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Abstract

Plantwide control is concerned with the structural decisions involved in the control system design of a chemical plant (C.S. Foss,

Critique of chemical process control theory, AIChE Journal 19(2), 1973) 209±214; ``Which variables should be controlled, which
variables should be measured, which inputs should be manipulated, and which links should be made between them?'' In particular,
the ®rst issue about which variables to control has received little attention. It is argued that the answer is related to ®nding a simple

and robust way of implementing the economically optimal operating policy. The goal is to ®nd a set of controlled variables which,
when kept at constant setpoints, indirectly lead to near-optimal operation with acceptable loss. This is denoted ``self-optimizing''
control. Since the economics are determined by the overall plant behavior, it is necessary to take a plantwide perspective. A sys-

tematic procedure for ®nding suitable controlled variables based on only steady-state information is presented. Important steps are
degree of freedom analysis, de®nition of optimal operation (cost and constraints), and evaluation of the loss when the controlled
variables are kept constant rather than optimally adjusted. A case study yields very interesting insights into the control and max-
imum throughput of distillation columns. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

If we consider the control system in a chemical plant,
then we ®nd that it is structured hierarchically into sev-
eral layers, each operating on a di�erent time scale.
Typically, layers include scheduling (weeks), site-wide
(real-time) optimization (day), local optimization (hour),
supervisory/predictive control (minutes) and stabilizing
and regulatory control (seconds); see Fig. 1. The layers
are interconnected through the controlled variables
More precisely,

The setpoints of the controlled variables cs� � are the
(internal) variables that link two layers in a control
hierarchy, whereby the upper layer computes the
value of cs� � to be implemented by the lower layer.

We usually assume time-scale separation which for
our purposes implies that the setpoints cs� � can be
assumed to be immediately implemented by the layers

below. The question we want to answer in this paper is:
Which should these internal controlled variables c be?
That is, what should we control?
More generally, the issue of selecting controlled vari-

ables is the ®rst task in the plantwide control or control
structure design problem [1±3]

1. Selection of controlled variables c.
2. Selection of manipulated variables m.
3. Selection of measurements v (for control purposes

including stabilization).
4. Selection of a control con®guration (structure of

the controller that interconnects measurements/
setpoints and manipulated variables).

5. Selection of controller type (control law speci®ca-
tion, e.g. PID, decoupler, LQG, etc.).

Even though control engineering is well developed in
terms of providing optimal control algorithms, it is clear
that most of the existing theories provide little help
when it comes to making the above structural decisions.
The method presented in this paper for selecting con-

trolled variables (task 1) follows the ideas of Morari et
al. [4] and Skogestad and Postlethwaite [3] and is very

0959-1524/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PI I : S0959-1524(00 )00023-8

Journal of Process Control 10 (2000) 487±507

www.elsevier.com/locate/jprocont

* Corresponding author. Tel.: +47-7359-4154; fax +47-7359-4080.

E-mail address: siguard.skogestad@chembio.ntnu.no,

skoge@chembio.ntnu.no



simple. The basis is to de®ne mathematically the quality
of operation in terms of a scalar cost function J to be
minimized. To achieve truly optimal operation we
would need a perfect model, we would need to measure
all disturbances, and we would need to solve the result-
ing dynamic optimization problem on-line. This is
unrealistic, and the question is if it is possible to ®nd a
simpler implementation which still operates satisfacto-
rily (with an acceptable loss). More precisely, the loss L
is de®ned as the di�erence between the actual value of
the cost function obtained with a speci®c control strat-
egy, and the truly optimal value of the cost function, i.e.
L � Jÿ Jopt. The simplest operation would result if we

could select controlled variables such that we obtained
acceptable operation with constant setpoints, thus
e�ectively turning the complex optimization problem
into a simple feedback problem and achieve what we
here call ``self-optimizing control'':

Self-optimizing control is when we can achieve an
acceptable loss with constant setpoint values for the
controlled variables (without the need to reoptimize
when disturbances occur).

[The reader is probably familiar with the term self-
regulation, which is when acceptable dynamic control
performance can be obtained with constant manipu-
lated inputs. Self-optimizing control is a direct general-
ization to the case where we can achieve acceptable
(economic) performance with constant controlled vari-
ables.] The term ``self-optimizing control'' is short and
descriptive, but also other terms have been used to
describe the same idea, such as ``feedback optimizing
control'' [4], and ``indirect optimizing control (through
setpoint control)'' [5]. A simple example of self-optimizing
control is the process of baking a cake, where the

Fig. 1. Typical control hierarchy in a chemical plant.

Nomenclature

c controlled variables (selected from
the sets of y and m to replace u as
degrees of freedom for optimization;
special case c � u)

copt d� � optimal value of c which minimizes
cost J for given d.

cs setpoint value for c; in this paper,
cs � copt d

�� �
d disturbance variables
d� nominal value of disturbances
dc � cÿ cs implementation error
ecs � cs ÿ copt d� �

setpoint error
ec � ecs � dc � cÿ copt d� �

overall error
J � Ju u; d� � � Jc c; d� �

scalar cost function to be minimized
Jopt d� � minimum value of J (minimized with

respect to u or c)
L � Jc c; d� � ÿ Jopt d� �

loss
m manipulated variables (degrees of

freedom for control)
m (as subscript) measured
n noise on measurements of y
Nm no. of degrees of freedom for control
Nopt � Nu � Nc

no. of degrees of freedom for optimi-
zation

Nopt;free no. of unconstrained degrees of free-
dom for optimization

u ``base set'' for the Nu optimization
degrees of freedom

v all available measurements (including
cm; dm; ym)

y dependent ``output'' variables;
usually measured
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operation is indirectly kept close to its optimum (``a
well-baked cake'') by controlling the oven temperature
and baking time at the setpoints given in the cook book
(which in this case is the ``optimizer''.)
The idea is further illustrated in Fig. 2, where we see

that there is a loss if we keep a constant setpoint rather
than reoptimizing when a disturbance moves the process
away from its nominally optimal operating point
(denoted *). For the case illustrated in the ®gure it is
better (with a smaller loss) to keep the setpoint c1s con-
stant than to keep c2s constant.
An additional concern with the constant setpoint

policy is that there will always be an implementation
error dc � cÿ cs, e.g. caused by measurement error. The
implementation error may cause a large additional loss
if the optimum surface is ``sharp''. To be more speci®c,
we may, as illustrated in Fig. 3, distinguish between
three classes of problems when it comes to the actual
implementation:

(a) Constrained optimum. In the ®gure is shown the
case where the minimum value of the cost J is

obtained for c � cmin. In this case there is no loss
imposed by keeping a constant cs � cmin. In
addition, implementation of an ``active'' con-
straint is usually easy, e.g. it is easy to keep a
valve closed.

