Unstructured unsegregated models
are the simplest models. They use a single
variable to describe the biomass [134, 142, 147].

Unsegregated structured models form an
important class. The distinguishing feature of
these models is that they describe the biomass
as consisting of several variables (such as
NADH, precursors, metabolites, ATP, bio-
mass), and have been used for modeling com-
plex processes. An example is a structured
model of yeast intracellular metabolism [141].
Morphologically structured models [141, 148]
distinguish between different regions of the
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hyphal elements of filamentous fungi, and were
specifically developed to describe growth of this
important class of production organisms.

Segregated models consider individual cells.
They were developed in recognition of the fact
that cells in a population–a pure culture–are
different, and are most often formulated as a
population balance model (PBM). An unstruc-
tured segregated model characterizes cells by
one distributed property (i.e., cell size or age of
individual cells [149]) without considering in-
tracellular composition. Obviously, structured
segregated models are more complex, since the
distribution of one or more intracellular vari-
ables is also considered. Solving the resulting
multidimensional PBM is difficult, unless the
intracellular state can be captured with just a
few variables [140]. One alternative to PBMs is
cell ensemble modeling [140, 150], where the
parameters of a single cell model are random-
ized to generate a cell population. Despite the
fact that segregated models are more complex,
advances in data collectionmethodsmean that it
becomes more and more relevant to develop
segregated models in order to increase our
understanding of the complex interactions be-
tween individual cells [151].

4.3.2. Modeling of Bioprocesses–Data-
Driven Models

Data-driven models are extremely useful in a
process monitoring and control context (see
! Process Systems Engineering, Process Sys-
tems Engineering, 5. Process Dynamics,
Control, Monitoring, and Identification, Chap.

3), especially for handling multivariate data
which are increasingly becoming available on-
line. In this contribution, the focus is on the use
of data-driven models in software sensors. The
estimation of the concentration of analytes of
interest using so-called ‘‘software sensors’’ is in
many cases a fruitful alternative to direct (or
analyte-specific)measurements using, for exam-
ple, chromatographic and spectroscopic meth-
ods, as illustrated in a recent review on methods
that allow the on-line measurement of the cell
mass concentration [152] ! Biotechnology, 5.
Monitoring andModeling of Bioprocesses, Sec-
tion 3.2: software sensorswere considered as one
alternative approach that can compete with
methods such as dielectric spectroscopy, OD,
IR spectroscopy, and fluorescence for in situ
measurement of the cell mass concentration.

Software sensors can in fact be divided into
three classes:

. Software sensors based on stoichiometry,
elementary balances and first-principles
models

. Software sensors based on data-drivenmodel-
ing methods, i.e. black-box approaches

. Hybrid software sensors,which arepartly based
on first-principles, but supplemented with
black-box approaches for parts of the system
that are not sufficiently well understood

Only the second class of software sensors
will be highlighted here, and these seek to
exploit correlations between the variables in
the process, without seeking any mechanistic
explanation for the observed correlations.Meth-
ods such as artificial neural networks (ANN)

Figure 21. Classification of mechanistic bioprocess models
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and chemometric modeling techniques, for
example, partial least squares (PLS), belong
here [153–156]. In a recent publication, a mov-
ing window principal component analysis
(MW-PCA) method was successfully used to
identify phase changes in several different in-
dustrially relevant batch processes [157]. The
MW-PCA method was solely based on changes
in the statistical properties of on-line data, such
as pH, dissolved oxygen concentration, agitator
speed and concentrations of CO2 and O2 in the
exhaust gas, and appears to be useful for any
case where even slight changes in process prop-
erties must be identified.

The main message is that black-box methods
are certainly useful, on condition that the user is
awareof the limitationsof themethods.Moreover,
some of these methods have the advantage that
they can be applied rather easily in practice. Soft-
ware for building chemometric models, to name
one example, is available from several software
vendors or can be downloaded as freeware.

4.4. The Role of Process Systems
Engineering

4.4.1. Evaluation of Process Options

For some higher value products a bioprocess
may in some cases be the only route to a given
product (to ensure correct folding of a therapeu-
tic protein, for example, or the synthesis of an
optically pure pharmaceutical intermediate).
However, the more usual situation is that there
are other competing routes to the same product.
Therefore, for now, biotechnology is just one of
a number of options for the production of che-
micals and biofuels. The economic drivers for
implementation depend on existing infrastruc-
ture, feedstock costs, feedstock availability as
well as the efficiency of the relevant (bio)cata-
lyst and (bio)process technology. At the same
time, there are environmental drivers and, in the
wider sense, sustainability drivers for the selec-
tion of different process alternatives. The sus-
tainability drivers are by no means simple, as
they require the balance of different sets of goals
and metrics that can present trade-offs in some
cases. Objective functions to be optimized
should not exclusively be based on economics
but increasingly also on sustainability me-

trics [158] and integrated with life-cycle analy-
sis. This will need to include evaluation of
feedstocks and products as well as processes,
including energy and mass integration. This
presents a fascinating set of alternative routes
and technologies from a given feedstock and/or
to a given product(s). PSEhas a particular role to
enable such evaluations on a quantitative basis,
not only from the process perspective, but also
from the wider sustainability aspect. PSE also
brings the advantages of rapid computational
methods. Such simulations enable alternatives
to be quickly evaluated. The answer in a specific
case to the problem formulated here will in
addition depend on regional factors. Feedstock
availability and cost is highly dependent on
geographical location. A parallel set of evalua-
tions concerning the need to retrofit existing
plant, or build new plant, is also required.