(b) Unconstrained ¯at optimum. In this case the cost is
insensitive to value of the controlled variable c,
and implementation is again easy.

(c) Unconstrained sharp optimum. The more di�cult
problems for implementation is when the cost
(operation) is sensitive to value of the controlled
variable c. In this case, we want to ®nd another
controlled variable c in which the optimum is
¯atter.

The latter unconstrained problems are the focus of
this paper.

2. Previous work

Inspired by the work of Findeisen et al. [6], the basic
idea of self-optimizing control was formulated about 20
years ago by Morari et al. [4]. Morari et al. [4] write
that ``in attempting to synthesize a feedback optimizing
control structure, our main objective is to translate the
economic objectives into process control objectives. In
other words, we want to ®nd a function c of the process
variables which when held constant, leads automatically
to the optimal adjustments of the manipulated vari-
ables, and with it, the optimal operating conditions.[. . .]
This means that by keeping the function c u; d� � at the
setpoint cs, through the use of the manipulated variables
u, for various disturbances d, it follows uniquely that
the process is operating at the optimal steady-state.'' If
we replace the term ``optimal adjustments'' by ``accep-
table adjustments (in terms of the loss)'' then the above
is a precise description of what we in this paper denote a
self-optimizing control structure. The only factor they
fail to consider is the e�ect of implementation error

Fig. 3. Implementing the controlled variable.

Fig. 2. Loss imposed by keeping constant setpoint for the controlled

variable.
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cÿ cs. Morari et al., [4] propose to select the best set of
controlled variables based on minimizing the loss
(``feedback optimizing control criterion 1''). They also
propose that Monte Carlo simulations should be used
to evaluate the loss if the disturbances have a prob-
ability distribution.
Somewhat surprisingly, the idea of ``feedback opti-

mizing control'' of Morari et al. [4] has up to now
received very little attention. One reason is probably
that the paper also dealt with the issue of ®nding the
optimal operation (and not only on how to implement
it), and another reason is that the only example in the
paper happened to result in an implementation with the
controlled variables at their constraints. This con-
strained case is usually ``easy'' from an implementation
point of view, because the optimal implementation is to
simply maintain the constrained variables at their con-
straints (``active constraint control'' [7]). No example was
given for the more di�cult unconstrained case, the focus
of this paper, where the choice of controlled (feedback)
variables is a critical issue. The follow-up paper by
Arkun and Stephanopoulos [8] concentrated further on
the constrained case and tracking of active constraints.
At about the same time, Shinnar [9] published a more

intuitive process-oriented approach for selecting con-
trolled variables, and applied it to the control of a ¯ui-
dized catalytic cracker (FCC). The work may at ®rst
seem unrelated, but if one translates the words and
notation, then one realizes that Shinnar's ideas are close
to the ideas presented in this paper and in Morari et al.
[4]. The main di�erence is that Shinnar assumes that the
overall objective of the operation is to control a set of
``primary'' process variables Yp at their speci®cations,
whereas we in this paper follow Morari et al. [4] and
consider the more general case where the objective is to
minimize a cost function J subject to constraints. In both
cases it is assumed that the overall objective may be
indirectly achieved by controlling some other variables at
their setpoint; these controlled variables are denoted Ycd

by Shinnar [9] and c byMorari et al. [4] and in this paper.
The similar later paper by Arbel et al. [10] extended

the FCC case study, and introduced the concepts of
``dominant variables'' and ``partial control''. The domi-
nant variables are the process variables that tend to
dominate the process behavior, for example, the tem-
perature in a reactor, and which therefore intuitively
may be good candidates as controlled variables. By
partial control1 is meant that control of these dominant
variables indirectly achieves acceptable control of the
primary variables Yp. The authors provide some intuitive

ideas and examples for selecting dominant variables
which may be useful in some cases, especially when no
model information is available. However, it is not clear
how helpful the idea of ``dominant'' variable is, since
they are not mathematically de®ned and no explicit
procedure is given for identifying them. Indeed, Arbel et
al. [10] write that ``the problems of partial control have
been discussed in a heuristic way'' and that ``considerably
further research is needed to fully understand the pro-
blems in steady-state control of chemical plants''. It is
believed that the approach presented in this paper, based
on using a (steady-state) model to evaluate the (economic)
loss, provides an important part of this missing theore-
tical framework.
Tyreus [12] provides some additional interesting ideas

on how to select dominant variables, partly based on
the extensive variable idea of Georgakis [13] and the
thermodynamic ideas of Ydstie, e.g. [14], but again no
procedure for selecting such variables are presented.
Luyben [15] introduced the term ``eigenstrucure'' to

describe the inherently best control structure (with
the best self-regulating and self-optimizing property).
However, he did not really de®ne the term, and also
the name is unfortunate since ``eigenstructure'' has a
another unrelated mathematical meaning in terms of
eigenvalues. Apart from this, Luyben and coworkers
(e.g. [16], Yi and Luyben [17]) have studied uncon-
strained problems, and some of the examples presented
point in the direction of the selection methods presented
in this paper. However, Luyben proposes to select con-
trolled outputs which minimizes the steady-state sensi-
tive of the manipulated variable u� � to disturbances, i.e.
to select controlled outputs c� � such that @u=@d� �c is small,
whereas we really want to minimize the steady-state sen-
sitivity of the economic loss L� � to disturbances, i.e. to
select controlled outputs c� � such that @L=@d� �c is small.
Fisher et al. [18] discuss selection of controlled vari-

ables, mainly focused towards active constraint control.
However, somewhat hidden in their HDA example (p.
614) one ®nds statements about selecting controlled
variables which optimal values are insensitive to dis-
turbances (requirement 1 for variable selection pre-
sented in this paper).
In his book Rijnsdorp [19] gives on page 99 a stepwise

design procedure for designing optimizing control sys-
tems for process units. One step is to ``transfer the result
into on-line algorithms for adjusting the degrees of
freedom for optimization''. He states that this ``requires
good process insight and control structure know-how. It
is worthwhile basing the algorithm as far as possible on
process measurements. In any case, it is impossible to
give a clear-cut recipe here.''
Narraway et al. [20], Narraway and Perkins [21]

strongly stress the need to base the selection of the con-
trol structure on economics, and they discuss the e�ect
of disturbances on the economics. However, they do not

1 The terms ``partial control'' and ``partially controlled system'' are

used by other authors [3,11] in a more general sense, to mean the sys-

tem as it is appears from some higher layer in the control hierarchy

with some loops already closed (e.g. a plant where the liquid level

loops are closed).
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formulate any rules or procedures for selecting con-
trolled variables.
In a study of the Tenessee Eastman challenge prob-

lem, Ricker [22] notes that when applying both MPC
and decentralized methods, one needs to make critical
decisions without quantitative justi®cations. The fore-
most of these is the selection of controlled variables, and
he found existing quantitative methods for their selec-
tion to be inadequate. His approach in the case study is
consistent with the ideas of self-optimizing control.
Mizoguchi et al. [23] andMarlin andHrymak [24] stress

the need to ®nd a good way of implementing the optimal
solution in terms how the control system should respond
to disturbances, ``i.e. the key constraints to remain active,
variables to be maximized or minimized, priority for
adjusting manipulated variables, and so forth.'' They
suggest that an issue for improvement in today's real-time
optimization systems is to select the control system that
yields the highest pro®t for a range of disturbances that
occur between each execution of the optimization. This is
similar to the ideas presented in this paper.
Finally, Zheng et al. [25] present a procedure for

selecting controlled variables based on economic penal-
ties which is similar to the approach presented in this
paper (apparently, the work has been performed inde-
pendently), but they do not consider the implementation
error. The procedure is applied to a reactor-separator-
recycle system.
In summary, it is clear that many authors have been

aware of the importance of the ideas presented in this
paper. The main contribution of the present paper is to
bring the ideas together and formulate them more
clearly, to include the implementation error in the ana-
lysis, and to present some good case studies.

3. Degrees of freedom for control and optimization

The number of degrees of freedom for control, Nm, is
usually easily obtained from process insight as the
number of independent variables that can be manipu-
lated by external means (which in process control is the
number of number of adjustable valves plus the number
of other adjustable electrical and mechanical variables).
In this paper we are concerned with the number of

degrees of freedom for optimization, Nopt � Nc � Nu,
which is generally less than the number of control
degrees of freedom, Nm. We have

Nopt � Nm ÿN0 �1�

where N0 � Nm0 �Ny0 is the number of variables with
no e�ect on the cost function J. Nm0 is the number of
manipulated inputs (u's), or combinations thereof, with
no e�ect on the J. Ny0 is the number of controlled out-
put variables with no e�ect on J.

In most cases J depends on the steady-state only, and
Ny0 usually equals the number of liquid levels with no
steady-state e�ect (including most bu�er tank levels).
However, note that some liquid levels do have a steady-
state e�ect, such as the level in a non-equilibrium liquid
phase reactor, and levels associated with adjustable heat
transfer areas. Also, we should not include in Ny0 any
liquid holdups that are left uncontrolled, such as inter-
nal stage holdups in distillation columns. A simple
example where Nm0 is non-zero is a heat exchanger with
bypass on both sides (i.e. Nm � 2). Here Nopt � 1 since
there at steady-state is only one operational degree of
freedom, namely the heat transfer rate Q (which at
steady-state may be achieved by many combinations of
the two bypasses), so we have Nm0 � 1.
The optimization is generally subject to several con-

straints, and the Nopt degrees of freedom should be used
to (1) satisfy the constraints, and (2) ``optimize the
operation''. We consider the case where we have a fea-
sible solution, that is, all the constraints can be satis®ed.
If the number of ``active'' constraints (satis®ed as
equalities) is denoted Nactive, then the number of ``free''
(unconstrained) degrees of freedom that can be used to
optimize the operation is equal to

Nopt;free � Nopt ÿNactive �2�

This is usually the important number for us, since it is
generally for the unconstrained degrees of freedom that
the selection of controlled variables is a di�cult issue.

4. Optimal operation and its implementation

Above we used the expression ``optimize the opera-
tion'', and this needs to be quanti®ed. There may be
many issues involved, and to trade them o� against each
other in a systematic manner we quantify a scalar per-
formance (cost) index J which should be minimized. In
many cases this index is an economic measure, e.g. the
operation cost. For example, J could be of the form

J � Ju u; d� � �
�T
0

� u; d� �dt �3�

where u are the degrees of freedom for optimization, d
are time-varying disturbances, and T is the total opera-
tion time.
In this paper we will for simplicity use steady-state

models and the integration in (3) may be replaced by
time-averaging over the various steady-states. The main
justi®cation for using a steady-state analysis is that the
economic performance is primarily determined by
steady-state considerations. The e�ect of the dynamic
control performance can be partly included in the
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economic analysis by introducing a control error term
as an additional disturbance.

Remark. Although we use a steady-state analysis in this
paper, it may be extended to truly unsteady-state-
processes, like during a grade transition or for a batch
process, by using a dynamic model and letting the
setpoints cs be precomputed trajectories as a function of
time or of state variables.

4.1. The optimization problem

The optimizing control problem can be formulated as

min
u

Ju u; d� � �4�

subject to the inequality constraints

g u; d� �40 �5�

where u are the independent variables we can a�ect
(degrees of freedom for optimization), and d are inde-
pendent variables we can not a�ect (disturbances). Here
the constraints for instance may be

. product speci®cations (e.g. minimum purity);

. manipulated variable constraints (e.g. nonzero ¯ow);

. other operational limitations (e.g. maximum tem-
perature).

Con¯icting constraints may result in a problem with-
out a feasible solution. For example, if we make a pro-
duct by blending two streams then we cannot achieve a
product speci®cation outside the range of feed compo-
sitions.

Remark. We have assumed that all dependent (state)
variables x have been eliminated such that the cost func-
tion and constraints are in terms of the independent vari-
ables u and d. However, in some cases it is more
convenient to keep the state variables x and corresponding
model equations g1 x; u; d� � � 0, and formulate the opti-
mization problem as

min
u

Jx x; u; d� � �6�

subject to the constraints

g1 x; u; d� � � 0 �7�

g2 x; u; d� �40 �8�

4.2. Implementing the optimal solution

There are two main issues when it comes to optimiz-
ing control. The ®rst is the mathematical and numerical

problem of solving the optimization problem in (4) to
obtain the optimal operating point. The optimization
problem may be very large, with hundreds of thousands
of equations and hundreds of degrees of freedom (e.g. for
a complete ethylene plant), but with todays computers
and optimization methods this problem is solvable, and
it is indeed solved routinely today in some plants. The
second issue, the focus of this paper, is how the optimal
solution should be implemented in practice. Surpris-
ingly, this issue has received much less attention.
To better understand the issues consider the three

alternative structures for optimizing control shown in
Fig. 4:

(a) Open-loop implementation
(b)Closed-loop implementation with a separate con-

trol layer.
(c) Integrated optimization and control.

In the ®gure the block ``process'' denotes the process
as seen from the optimization layer, so it may actually
be a partially controlled plant which includes, for
example, stabilizing level loops. This means that the
independent variables u for the optimization may
include some of the ``original'' manipulated variables
(m) as well as the setpoints used in the lower-layer
controllers.
If there were no unmeasured disturbances d then the

three implementations would give the same result. The
key to understand why the three structures di�er, is
therefore to consider what happens to the degrees of
freedom u in response to a disturbance d (more gen-
erally d may include any uncertainty, including errors in
the model used for the optimization and control).