4.4.2. Evaluation of Platform Chemicals

While the increasing cost of oil is driving partic-
ular interest in the production of new biofuels
from biomass there is little doubt that today of
equal importance is the production of chemicals
frombiomass. Indeed for the supply of fuels in the
future there aremany potential sources aside from
biomass. In a world with limited (or very expen-
sive) oil it is less clear where the chemicals of the
futurewill originate.There is currently an existing
infrastructure basedon the use of the7 established
platform chemicals (toluene; benzene; xylene;
1,3-butadiene; propene; ethylene; methane). In
the short termone could consider ifwe can use the
same infrastructure and just create the7 chemicals
from alternative sources. However, in the longer
term it will be necessary to devise new processes
based on a different set of platform chemicals.
One group will be based around glucose (the
hydrolytic product of starch and cellulose and
therefore readily available from biomass). In a
biorefinery it will be necessary to develop a
structurewhich canmanage a rangeof feedstocks,
a range of technologies, and a range of products.
This presents a considerable challenge for design
and optimization as well as process integration.
An interesting examplewhich illustrates the com-
plexity and the challenge that lies ahead is the use
of glucose or fructose to produce 5-hydroxy-
methylfurfural (HMF) or 2,5-furandicarboxylic

30 Process Systems Engineering, 9. Domain Engineering



acid (FDA) [159]. Greatest value is obtained by
going the whole way from glucose to FDA.
However even in this small reaction pathway
there are many alternative technologies. Some
can be integrated together, some give the required
yield and selectivity, some are difficult to imple-
ment and others are untested at scale. This illus-
trates very well the challenge that design engi-
neers face.

4.4.3. Process Integration

The solvent for most bioprocesses, with a few
exceptions, is water. Consequently the down-
stream process is frequently difficult and this is
exacerbated by the need to carry out separations
at moderate temperatures. Given the dilute na-
ture of the streams it is frequently the case that
the majority of the costs and environmental,
health, and safety impacts are therefore in the
downstream process. For instance, in some fine
chemical and pharmaceutical applications of
biocatalysis large amounts of organic solvents
may be used in the purification of a biocatalytic
reaction. The dilution of the streams has histori-
cally also driven the need for energy-intensive
separation. In the case of transport fuels removal
of water becomes an essential requirement to
reduce costs and avoid transporting significant
amounts of water. For example, in the case of
ethanol which forms an azeotrope, this can be a
significant cost. In other cases the product may
be integrated within a biorefinery although at
some point water will need to be removed.
Consequently the integration of water use and
reuse via recycle is an essential part of the design
of industrial bioprocess facilities. In addition,
bioprocesses need to be designed with process
synthesis and process integration approaches,
thus avoiding a process that is efficient in one
part and inefficient in another. Existing tools of
mass and energy integration such as pinch tech-
nology (! Pinch Technology) will have an
important role. The issue of water use in a
biorefinery is in many ways analogous to the
issue of heat use in a conventional refinery.

4.4.4. Biorefinery Design

Two major types of biorefinery have been iden-
tified for the future, based on lignocellulose

biomass utilization to provide a range of
sugars (for subsequent (bio)catalysis or fermen-
tation) and oil-based material (from biomass)
! Biorefineries–Industrial Processes and Pro-
ducts. In each case the current research empha-
sis on biorefineries is to ensure that all the
fractions of a particular biomass in a given
situation are fully exploited. Likewise the de-
velopment of downstream products is now be-
ing explored. For example, glycerol (as a by-
product of biodiesel production) can be used as a
platform chemical (e.g., via fermentation to
produce 1,3-propanediol). Another interesting
example concerns the production of bioethanol.
This is widely developed as a biofuel although
there is considerable economic incentive for
developing a range of other products (e.g.,
acetic acid) from ethanol, in other words using
it as a platform chemical [160].

4.4.5. Biocatalyst Design

A particular feature of bioprocesses is the use of
biocatalysts ! Biocatalysis, 1. General, which
may exist in several forms as indicated earlier
and where options exist for modification. At the
simplest level as a protein (isolated enzyme), the
options for swapping amino acids via protein
engineering exist. New enzymes which have
been modified may display new tolerance to
reactor conditions such as temperature or pH
and may also have improved selectivity or
reactivity (activity) on a given (nonnatural)
substrate or reactant. Order-of-magnitude
improvements have been found in a number of
cases although understanding themost effective
method of making changes to the enzyme de-
pends on past precedent and, to some extent,
structural knowledge [161]. In the case of mi-
crobial catalysts, individual enzymes can be
over-expressed (increasing reaction rate of a
given cell) and the regulatory control scheme
fixed to direct the carbon to give improved rates
and yields (via metabolic engineering). Some
start has also been made to the development of
pathwayswhere enzymes coming from a variety
of sources are cloned into single host to make a
new pathway via a combination of genetic
engineering and de-novo pathway engineer-
ing [162]. In all these areas it is clear that those
involved in PSE need to inform the biological
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engineers about what is required in a given case
and set suitable targets. Philosophically it is
interesting to note that process implementation
may come via process improvements or alter-
natively via catalyst improvements. In many
cases both will be required. Understanding the
necessary balance between these areas, as well
as their integration with each other will be
important for the future development of the
field. PSE is particularly powerful in its ability
to predict and can therefore be used to direct
decision-making and process development.

4.5. Assessing the Sustainability
of Bioprocesses

As discussed before, bioprocesses have fre-
quently been highlighted as greener chemistry
or engineering, since they address many of the
green chemistry and green engineering princi-
ples [163] by offering reactions that are poten-
tially more atom economic, operate under mild
conditions, use mostly nonhazardous chemi-
cals, and have less protection/deprotection
steps. However, this tends to be true mostly
when looking at the reaction part of the process,
in other words, the biocatalysis. However, it
cannot be generalizedwhen analyzing the entire
process that in some cases may include the use
of a large amount of organic solvents for down-
stream processing. This is one of the areas in
which systems engineering, in conjunction with
a transparent application of life-cycle inventory
and assessment (LCIA) methodologies can and
must play a pivotal role.