(a) For the open-loop implementation there is no
feedback, and u remains unchanged when there is
a disturbance d.

(b) For the closed-loop implementation with a
separate control layer, the disturbance d a�ects the
measurement cm, and the controller adjust u so that
cm returns approximately to its setpoint, cs.

(c) For the integrated optimization and control, all
available measurements v (including cm) are used
to identify the disturbance and update the model,
and then dynamic on-line optimization is used to
recompute a new optimal value for u

In general, the open-loop implementation (a) is not
acceptable because there is no attempt to correct for
disturbances d.
On the other hand, the centralized implementation in

(c) with a single optimizing controller, although optimal
from a mathematical point of view, is not likely to be
used in practice, even with tomorrows computing
power. One important reason is the cost of obtaining a
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dynamic model; in the centralized controller it is critical
that this model is accurate since there are no pre-
determined links, and the controller must rely entirely
on the model to take the right action.
Therefore, in practice, we use the closed-loop imple-

mentation (b) where the control system is decomposed
into separate layers. In the simplest case shown in Fig.
4b we may have two layers:

. A steady-state optimization layer which computes
the optimal setpoints cs for the controlled vari-
ables, and

. A feedback control layer which implements the
setpoints, to get c � cs.

In process control applications, the feedback control
layer usually operates continuously, whereas the opti-
mization layer (which may be an engineer) recomputes
new setpoints cs only quite rarely; maybe once an hour
or once a day (when the plant has settled to a new
steady-state). The idea is that by locally controlling the
right variables c, we can take care of most of the dis-
turbances, and thus reduce the need for continuous
reoptimization. This also reduces the need for model
information and tends to make the implementation
more robust. On the other hand, it usually implies a

performance loss compared to the ``true'' optimal
(centralized) solution, and the challenge is to ®nd a
``self-optimizing'' control structure (i.e. to ®nd the
right controlled variables c) for which the loss L is
acceptable.

4.2.1. Comment on active constraint control
In some cases there is no performance loss with the

hierarchical structure in Fig. 4b with a separate optimi-
zation and control layer. This is when the optimum lies
at some constraints, and we use active constraint con-
trol where we choose the constrained variables as the
controlled variables c [7,8,18]. This is a common situa-
tion, since if the process model is not too non-linear the
optimum operating point is at the intersection of as
many constraints as there are degrees of freedom for
optimization [7]. However, in many cases the con-
straints move depending on the operating point, and a
change in the active constraints may require recon®-
guration of the control loops. To avoid such an often
complicated logic system, we may use in the lower layer
a multivariable controller that explicitly handles con-
straints. In particular, model predictive control (MPC),
which has gained widespread use in industry over the
last 20 years, provides a simple and e�cient tool for
tracking active constraints.

Fig. 4. Alternative structures for optimizing control. Structure (b) is studied in this paper.
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4.3. Introductory example

To give the reader some appreciation of the issues, we
consider a distillation plant where the plant economics
are mainly determined by its steady-state behavior.
With a given feed (including given feed rate) and a spe-
ci®ed column pressure, a conventional two-product dis-
tillation column, as shown in Fig. 5, has two degrees of
freedom at steady-state (Nu � Nopt � 2). (From a con-
trol point of view the column has Nm � 5 degrees of
freedom, but two degrees of freedom are needed to sta-
bilize the reboiler and condenser holdups, which have
no steady-state e�ect, and one degree of freedom is used
to control the pressure at its given value2). The two
steady-state degrees of freedom,e.g. selected to be the
vapor ¯ow (boilup) V and the distillate ¯ow D,

u � V
D

� �
(this is not a unique choice), may be used to optimize
the operation of the plant. However the question we
want to answer is: How should the optimal solution be
implemented, that is, which two variables c should be
speci®ed and controlled during operation?
To answer this question in a quantitative manner, we

need to de®ne the constraints for the operation and the
cost function J to be minimized.

4.3.1. Constraints
We assume that the mole fraction of light component

in the distillate product xD must be above xD;min, and
that to avoid ¯ooding the capacity of the column is
limited by a maximum allowed vapor load, V4Vmax.

4.3.2. Cost function
Rather than minimizing the cost J, it is more natural

in this case to maximize the pro®t P � ÿJ, which is the
product value minus the feed costs and the operational
(energy) costs which are proportional to the vapor ¯ow
V,

P � pDD� pBBÿ pFFÿ pVV �9�

4.3.3. Constrained operation
Let us ®rst consider a case where

. distillate is the more valuable product (pD � pB);

. energy costs are low (pV is small)

In this case, it is optimal to operate the column at
maximum load (to reduce the loss of light component in
the bottom) and with the distillate composition at its
speci®cation (to maximize distillate ¯ow by including as
much heavy component as possible) [27], i.e.

Vopt � Vmax; xD;opt � xD;min

Thus, the optimum lies at constraints (Nopt;free �
Nopt ÿNactive � 2ÿ 2 � 0) and implementation is
obvious: We should select the vapor rate V and the dis-
tillate composition xD as the controlled variables
(``active constraint control''),

c � V
xD

� �
; cs � Vmax

xD;min

� �
In practice, we may implement this using a lower-level

feedback control system where we adjust the boilup V
to keep the pressure drop over the column (an indicator
of ¯ooding, i.e. of Vmax) below a certain limit, and
adjust the re¯ux L (or some other ¯ow, depending on
how the level and pressure control system is con®gured)
so that xD is kept constant.

4.3.4. Unconstrained operation
Next, consider a case where

. bottoms product is the more valuable product
(pB > pD), but its value pB is reduced as it gets
impure.

. energy costs are relatively high (the term pvV con-
tributes signi®cantly to J).

Fig. 5. Typical distillation column controlled with the LV-con®gura-

tion.

2 If column pressure is free we often ®nd that the optimal choice is

to have maximum cooling corresponding to minimum peressure

(``¯oating pressure control'' as suggested by Shinskey [26]) because the

relative volatility is usually improved when pressure is lowered.
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In this case the optimum may be unconstrained in
both variables (Nopt;free � Nopt � 2), that is,

Vopt < Vmax; xD;opt > xD;min

Implementation in this case is not obvious. Five can-
didate sets of controlled variables are

c1 �
xD

xB

� �
; c2 �

Ttop

Tbtm

� �
; c3 �

V

xD

� �
; c4 �

L

V

� �
;

c5 �
L=D

V=B

� �
and there are many others. Controlled variables c1 and
c2 will yield a ``two-point'' control system where we
close two loops for quality control; c3 yields a ``one-
point'' control system where only one quality loop is
closed; whereas c4 and c5 are ``open-loop'' policies
which require no additional feedback loops (except for
the level and pressure loops already mentioned). All of
these choices of controlled variables will have di�erent
self-optimizing control properties.
At the end of the paper, we study another distillation

example, where the optimum is constrained in one vari-
able and unconstrained in the other (Nopt;free � 1). We
also consider the case where the feed rate is a degree of
freedom for the optimization.