Determiningwhether a process is sustainable
or green is by no means a simple feat. It is more
akin to a multivariable optimization that is very
familiar to systems engineers, and for which
several proposals and methods have been pre-
sented [164–166]. For an objective assessment
of the sustainability of a process, there is the
need to utilize the tools that system engineers
have developed during recent years and apply
them with a life-cycle approach. It is necessary
to move from the basic analysis of the biocatal-
ysis alone and discrete unit operations (separa-
tions) and use a whole system engineering
approach instead. This implies utilizing multi-
variate optimization techniques coupled with

LCA methodologies for a more objective anal-
ysis of their ‘greenness’ or sustainability. This
would allow to develop bioprocesses that are
sustainable by design, in such a way that they:

. Optimize the use of material and energy
resources

. Eliminate or minimize environment, health,
and safety hazards by design

. Integrate life-cycle thinking in the design

Analyzing and comparing sustainability will
require a comprehensive assessment that bal-
ances the three different spheres of sustainabili-
ty (see Fig. 22). This can only be achieved
through a multivariate optimization that will
account for environmental performance, eco-
nomic viability, and social responsibility
(which include health and safety aspects).

Another important concept when assessing
the efficiency and the sustainability of processes
is the differences between new process perfor-
mance and retrofit performance. For instance, in
comparing the sustainability or performance of
a well established process with a new biopro-
cess, a situation that one often encounters is the
fact that initially, the new process may not have
the same level of performance as the established
technology, mainly because they are at different
points in the development curve, and therefore
the new process is suboptimal. On the other
hand, the established process can be retrofitted
to improve its performance. Retrofitting and
new process development is not a new concept
from the systems engineering viewpoint. How-
ever, additional modeling work is needed to
estimate the achievable performance limits of
a fully developed process and an established
process that undergoes retrofit. This will allow
more meaningful comparisons without unnec-
essarily penalizing the new process for its lack
of development, nor the established process for
the lack of timely retrofitting.

In the recent past there have been many
attempts tomeasure the ‘greenness’ of synthetic
routes, and the approaches have generated a
series of ‘green metrics’. Most of the ap-
proaches have searched for a simple metric in
an attempt to provide a low resolution view of
how green is a given process. ‘‘E-factor’’ was
one of the first measures of greenness proposed
to highlight the amount of waste generated in
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order to produce 1 kg of product [167, 168].
This metric, while simple to understand, has
several key drawbacks by focusing on waste
instead of efficiency, neglecting a view of the
type of waste generated, not accounting for the
relative impacts, and the lack of life-cycling
thinking. For instance, bioprocesses have in
general large amounts of wastewater produced,
which would indicate an extremely large E-
factor, but at the same time the actual impact
of the effluent might not be as large as an E-
factor would suggest, since the waste is rela-
tively benign. Additional metrics have focused
on efficiency, especially on mass efficiency (or
its inverse, mass intensity) which addresses the
first part of the disadvantages of the E-fac-
tor [169, 170]. However, it has been widely
recognized that measuring the sustainability or
even the ‘greenness’ of a process is a multi-
objective optimization problem that must take
into consideration the efficiency of the entire
process regarding the use of mass and energy,
the environment, health and safety characteris-
tics of materials, and the inclusion of life-cycle
thinking amongst others [171].

Some efforts have been made to comprehen-
sively address and compare the sustainability of
processes in general and bioprocesses in partic-
ular. These methodologies have been employed
in some instances to assess the sustainability,
environmental, health and safety aspects of bio-
processes [172–181]. These methodologies at-
tempt to measure the sustainability of biopro-
cesses and in some instances they compare
bioprocesses with their chemical alternatives.

For instance, a technology comparison
framework [181] that accounts for environment,
health, safety, and life-cycle assessment im-
pacts, was used to compare the established
chemical process and a two-enzyme biocata-
lytic process for the production of 7-ACA [158].
The conclusion of this assessment was that the
bioprocesswas greenerwhen comparedwith the
chemical process. This was driven by the fact
that the chemical process uses more hazardous
materials, requires about 25% more process
energy than the enzymatic process and, has a
larger life-cycle environmental impact: it uses
approximately 60% more energy, 16% more
mass (excluding water), has double the green-
house gas impact, amongst others.

However, although this type of assessment is
useful andmore common as time passes, there is
an ongoing need for modeling methodologies
that will seamlessly integrate sustainability fac-
tors during bioprocess design and development.
Systems thinking and systems engineering are
the skill and the discipline that will need to play
an important role to make this happen, and a
holistic view of bioprocesses and their interre-
lations will be imperative.

4.5.1. Life-Cycle Inventory and
Assessment

One of the tools to analyze systems holistically
is LCIA (Fig. 23). LCIA is a methodology used
to evaluate the environmental profile of an
activity or process from the extraction of raw

Figure 22. The three spheres of sustainability through a triple bottom line assessment
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materials to its end-of-life. The resource con-
sumption and emissions are inventoried and
assessed from the extraction of raw materials,
production, transportation, sales, distribution,
use, and final fate. Depending on the goal and
scope of the assessment, the boundaries can be
set differently; for instance a ‘cradle-to-gate’
assessment might be adequate when comparing
two processes to the same product; or a ‘gate-to-
grave’ boundary may suffice when comparing
two different end-of-life technologies. The
results of these assessments can be reported as
direct inventory data (for example life cycle
energy, life cycle mass, life cycle emissions),
measures of individual potential impacts (such
as global warming or acidification), or as an
aggregate score or index for high-level compar-
ison (for example Eco-Indicator 99). LCIA
methodologies are described in detail in the
literature [182–188]. LCIA methodologies are
in a way an extension of systems engineering
and provide a directly applicable framework to
assess the sustainability of processes.

In the area of bioprocesses, the application of
LCIA is still not a widespread practice. There
are however, examples on how several practi-
tioners have applied LCA metrics primarily
using case studies to better understand the wider
environmental implications of bioprocesses and
to compare them with chemical routes. This
type of assessment has provided some key in-
sights, such as the role of separations, a more

systematic and holistic method to evaluating
waste impacts, and the nuances of renewabili-
ty [173, 174, 178, 179]. For instance, a compar-
ison of a process using metal catalysts and one
using biocatalysts for the enantioselective re-
duction of ketoesters in pharmaceutical synthe-
sis was performed using a streamlined LCIA
methodology. The analysis identified some
processes and reaction conditions that had the
largest significance on the impact of the synthe-
sis. It was also concluded that whether the
metal catalysts were better than bio-catalysts
depended mainly on the work-up from the use
of organic solvents and energy-intensive
steps [172].

Developing life cycle inventories and asses-
sing the LCIA impacts of bioprocesses is not a
simple endeavor given the large amount of data
needed from different sources. The more mate-
rials are involved in the bioprocesses will re-
quire more life cycle inventory data to be col-
lected, verified and analyzed. On the other hand,
the life cycle inventory data for biomaterials is
not always available. There have been efforts to
increase the body of knowledge of life cycle
inventories and impacts of bioprocesses and
materials either derived from biomass or needed
in bioprocesses. These challenges have influ-
enced the development and use of streamlined
life cycle assessment methodologies and ab
initio modeling approaches to estimate
the life-cycle impacts of bioprocesses and

Figure 23. Life-cycle assessment to evaluate the environmental profile of a process from the extraction of
a) Raw materials; b) Production; c) Transportation; d) Sales, distribution, and use; e) Final fate
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bio-derived materials. This is precisely the sort
of opportunity where system engineering can
add value, as the development of reliable, con-
sistent, transparent, accurate and easy-to-use
modeling and streamlined techniques for LCIA
will continue to be an important need to be able
to routinely assess the sustainability of
bioprocesses.

The development of true sustainability
assessments, with an embedded LCIA ap-
proach will be necessary aligned with the
early modeling needs highlighted in this arti-
cle. In order to routinely assess sustainability
of bioprocesses and to embed sustainability
principles into the bioprocesses design and
development, the following modeling needs
can be highlighted:

. Better deterministic models of unit operations
that are part bioprocesses, such as fermenta-
tion, biocatalysis, etc. This would need to
include fundamental design parameters to
design more resource efficient bioprocesses.

. Development and enhancement of property
prediction packages that would facilitate
estimations of resources (e.g., energy require-
ment) and the utilization of optimization
techniques.

. More extensive use of process integration
techniques on bioprocesses, especially at the
development phase.

. Increased use of software sensors on biopro-
cesses, in order to maximize the information
content that is available on-line. Closely
related to that, increased use of advanced
control and monitoring methods such that
bioprocesses can be operated as close as
possible to the optimum.

. Better understanding of life cycle inventory
and impacts of bioprocesses and bio-derived
materials.

. Increased understanding of the uncertainties
in modeling bioprocesses, both from the pro-
cess design and the sustainability assessment
viewpoints.

. Improved consistency and transparency of
LCIA methodologies as applied to
bioprocesses.

. Improved streamlined LCIA methodologies
that are easy to use by academia and industry
alike.

. More routine application of multiobjective
optimization techniques for sustainability as-
sessments of bioprocesses.

. Enhanced understanding of the interactions of
the environmental, social and economic as-
pects of bioprocesses for a holistic sustain-
ability view.

Addressing these modeling and process un-
derstanding needs will make it possible to inte-
grate sustainability principles into process de-
sign and development in a far more rigorous
manner.

4.6. Future Outlook and Perspectives

The development of new bioprocesses as a
complement to existing chemical and fuel
production is an exciting endeavor that will
occupy many process engineers in the future.
There will be a particular role for process
systems engineers in this developing sector
with the advantages of quantitative decision-
making tools and rapid simulation that this
brings, including process design and sustain-
ability principles. In the future suitable models
will inform developments at the infrastructur-
al level (evaluation of biorefineries, feed-
stocks and integration), the process level
(evaluation of alternative technologies and
process integration) and the catalyst level
(alternatives for protein and metabolic engi-
neering). In addition, these models will allow
the integration of sustainability principles into
process design and development.

The further development of PSE tools
(including property prediction packages and the
development of a database for bio-based mole-
cules) will be required. To routinely assess
sustainability of bioprocesses will require as
well more robust and transparent environmental
life cycle inventory databases of bio-derived
materials; as well as better modeling and under-
standing of the social and economic aspects of
sustainability and their relationships. Finally, an
increasing dialogue amongst the biochemical
engineers, biologists and other related areas of
expertise will be necessary to enable the vision
of sustainable industrial biotechnology to be
fully exploited.
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5. Policies and Policy Making

5.1. Introduction

Process engineers are becoming increasingly
aware that there is a significant role for them
to play in the arena of policy making. This is not
to say that there have not been past contributions
of PSE in the policy area nor that engineers have
been insensible to the effects on society of the
systems they design and operate. However, an
ideological divide between the technical and
social sides of a given problem has tended to
reinforce the perception that our exclusive role
as engineers is to improve product quality and
production efficiency and to minimize costs and
risks, and that these contributions in themselves
will automatically result in a net benefit to
society. Such a perception is a result of a
historical tendency to compartmentalize pro-
blems, i.e., to dissociate the technical and social
sides of a system, leaving the decision-making
and analysis of the social side to the social
scientists and politicians.

The split between the technical and social
camps has deep and old roots, as discussed in [,
190]. Yet, it is increasingly accepted that socio-
technical systems, i.e., systemscomposedbytech-
nical artefacts and social arrangements (agents
with a purpose), are closely interdependent and,
as such,need tobedesignedandanalyzedasa total
system[191]. Inrecentyears the trendhasbegunto
reverse towards the closing of the gap between
technical and social systems, because only by
taking into account the characteristics of thesocial
subsystems it will be feasible to develop effective
and sustainable engineering systems.