5. Selection of controlled variables

In this section we present three methods for selecting
controlled variables c, but let us ®rst formulate the
problem a bit clearer.

5.1. Problem formulation

Let the ``base set'' for the optimization degrees of
freedom be denoted u (this is not a unique set), and let d
denote the (important) disturbances. For a given dis-
turbance d we can solve the optimization problem (4)
with constraints (5), and if a feasible solution exists,
obtain the optimal value uopt d� �,

min
u

g u;d� �40

Ju u; d� � � Ju uopt d� �; d
ÿ � � Jopt d� � �10�

However, in actual operation the value of u will di�er
from the optimal value uopt d� �, and this results in a loss3

L between the actual operating costs and the optimal
operating costs,

L � Lu u; d� � � Ju u; d� � ÿ Jopt d� � �11�

The magnitude of the loss will depend on the control
strategy used for adjusting u during operation, and to
understand this better consider the ``open-loop'' and
``closed-loop'' strategies.

. In the ``open-loop'' strategy we attempt to keep u
constant at its setpoint us (more precisely, u � us �
du where du is the implementation error for u).

. In the ``closed-loop'' strategy we adjust u � fc c; d� �
in a feedback fashion in an attempt to keep c con-
stant at its setpoint cs (more precisely, c � cs � dc,
where dc is the implementation error for c)

where we have assumes that the controlled variables c
have been selected such that the function fc exists and is
unique. In this paper we use for simplicity the nominal
optimal values as setpoints, i.e.

us � uopt d
�� �; cs � copt d

�� � �12�

where d� denote the nominal value of the disturbance
for which the optimization was performed.
The open-loop policy is often poor; both because the

optimal input uopt d� � depends strongly on the dis-
turbance d (so it is not a good policy to keep us con-
stant), and because we are not able to implement u
accurately (so the implementation error du is large).
The question we want to answer is therefore: What is

a good choice for the Nc � Nu controlled variables c to
use in the closed-loop policy? If we allow for combina-
tions of measurements, then there are in®nitely many
choices. Note that the open-loop policy is included as
the special case c � u.
We now present three approaches for selecting con-

trolled variables. We ®rst consider the error, uÿ uopt d� �,
and based on this propose four requirements of the
controlled variable. We next consider a related method
based on maximizing the minimum singular value.
Finally, we propose a more exact stepwise procedure
based on explicitly evaluating the loss.

5.2. Requirements for controlled variables

Consider a closed-loop implementation where we
attempt to keep c constant at the value cs. With this
implementation the operation may be non-optimal
(with a positive loss) due to the presence of a setpoint
error and an implementation error.

1. The setpoint error, ecs � cs ÿ copt d� �, is the di�erence
between the setpoint and the truly optimal value.

2. The implementation error, dc � cÿ cs, is the dif-
ference between the actual value and the setpoint.

These two errors are generally independent; the set-
point error is caused by disturbances (changes in the

3 It is not really necessary to introduce the loss function, and we

may instead work directly with the actual cost J. However, the loss

provides a better ``absolute scale'' on which to judge whether a given

set of controlled variables c is ``good enough'', and thus is self-opti-

mizing.
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operating point), whereas the implementation error is
caused by measurement error (noise) and poor control.
The overall error ec � cÿ copt d� � (which causes a posi-
tive loss), is then the sum of the two,

ec � ecs � dc �13�
Clearly, we want ec to be small. In addition, we would

like that a large value of ec results in only a small value
of the ``base set'' error eu, that is, we want u to be
insensitive to changes in c (or equivalently, we want c to
be sensitive to changes in u).
From this, we can derive the following four require-

ments for of a good candidate controlled c variable
(also see [3] page 404):

Requirement 1. Its optimal value should be insensitive to
disturbances (so that the setpoint error ecs is small).

Requirement 2. It should be easy to measure and control
accurately (so that the implementation error dc is small).

Requirement 3. Its value should be sensitive to changes
in the manipulated variables u, that is, the gain from u
to c is large (so that even a large error in the controlled
variable c results in only a small error in u). Equiva-
lently, the optimum should be ¯at with respect to the
variable c.

Requirement 4. For cases with two or more controlled
variables, the selected variables should not be closely
correlated.

In short, we should select variables c for which the
variation in optimal value and implementation error is
small compared to their adjustable range (the range c
may reach by varying u) ([3] page 408).
As a minor remark we mention that Morari et al. [4]

claim that ``ideally one tries to select c in such a way
such that some or all the elements in c are independent
of the disturbances d.'' This statement is generally not
true, because we need to be able to detect the dis-
turbances through the variables c. A better requirement
is that the optimal values of the elements in c are insen-
sitive to disturbances d (requirement 1).
All four requirements should be satis®ed. For example,

assume we have a mixture of three components, and we
have a measurement of the sum of the three mole
fractions, c � xA � xB � xC. This measurement is
always 1 and thus independent of disturbances (so
requirement 1 is satis®ed), but it is of course not a sui-
table controlled variable because it is also insensitive to
the manipulated variables u (so requirement 3 is not
satis®ed). Requirement 3 also eliminates variables that
have an extremum (maximum or minimum) when the
cost has its minimum, because the gain is zero for such
variables.

5.3. Minimum singular value rule

We here combine the above four requirements into a
single rule. We consider the remaining unconstrained
problem where any active constraints have already been
implemented (i.e. kept constant). For small variations
we may use a linearized relationship between the
(remaining) unconstrained degrees of freedom u and
any candidate set of controlled variables c.

�c � G�u �14�

Let � G� � denote the minimum singular value of the
steady-state gain matrix G. If we assume that each con-
trolled variable c has been scaled such that the sum of
its optimal range and its implementation error is unity
(i.e. ecj j � 1) (this takes care of requirements 1 and 2),
and that each ``base variable'' u has been scaled such
that a unit change has the same e�ect on the cost func-
tion J, then we should prefer sets of controlled variable
for which � G� � is maximized (maximizing the gain takes
care of requirement 3 and using the minimum singular
value � G� � takes care of requirement 4).
Let us brie¯y go through the derivation from Skoges-

tad and Postlethwaite [3]. For a given disturbance d, a
second order Taylor series expansion of the loss around
the optimal value uopt d� � gives

L � Ju u; d� � ÿ Ju uopt; d
ÿ �

� 1

2
uÿ uopt

ÿ �T @2Ju

@u2

� �
opt

uÿ uopt

ÿ � �15�

(where we have assumed that the problem is uncon-
strained in u, so that the ®rst-order term @J=@u is zero.)
Thus, the loss depends on the quantity uÿ uopt which
we obviously want as small as possible. Now, for small
deviations from the optimal operating point we have
that the candidate output variables are related to the
independent variables by cÿ copt � G uÿ uopt