To investigate the relations–past, current,
and possible–between process systems engi-
neering (PSE) and policy making it is conve-
nient to start by providing some definitions for
policy and its components, and a description of
how policies are conceived, developed, and
implemented.

5.2. Policies and Policy Measures

The following two complementary definitions
of policy are adopted:

. A policy is a set of effective and acceptable
courses of action to reach explicit goals [192]

. A policy is a purposeful connection of ends
with means [193]

In the classical point of view a policy is the
product of rational choice; this assumption is
also going to be adopted for the rest of this
discussion, although the adequacy of this model
is in dispute [194].

Policies are constituted by combinations of
policy measures (also known as policy instru-
ments). According to [192] policy measures can
be of different types:

. Exhortation (e.g., education)

. Economic incentives/disincentives (e.g., sub-
sidies and taxes)

. Government provision

. Legislation/regulation

However, in all cases policy measures have a
set of properties such as a degree of effective-
ness and a range of implementation costs and
times. Other properties, more difficult to mea-
sure and quantify, but not less important, are
related to issues such as equity, legitimacy, and
public support.

A policy cycle is a sequence of steps through
which a problem is defined; alternative policies
to address it are proposed, analyzed, and refined;
and a proposed policy is selected, implemented,
and constantly challenged and revised [195].

5.3. Policy Making and the Systems
Approach

The first author to use systems theory to explain
political processes was [196]. In his portrayal,
political systems convert inputs, such as politi-
cal demands and public support, into outputs,
i.e. a group of resulting decisions and actions
(Fig. 24 A).

Policies themselves can be understood as
blocks having policy measures as inputs and a
set of desiredoutcomes as outputs [197], (Fig. 24
B). Thus, policies are systems composed of
interacting parts that are the means to reach a
final objective (the ends), as a result they can be
represented through a causal model.

The concept of policy cycle, in particular, has
its foundations in systems theory and is analo-
gous to the concept of life cycle in engineering
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systems. The schematic policy cycle in Fig-
ure 25, based on a model proposed in [198],
depicts the process of policy decisions, their
implementation, enforcement, and evaluation.

The policy cycle in Figure 25 is an idealiza-
tion, as some stages in the process are sometimes
merged or altogether eliminated. The feedback
arrows intend to express that the process is
cyclical with backtracking and revision steps.

The rest of this analysiswill focus on the third
stage in the cycle (policy formulation) because
of its many similarities with conceptual process
design in PSE. These similarities explain why
most of the past efforts and the potential future
advances of PSE in policy making are to be
found in the policy formulation area.

5.4. Similarities between Policy
Formulation and Conceptual Process
Design

Policy formulation is a procedure with two
components (Fig. 26 A):

1. Synthesis (generation) of alternative courses
of action (alternative policies)

2. Analysis of the alternative policies, i.e., the
estimation of their consequences to help in
the selection of the best policy alternatives.
This step is generally performed through the

application of formal analytical methods
such as simulation and optimization

The output from the policy formulation stage
is the selection of a policy considered to be the
most appropriate and thus the recommended
one for implementation [190]. Policies are cre-
ated during the policy formulation step as new
components of a sociotechnical system. For this
reason, policy formulation has been character-
ized as a design activity [].

During the synthesis step of policy formula-
tion a set of policy measures (the building
blocks) are combined to configure alternative
policies; thus the policy maker has to decide
which policy measures to select taking into
account their intrinsic characteristics (such as
effectiveness, cost, etc.) and their interactions
with other policy measures, as in the left-hand
part of Figure 26A. Process synthesis, in turn, is
the invention of a structure and its associated
operating conditions for a new chemical
manufacturing process [199]. Inventing the
structure involves finding the best process con-
figuration (which building blocks to include and
how to interconnect them) among a very large
number of possible alternatives, as in the left-
hand side of Figure 26 B.

In both cases synthesis and simulation steps
are applied in tandem and iteratively: a synthe-

Figure 24. Systems theory view of political and policy systems
A) Political system; B) Policy system

Figure 25. Simplified policy cycle, based on [198]
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sis step generating alternative policies/flow-
sheets, and a simulation step evaluating each
of the alternatives so that they can be compared,
and also informing the application of the next
synthesis step in the loop (Fig. 26).

Policy formulation and conceptual process
design belong to the type of problems where
there is neither an a priori agreement about
which criteria to use nor a prior articulation of
preferences [201]. Both are processes of coevo-
lution between what is possible and what is
desirable and proceed by generating potential
solutions and evaluating them in a generation–
evaluation cycle. Thus the goals, criteria, and
the artefact being designed (policy or chemical
process) evolve in a single front according to the
exploration model proposed by [202]. As a
result there are no unique optimum policies,
just satisficing ones [203].

It has already been mentioned that alterna-
tive policies are evaluated during the analysis
step of policy formulation (Fig. 26 A). This
evaluation entails the exploration of their im-
plications in terms of what they can accomplish,
alongside any desired or undesired side effects.
Such a task can only be done by means of
simulation, whereby either a point prediction
(the forecast of the state of the sociotechnical
system at a particular point in time in the future)
or a set of event frequency distributions is
produced. The analysis of policies is often
useful for the insights it provides even when

precise predictions are not feasible [190]. Sim-
ulation can also be used to discover the rela-
tionship between states through time, i.e., the
dynamics of the system [].

In any of the above cases, simulation requires
the development of models that relate policy
alternatives to their impacts and the application
of such models to predict the impacts of the
policies being considered [204], however this is
easier said than done given the complexity of the
sociotechnical systems that have to be predicted
as will be discussed in Chapter 6.