ÿ �
, or

uÿ uopt � Gÿ1 cÿ copt

ÿ � �16�

Since we want uÿ uopt as small as possible, it there-
fore follows that we should select the set of controlled
outputs c such that the product of Gÿ1 and cÿ copt is as
small as possible. Thus, from Skogestad and Post-
lethwaite [3] we have the following rule:

Assume we have scaled each variable c such that
the expected variation in cÿ copt is of magnitude 1
(including the e�ect of both disturbances and con-
trol error), then select the controlled variables c
that minimize the norm of Gÿ1, which in terms of
the two-norm is the same as maximizing the mini-
mum singular value of G, � G� �.
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Interestingly, we note that this rule does not depend
on the actual expression for the objective function J, but
it does enter indirectly through the variation of copt with
d, which enters into the scaling. Also note that in the
multivariable case we should scale the inputs u such that

the Hessian @2Ju

@u2

� �
is close to unitary; see Skogestad and

Postlethwaite [3] for details.

The minimum singular value can also be used as a
tool for selecting manipulated inputs variables [28], but
this is actually an unrelated condition which requires a
di�erent scaling of the variables.
The above four requirements or the use of the minimum

singular value may be very useful for identifying good
candidate controlled variables. However, for a more
exact evaluation one should use the procedure described
next which is based on evaluating the loss imposed by
keeping the selected controlled variables constant.

5.4. Stepwise procedure for evaluating the loss

We here present a stepwise procedure for selecting
control variables. Steps 1±5 provide the problem de®ni-
tion, and in step 6 we compare alternative choices for
the controlled variables c by evaluating with c � cs � dc

the loss L for the expected set of disturbances d 2 D,
and expected set of implementation (control) errors
dc 2 Dc. Self-optimizing control is achieved when the
value of the loss L is acceptable.

Step 1: Degree of freedom analysis. Determine the num-
ber of degrees of freedom (Nopt � Nu) available for
optimization, and identify a set of base variables (u) for
the degrees of freedom.

Step 2: Cost function and constraints. De®ne the optimal
operation problem by formulating a scalar cost function
J to be minimized for optimal operation, and specify the
constraints that need to be satis®ed during operation.

Step 3: Identify the most important disturbances (uncer-
tainty). These may be caused by

. Errors (uncertainty) in the assumed (nominal)
model used in the optimization (including the
e�ect of incorrect values for the nominal dis-
turbances d� used in the optimization)

. Disturbances (dÿ d�) (including parameter chan-
ges) that occur during operation

. Implementation errors (dc) for the controlled vari-
ables c (e.g. due to measurement error or poor
control)

From this one de®nes the set of disturbances D and
set of implementation errors Dc to be considered. Often
it is a ®nite set of disturbance combinations, for

example, consisting of the extreme values for the indi-
vidual disturbances. In addition, one must determine
how to evaluate the mean cost function Jmean. There are
many possibilities, for example

1. Average cost for a ®nite set of disturbances (used
in this paper)

2. Mean cost from Monte-Carlo evaluation of a dis-
tribution of d and dc.

3. Worst-case loss

Step 4: Optimization.

1. First solve the nominal optimization problem, that is,
®nd uopt d

�� �. From this may one also obtain a table
with the nominal optimal values for all other vari-
ables (including the candidate controlled variables).

2. Unless it involves too much e�ort we then solve
the optimization problem for the disturbances d in
question (de®ned in step 3). This is needed to
check whether there exists a feasible solution
uopt d� � for all disturbances d, and to ®nd the opti-
mal cost Jopt � Ju uopt; d

ÿ �
needed if we want to

evaluate the loss. It may also be used in step 5 to
identify candidate controlled variables.

Step 5: Identify candidate controlled variables. We nor-
mally implement the constraints that are active for all
disturbances (``active constraint control''). This leaves
Nopt;free degrees of freedom for which we want to select
controlled variables. Typically, they are measured vari-
ables or simple combinations thereof. The four require-
ments presented earlier are useful in identifying good
candidates. For example, based on the optimization in
step 4, one may look for variables which optimal value
is only weakly dependent of disturbances (requirement
1). The variable should also be easy to control and
measure (requirement 2), and it should be sensitive to
changes in the manipulated inputs (requirement 3). If
there is more than one variable, then the selected vari-
ables in the set should be independent (requirement 4).
Insight and experience, e.g. into what constitute the
``dominant'' process variables, may also be helpful at
this stage, because the possible number of variables, and
especially variable combinations, may be extremely
large.

Step 6: Evaluation of loss. Compute the mean value of
the loss for alternative sets of controlled variables c.
This is done by evaluating the loss

Lu u; d� � � Ju u; d� � ÿ Jopt d� �; u � fc cs � dc; d� � �17�

with ®xed setpoints cs for the de®ned disturbances d 2 D
and implementation errors dc 2 Dc, (We usually select
the setpoints as the nominal optimal values,
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cs � copt d
�� �, but it is also possible to let the value of cs

be subject to an optimization.)

Step 7: Further analysis and selection. Select for further
consideration the sets of controlled variables with
acceptable loss (and which thus yield self-optimizing
control). These could then be analyzed to see if they are
adequate with respect to other criteria that may be
relevant, such like the region of feasibility and the
expected dynamic control performance (input±output
controllability).

5.5. Toy example

We consider ®rst a simple ``toy example''. Step 1: The
problem has one degree of freedom u. Step 2: The cost
function to be minimized is Ju � uÿ d� �2 and there are
no further constraints. Step 3: We nominally have d� �
0 and we consider a disturbance of magnitude dj j41.
Step 4: For this problem we always have Jopt d� � � 0
corresponding to uopt d� � � d. Step 5: We consider three
alternative choices for the controlled variable (measure-
ments),

c1 � 0:1 uÿ d� �; c2 � 20u; c3 � 10uÿ 5d

where the variables have been scaled such that dcij j �
ci ÿ csij j41; i � 1; 2; 3 (i.e. same implementation error
for all three variables). Since uopt d� � � d, the optimal
value of three alternatives as a function of the dis-
turbance are

c1;opt d� � � 0; c2;opt d� � � 20d; c3;opt � 5d

Nominally d� � 0 and ci;opt d
�� � � 0, so we select in all

three cases cis � 0, i � 1; 2; 3.
Let us ®rst evaluate how the three candidate variables

meet the proposed requirements for controlled vari-
ables.

1. Its optimal value is insensitive to disturbances.
From this point of view, the preferred controlled
variable is c1 (zero sensitivity), followed by c3
(sensitivity 5) and c2 (sensitivity 20).

2. It is easy to control accurately. There is no di�er-
ence here since the implementation error dc is the
same for the three variables.

3. Its value is sensitive to changes in u, This favors c2
(gain 20), followed by c3 (gain 10), whereas vari-
able c1 (gain 0.1) is very poor in this respect.

Requirements 1 and 3 are in con¯ict, and it is not
clear which controlled variable is the best.
Let us next consider the minimum singular value rule.

For the scalar case the minimum singular value is sim-
ply the absolute value of the gain G from u to c, so we

prefer controlled variables for which the value of Gj j is
large. We must ®rst scale the variables properly. For c1
the ``unscaled'' gain is 0.1, and the scaling factor is
c1 ÿ c1;opt

�� �� � 1� 0 � 1 (the control error is 1 plus the
variation in c1;opt d� � due to disturbances which is 0), so
the scaled gain is G1 � 0:1= c1 ÿ c1;opt

�� �� � 0:1=1 � 0:1.
Similarly,G2 � 20= c2 ÿ c2;opt

�� �� � 20= 1� 20j j � 0:95, and
G3 � 10= c3 ÿ c3;opt

�� �� � 10= 1� 5j j � 1:67. Thus, the sin-
gular value rule says that c3 is the best choice (gain
1.67), quite closely followed by c2 (gain 0.95), whereas
c1 is the worst (gain 0.1).
Let us ®nally evaluate the losses (step 6 in the more

exact procedure). For this simple example they can be
evaluated analytically, and we ®nd for the three alter-
natives

L1� 10dc1� �2; L2� 0:05dc2 ÿ d� �2; L3� 0:1dc3 ÿ 0:5d� �2

(For example, for c3 we have u � c3 � 5d� �=10 and
with c3 � c3s � dc3 � 0� dc3 we get Ju � uÿ d� �2�
0:1dc3 � 0:5dÿ d� �2). With dj j � 1 and dcj j � 1 the
worst-case values of the losses are

L1 � 100; L2 � 1:052 � 1:1025; L3 � 0:62 � 0:36

In accordance with the singular value rule, we ®nd
that output c3 is the best overall choice for self-opti-
mizing control (with the smallest loss), and c1 is the
worst. Note that with no implementation error
de � 0� � c1 would be the best, and with no disturbance
d � 0� � c2 would be the best.

6. Reactor example

We illustrate here the stepwise procedure for selecting
controlled variables with a simple example that can
easily be reproduced by the reader. Consider a con-
tinuously stirred tank reactor (CSTR), see Fig. 6, where
two irreversible ®rst-order reactions take place

Fig. 6. Reactor example where the objective is to maximize fraction of

B, xB.
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A ! B; rA � kAxA sÿ1
� �

B ! C; rB � kBxB sÿ1
� �

Component B is the desired product and its con-
centration as a function of the residence time has a peak
value, at which we want to operate the reactor, see Fig. 7.
Model. Let zi and xi denote mole fractions of compo-

nent i in the feed and reactor, respectively, and let F
[mol/s] be the feed rate and M [mol] the reactor holdup.
There are only three components, A, B and C, and
steady-state material balances yield

zAFÿ xAFÿ kAxAM � 0

zBFÿ xBF� kAxAMÿ kBxBM � 0

xC � 1ÿ xA ÿ xB

The feed contains only components A and C, i.e.
zc � 1ÿ zA. We consider the following nominal data:

zA � 0:8; kA � 1sÿ1; F � 1mol=s

Step 1: Degree of freedom analysis. With a given feed
rate and feed composition the reactor has one degree of
freedom at steady-state, which may be selected as the
reactor holdup, i.e.

u �M mol� �

The value of M should be adjusted to optimize the
operation.

Step 2: Cost function and constraints. In this example
component B is the desired product and the objective is
to maximize the concentration of B, i.e. we choose the
cost function

J � ÿ100�xB

(in most cases we would recycle unreacted A, but this is
not the case in this example). We would like to ®nd a
controlled variable which results in a mean loss of less
than 0.5 when there are disturbances.
There are no extra constraints, except for physical

constraints such as 0 <M <1.

Step 3: Disturbances. We will consider the following
disturbances (errors):

. d1: Feed rate reduced by 30%

. d2: Feed fraction of A reduced from 0.8 to 0.6

. d3: Feed fraction of A increased from 0.8 to 10.0

. d4: Rate constant kA increased by 50%

. d5: Rate constant kB increased by 50%

. dc: Implementation error for the controlled vari-
able, e.g., due to measurement error: see step 5.

The mean loss is here chosen as the average of the loss
resulting from each of these six disturbances (one at a
time).

Step 4: Optimization. For many reactors it is optimal to
operate with maximum holdup M, for example, this
would be the case if the objective were to maximize the
production or concentration of component C. However,
in our case we want to maximize the concentration of
intermediate product B which goes through a maximum
as we increase the holdup M; see Fig. 7.
From the above model, we ®nd that the optimal

holdup and corresponding optimal compositions in the
nominal case are:

Nominal optimumM� � 1:0mol;

x�A � 0:4; x�B � 0:2; x�C � 0:4

corresponding to J� � ÿ100x�B � ÿ20. When there are
disturbances, the optimal values change as given in
Table 1.

Step 5: Candidate controlled variables. As mentioned,
the reactor has one steady-state degree of freedom dur-
ing operation. How should this degree of freedom be
set, i.e. which variable should be kept constant? The
following candidates for the controlled variable c are
suggested

Fig. 7. Reactor example: cost function J � ÿ100xB as a function of

holdup M.
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. c1 �M (holdup)

. c2 �M=F (residence time)

. c3 � xA

. c4 � xB

. c5 � xC

. c6 � xB=xA

. c7 � �1 � xA � 2xB � 3xC (a property variable)

. c8 � �2 � xA � 3xB � 2xC (a property variable)

These are the available measurements in the reactor.
Alternatives 1 and 2 are open-loop policies (with feed-
forward action from F for c2), whereas the other are
feedback policies. The property variables in alternatives
7 and 8 may represent a boiling temperature, a viscosity,
a refraction index or similar. We select the setpoint for
each variable as its nominally optimal value, cs � c�.
We need to identify the implementation error dc for

each of the candidate controlled variables. Assuming
that the implementation error is mainly to due to mea-
surement errors and that the measurement error is 10%
for M and F, and 5% for the mole fractions, we use the
following values for dc:

. M: 10%

. M=F: 20%

. xA, xB and xC: 5%

. xA=xB: 10%

. �1 and �2: 0.1 unit (about 5%)

Which controlled variable is preferred? It seems clear
that it will be better to keepM=F rather thanM constant,
because the optimal residence time M=F is independent
of the feed rate, whereas the optimal value of the holdup
M clearly depends on the feed rate. It is also rather
obvious that a policy based on keeping xB constant is
most likely to fail, because xB goes through a maximum
as we increase M, and if we specify a value of xB above
this maximum, then operation is infeasible. However,
otherwise it is not at all clear, even in this simple case,
what the best choice of the controlled variable is.