5.5. TheNature ofPolicyFormulation

It is widely recognized that a one-for-all and
static policy is unlikely to achieve the desired
goals. This is because [205]:

. A good policy groups together (packages) a
set of policy measures such that synergies are
achieved, negative impacts are mitigated, and
conflicts are resolved, thus ensuring that the
policy will address the problem effectively
and equitably over the long term [204]. Alter-
native policies are not equivalent in their
effectiveness, implementation costs, public
acceptance, risk, etc. All of these properties
are determined by the properties of its con-
stituent policy measures and their
interactions.

Figure 26. Analogy between
A) Policy formulation; B) Conceptual process design [200]
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. The precise nature and scope of policies are
geographically and culturally dependent giv-
en the variability of resources, of access to
technology, and of political constraints at
different locations and times.

. Even for a fixed time and place, the identifi-
cation of a suite of alternative policies (rather
than a single ‘‘optimal’’ one), together with
clear indications of their trade-offs, is crucial
to accommodate the diversity of stakeholders’
preferences because, after all, decisions about
desirable futures, and the policies to attain
them, are essentially a question of social
values and political choice [206]. It is ac-
knowledged that no set of values or framings
can definitively be ruled more rational, well
informed or better than all others [207].

5.6. The Nature of Sociotechnical
Systems

Sociotechnical systems are systems that involve
the interaction of human beings with physical
infrastructure and, as in the case of purely
technical artefacts, can also be designed. They
are characterized for their sensitivity to initial
conditions and for the complexity of the inter-
actions between human actors (possibly mil-
lions of them) and with heterogeneous physical
infrastructure. Because of their human compo-
nent, it is either impossible or prohibitively
expensive (in terms of time and cost) to perform
in vivo experiments on sociotechnical systems
in order to inform the decisions taken during the
formulation of policies. The sensitivity to initial
conditions and the complexity of interaction
are two of the reasons that render accurate
point predictions impossible, thus requiring
to resort to mapping out a space of possible
states and estimate the relative frequency that
any particular state will occur in a future time
window [].

Policies are courses of action to design, plan,
manage, or control complex sociotechnical sys-
tems. In this sense the implementation of a
policy is an experiment but with unknown out-
comes; furthermore, and because of there is
often a lack of time and resources, policy out-
comes are rarely formally monitored.

A policy is also influenced by how the human
actors respond to it. Individual actors, or the

society as a whole, may take actions to subvert
or circumvent it, rendering the policy
ineffective [204].

5.7. Challenges for Modelers of
Sociotechnical Systems

Traditional policy analysis assumes that socio-
technical systems reach static equilibrium, and
that they can be properly characterized and
controlled. It has been argued that each of these
assumptions is true only in special circum-
stances [208]. As a result, there are a number
of challenges that modelers of sociotechnical
systems have to face due to the unique nature of
such systems.

5.7.1. Multiple Stakeholders

Policies involve multiple stakeholders with
their own preferences, objectives, expectations,
and beliefs [209]. Policies also have implica-
tions for groups with no or little influence in the
decision-making and even for people that do not
currently exist, as is the case of future
generations.

Because stakeholders can be individual peo-
ple and organizations, the issue of individual vs.
institutional behavior must also be taken into
account and included in the overall model; for
example, in the case of policies to reduce trans-
port emissions there are many actors such as
vehicle users, vehicle and fuel manufacturers,
government agencies, and environmental
groups [204].

Furthermore, the costs and the benefits of
policies are not evenly distributed between the
stakeholders, as a result

. Stakeholders have contradictory interests and
their interaction will often result in conflict

. The impact of a policy on a stakeholder con-
ditions how they react to the policy

5.7.2. Incommensurable Values

The reconciliation of multiple incommensura-
ble values (values that are not measurable) is
present in all public policy decisions [204].
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Values that are intangible have often been
monetized by assuming a hypothetical market
and then stating how much society would be
willing to pay either (i) to secure an improve-
ment, (ii) to prevent a loss, or (iii) how much
society would be willing to accept as compen-
sation [210]. The monetized values can then be
merged during a cost-benefit analysis. Howev-
er, despite the fact that there are ethical pro-
blems involved in monetizing health, welfare,
and environmental values [211], these issues are
not always suitably considered.

5.7.3. Externalities

Externalities are secondary or unintended con-
sequences, generally a nonmonetary cost or
benefit, incurred by a stakeholder who did not
have a choice and whose interests were not
taken into account [209]. There are different
types of externalities that may have to be mod-
eled: spatial (consequences in different re-
gions), intertemporal (consequences in different
generations), and social (consequences for dif-
ferent social groups).

5.7.4. Uncertainty

Uncertainties are due to the long-term nature of
policies and the existence of unexpected im-
pacts, for example, when a sociotechnical sys-
tem undergoes structural change. They are pres-
ent in three different forms [209]:

. Uncertainty about the model parameters and
initial conditions (which is usually addressed
through sensitivity analyses)

. Uncertainty about the model structure (rela-
tions between variables)

. Uncertainty about the applicability of the
model, i.e., its level of granularity and time
scale, and about the selection of variables

Identifying and managing uncertainty is im-
portant because the risk of wide-range and long-
term hazards is proportional to uncertainty. At
the same time, uncertainties limit the applica-
bility for long-term forecasting; looking farther
into the future (a large horizon of analysis)
increases uncertainties. Users of models gener-

ally expect them to reduce uncertainty, but
policy analysis often increases uncertainty by
identifying and raising new issues [190].

5.7.5. Emergent Behavior

An emergent property is one that cannot be
predicted from the knowledge of the system
components, i.e., it is the product of many local
effects [212]. In practical terms this means that
the system is computationally irreducible (there
is no simple set of equations to represent it) and
that the only way to figure out its evolution is by
running the system itself [213].

5.7.6. Complexity of Causation

The complexity of sociotechnical systems re-
sults in difficulties to establish and represent
causation. There are several reasons for
this [190]:

. There is a very large number of variables and
relationships at different levels of granularity
and time dynamics [214]; in particular, the
behavior of complex systems is dominated by
interconnected positive and negative feed-
back loops [212].

. The effects of a policy are also shaped by how it
is implemented and not only by its substance.

. The effects of a policy are modified as it
receives feedback, i.e., its content has an
interactionwith its effects. For example, there
may be unintended effects due to the stake-
holders reactions to a policy by circumventing
or subverting it.

In fact, it has been argued that policies are
more often facilitative than causative, i.e., con-
sequences are as likely to depend on actions and
influences other than the policy itself [215]. To
the extent that this is true, it can be said that the
effects of policies can only be influenced but not
controlled [208].

5.7.7. Objectivity in Policy Analysis

Policymust be interpreted in order to be analyzed.
For example, its objectives may need to be re-
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defined in more concrete terms, decisions about
the types of effects that will be examined have to
be made, etc. However, this analysis is not value-
free, as the purposes and mechanisms of analysis
are conditioned by ideology and its conduct
shaped by the analyst’s concerns about the con-
sequences of the analysis for society [190].

These issues raise ethical questions because
the idealism of analysis as a pure scientific activi-
ty getsmixedwith the impulses of the analyst as a
citizen, reflecting ideology and values.

5.8. Types of Models Used in the
Analysis of Policies

Models can be used to explore, describe, ex-
plain, and predict the behavior of a system [190].
Effective policy formulation, in particular, de-
pends on the understanding and modeling of
sociotechnical systems to forecast their future
behavior, evaluate the likely impacts (econom-
ic, environmental, social) of alternative poli-
cies, and inform the decision of which policy
measures to adopt. All of these analysis tasks are
part of the so-called policy assessment, i.e., the
comparison of alternative policies using policy
instruments as inputs and measurable indicators
(such as CO2 emissions, cost, etc.) as outputs.
Unfortunately, while it is relatively easy to fit
models to historical data, models are not as good
in predicting the future.

Many types of models have been used in
policy making due to two factors:

. The development of models used during poli-
cy making has attracted the participation of
modelers from many different disciplines,
each one bringing their ownmethods and tools

. The systems to be modeled are complex and
present a number of challenges, as have been
described in Chapter 7. These challenges can
only be reasonably overcome through the
concurrent application of many methods or
by restricting the modeling to parts of the
overall system

Most modeling methodologies are quantita-
tive, but qualitative analysis is also useful for
certain aspects of policy making such as
scenario building.

Several studies on the application of models
during policy development have been pub-
lished; the list below is mainly based on [209]
and [216] unless stated otherwise. The follow-
ing descriptors are common to many of the
different categories of models in the list:

. Mainstream: a well known and widely used
type of method.

. Descriptive vs. normative: a descriptive mod-
el is one that given some inputs will produce
some outputs, i.e., models used for simula-
tion. A normative model suggests how things
ought to be (as opposed to a descriptive
model, which describes how things are).

. Aggregated: the behavior of a system is taken
as an average of the individual component
behavior; although it is possible to avoid it,
mathematical representations tend to use ag-
gregation. Averaging is inappropriate for the
representation of emergent behavior.

. Mechanistic: mechanistic models use mathe-
matical equations to simulate a system and
predict its future state; they are useful in the
understanding of the workings of a system but
not very reliable for prediction. Mechanistic
models tend to be aggregated.

5.8.1. Macroeconomic Models (Main-
stream, Descriptive, Aggregated,
Mechanistic)

The general equilibrium models advocated by
neoclassical economic theory are the most pop-
ular type of economic models in use. They
consist of systems of equations and are based
on two premises:

. The economy behaves as a linear mechanical
system that tends to a stable equilibrium

. Human behavior is assumed to be rational and
independent, and can be represented by aver-
aging the behavior of consumers and
producers

This type of models are used to forecast the
economic impact of policies on the equilibrium
of the system; however, it has been argued that
there is little evidence to suggest that they have
much predictive value [217], perhaps because
both of the basic assumptions are unrealistic.
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The parameters in macroeconomic models
tend to be calibrated rather than validated em-
pirically. While macroeconomic models are not
within the direct interest of PSE, they require the
same sort of solution methods as the traditional
PSE applications.

5.8.2. OptimizationModels (Mainstream,
Normative, Aggregated, Mechanistic)

Optimization models are used to help in the
selection of alternatives by minimizing capital
and operating costs under constraints of avail-
ability, prices, etc. System optimality assumes
that decisions are taken centrally; however,
society is composed of individuals and groups
making their own decisions.

Optimization is oneof the prime interest areas
in PSE, with several types of applications [218].

5.8.3. Control Models (Mainstream, No-
rmative, Aggregated, Mechanistic)

Process control is one of the mainstream PSE
areas. A specialized branch of control is model
predictive control (MPC) (! Process Systems
Engineering, 5. Process Dynamics, Control,
Monitoring, and Identification, Chap. 5).

There is, however, considerable uncertainty
associated to the model parameters and possible
disturbances when the prediction of the effects
is done over a horizon of many years. Exten-
sions to MPC are required to address this issue.
For example, stochastic predictive control [219]
and a reformulation introducing multiple objec-
tives and dynamics [220] have also been pro-
posed to model the effects of policy over a
horizon of many years.

5.8.4. Data-Based Models

These models fit equations to data without
trying to simulate the system in a mechanistic
fashion, e.g., in the discovery of statistical pat-
terns in historical data. Their predictions assume
that the future will resemble the past, but one
property of sociotechnical systems is that they
evolve and change. As a result, this type of
models by itself is not adequate for policy
support [212].

5.8.5. Game Theory (Descriptive)

Game theory attempts to model the behavior of
individuals when confronted with a choice that
depends on the choices of others and as such, it
is helpful for the development of a strategy in
situations of competition and/or cooperation.
The recommended strategy is based on the
so-called Nash equilibrium, which assumes a
self-interest behavior and perfectly rational
agents (players) [221]. However, agents are not
always fully rational.

5.8.6. System Dynamics (Aggregated,
Mechanistic)

System dynamics is amethodology based on the
general systems theory.

It uses the concepts of stocks (levels), flows
(rates), feedback relationships, and time delay
in order to model dynamic behavior.

System dynamics models are appropriate for
the (qualitative) identification of the important
variables and causal links in a system, and for
the representation of the nonlinearities arising
from feedback loops and time delays. This
methodology is popular in the modeling of
environmental systems, and to a lesser extent
for economic systems (! Ecology and Envi-
ronmental Chemistry).

5.8.7. Network Theory (Descriptive)

Network theory groups a family of methods that
enable the representation of nodes and their
interdependencies, and its subsequent analysis.
As a result these methods are suitable to model
the behavior of networks, such as those resulting
from transportation systems or electricity gen-
eration and distribution. Networks have nonlin-
ear feedback loops, exhibit dynamic behavior,
and their local effects cannot be averaged.

Several specialized types of networks can be
defined according to the focus that the modeler
wants the model to have. For example, if the
focus is on the management of uncertainty,
Bayesian Networks are risk assessment models
expressed in terms of influence diagrams that
are used to infer through causal links the prob-
ability of an effect from the probabilities of its
associated causes.
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5.8.8. Agent-Based Approaches

An agent is an autonomous entity with an
internal state. In turn, a multiagent system is
a collection of agents that interact with other
agents and the environment within which they
operate. The interactions between agents, which
are governed by rules, modify the internal state
of the agents. This type of model has the ability
to capture individual heterogeneous actors as
autonomous decision-makers, with bounded ra-
tionality (i.e., limited information), attempting
to maximize their own utility function. The
approach is catalogued as bottom-up and has
the property of exhibiting emergent behavior.

As in the case of networks, it is possible to
extend the basic multiagent representation in a
number of ways, for example:

. Incorporating a stochastic approach within an
agent-based system to facilitate the manage-
ment of uncertainties.

. Embedding the agents in a spatial setting and
thus creating artificial societies [222] or arti-
ficial ecosystems [223], for example, through
the creation of synthetic micropopulations to
explore policy impacts [].

5.8.9. Some Conclusions on Models for
the Analysis of Policies

There are a few general conclusions that can be
drawn from the breadth of methods used for
policy analysis:

1. It is possible to develop partial models to
capture specific aspects of the sociotechnical
system when only one type of modeling
methodology is used.

2. To develop more inclusive models it is nec-
essary to combine information from diverse
sources and integratemodels.Hybridmodels
integrate differentmethods, e.g., mainstream
mathematical simulationmodels with differ-
ent tools to account for location (geographi-
cal information systems), economics (mac-
roeconomic models), etc.

3. In either case, partial or hybrid, models may
have to be multiscale, i.e., spanning indivi-
duals and organizations. This is the nature of
some of the models being developed for
PSE [224].

4. Models may also have to be multilevel, i.e.,
using various time spans (just ensuring that
the time spans are long enough to allow the
complete unfolding of the dynamics of the
system).

5. Model development should ideally allow the
inclusion of values and objectives of multi-
ple stakeholders and facilitate the communi-
cation of the results.

5.9. Synthesis of Policies

A large portion of the space of alternative poli-
cies is currently left unexplored because the
synthesis of policies is performed manually. A
systematic approach that aims to automate the
generation of alternative policies has the poten-
tial to accelerate the policy making process and
improve the effectiveness of the resulting poli-
cies; the development of such an approach may
benefit from the experience gained in the area of
process synthesis in the last three decades. How-
ever, the differences between process synthesis
and policy formulation, in particular the perva-
siveness of qualitative factors in the latter, re-
quire a substantial adaptation of the methods
used in process synthesis.

A good policy ‘‘packages’’ a collection of
policy measures aiming to ensure the effective-
ness and acceptability of the policy while main-
taining a reasonable cost and a tolerable risk.
The properties of a policy are determined by the
properties of its constituent policymeasures and
their interactions, thus policy makers try to take
advantage of the synergies between policy mea-
sures and also try to avoid, or at least mitigate,
the negative interactions between them.

A systematic approach for the synthesis of
policies is being developed in the area of trans-
port policy to reduce CO2 emissions [225]:

This systematic approach may constitute the
first step towards the development of a family of
computer-based systems that support the design
of policies for different sectors, such as trans-
port, energy, food, and water aiming to achieve
environmental, security, health, and safety tar-
gets. The output from such systems is a set of
promising alternative policies, each annotated
with its associated advantages and disadvan-
tages. The final decision on which policy
to implement rests with the decision makers
who may decide to include additional policy
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measures or remove some of the recommended
ones.

5.10. Future Directions

The integrated design and analysis of socio-
technical systems remains a challenge for both,
policy developers and engineers; there is still a
large gap between the objectives of both com-
munities and reality.

Engineers cannot expect to be able to formu-
late, analyze, and predict the behavior of poli-
cies in the same manner as they have done it for
industrial processes because sociotechnical sys-
tems are different and more complex than tech-
nical systems. There is, however, a large scope
for the application and/or adaptation of main-
stream PSEmethods and tools for the support of
policy making, particularly in the analysis and
synthesis of policies.

A word of warning: there is a risk in having
excessive confidence on models that may be
inaccurate or incomplete because theymay give
a delusion of control on systems that may be
intrinsically unpredictable. Yet even in the case
of systems that cannot be properly characterized
and controlled, models can be useful if we ask
the right question, i.e., to provide insights and
further understanding of the workings of a
sociotechnical system rather than to predict its
future behavior.
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