Step 6: Evaluation of loss. To compare the alternatives,
we compute the loss L � Jÿ Jopt with each of the can-
didate variables kept constant at its nominal optimal
value. The results are given in Table 2 for the 8 candi-

date variables and the 6 disturbances. Disturbance dc

represents the implementation error and the loss in this
case is evaluated with c � cs � dc. For example, for c2 �
M=F we have c2 � 1:0 and dc � 0:2 1.0=0.2 (20% error)
and®xingM=F � 1:0� 0:2 � 1:2 (rather than theoptimal
value of 1.0) results in a loss of 0.17 (see Table 2).
We see from Table 2 that the loss is quite small (com-

pared to the acceptable value of 0.5) in most cases, but in
some cases there is no feasible solution (marked as inf in
the table). As expected, this is the case if we specify xB �
0:2 as this in some cases is higher than the maximum
achievable. But note that infeasibility may occur for
most choices of controlled variables if the disturbance is
su�ciently large. For example, if we specify xA � 0:4
then we would obviously get infeasibility for zA < 0:4.
Note that there is generally no ``warning'', in terms of a
large value of the loss, as we approach infeasibility.
For this speci®c example, the implementation error

turns out to be less important. However, in many cases
it may be a critical factor which eliminates otherwise
good candidate controlled variables.

Step 7: Selection of controlled variable. Most engineers
would probably attempt to control some composition if
such measurements were available, and indeed we ®nd
that keeping the variable c6 � xB=xA at 0.5 is the ideal
choice when there are disturbances in zA (see Table 1).
However, keeping xB=xA � 0:5 results in rather large
losses when there are disturbances in the rate constants,
see Table 2, resulting in an average loss of 0.74 (larger
than our desired value of 0.5). On the other hand,
keeping xA � 0:40 gives a large loss when zA changes,
but the loss is smaller for other disturbances, so the
average loss is 0.52 (just above the acceptable). As
expected, keeping xB � 0:2 results in infeasibility in
some cases, and also keeping xc � 0:4 results in infeasi-
bility when zA is too low. Keeping �1 constant gives a
large loss when there is a disturbance in zA, whereas �2
is somewhat sensitive to implementation errors. In
summary, from Table 2 we see that none of the compo-
sition measurements (xA, xB, xC, xB=xA) or property
measurements (�1, �2) result in an acceptable average
loss of 0.5 or less.
Somewhat surprisingly, the ``open-loop'' policy where

we keep the holdup M � 1:0 results in very small losses

Table 1

Reactor example: optimal values for various disturbances

J M M
F xA xB xC

xB

xA
�1 �2

Nominal ÿ20.00 1.00 1.00 0.40 0.20 0.40 0.50 2.00 1.80

d1 : F � 0:7 ÿ20.00 0.70 1.00 0.40 0.20 0.40 0.50 2.00 1.80

d2 : zA � 0:6 ÿ15.00 1.00 1.00 0.30 0.15 0.55 0.50 2.25 1.85

d3 : zA � 1:0 ÿ25.00 1.00 1.00 0.50 0.25 0.25 0.50 1.75 1.75

d4 : kB � 1:5 ÿ24.24 0.82 0.82 0.36 0.24 0.40 0.67 2.04 1.88

d5 : kB � 1:5 ÿ16.16 0.82 0.82 0.44 0.16 0.40 0.37 1.96 1.72
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for all disturbances, except when there is a disturbance
in the feed rate F where the loss is 0.6. The sensitivity to
feed rate disturbances is eliminated if we include ``feed-
forward'' action from the feed rate F and instead keep
the residence time M=F constant, but there is a penalty
in terms of a larger implementation error. In conclusion,
the simplest and best strategy for the example is to keep
constant the holdup M (average loss 0.18) or the resi-
dence time M=F (average loss 0.10).
Of course, also other considerations, such as the cost

of instrumentation and controllability (dynamic per-
formance) should be considered when making the
®nal choice. Fortunately, the ``open-loop'' policy of
keeping c1 �M constant is good in this respect, as it
involves only a simple level control system with no
expected control problems besides the implementation
(measurement) error which was already included in the
analysis.

6.1. Another case: no C in feed

Above we assumed that the feed contained compo-
nents A and C, but let us now consider a di�erent case
where the feed contains component B rather than com-
ponent C. Otherwise all the data is the same. Variable
xA here replaces xB=xA as the ideal variable with respect
to disturbances in zA (this can be proven analytically),
and keeping xA constant also yields small losses
when there are other disturbances. Therefore, in this
case the loss is smallest (0.18) when xA is constant; it is
0.20 with �1 constant; 0.32 with xC constant; 0.81 with
M=F constant; 0.89 with M constant; 1.09 with �2 con-
stant; whereas keeping xB constant or xB=xA constant
results in infeasibility; (for more details see [29]). Thus
we ®nd, somewhat surprisingly, that the ranking is
almost reversed compared to that found with C in the
feed.

6.2. Conclusion

We have considered alternative controlled variables
for a reactor example. In one case (with C in feed) the
residence time was the best controlled variable, whereas
in another case (no C in feed) the concentration of com-
ponent A was the best choice. It is not easy to explain
physically why the particular variables are preferred in
the two cases. This shows that it may be di�cult to rely
on physical insight, e.g. about ``dominant'' variables,
when selecting controlled variables. Instead, one should
evaluate the (economic) performance of the plant, to see
which choice of controlled variable keeps the operation
closest to the optimal when there are disturbances.

7. Distillation case study

We consider a binary mixture with constant relative
volatility � � 1:12 to be separated in a distillation col-
umn with 110 theoretical stages and the feed entering
at stage 39 (counted from the bottom with the reboiler
as stage 1). Nominally, the feed contains 65 mol% of
light component (zF � 0:65) and is saturated liquid
(qF � 1:0). This is ``column D'' of Skogestad and Mor-
ari [30] and represents a propylene-propane splitter
where propylene (light component) is taken overhead as
a ®nal product with at least 99.5% purity (xD50:995),
whereas unreacted propane (heavy component) is recy-
cled to the reactor for reprocessing. We assume ®rst
there is no capacity limit in the column.

Step 1: Degree of freedom analysis. As mentioned in the
introductory example, for a given feed rate and given
pressure the column has two degrees of freedom at
steady state, i.e. Nopt � Nu � 2. These may for instance
be selected as the vapor and distillate ¯ows,

Table 2

Reactor example: loss for alternative controlled variables

Loss with

M � 1:0
Loss with
M
F � 1:0

Loss with

xA � 0:4
Loss with

xB � 0:2
Loss with

xC � 0:4
Loss with
xB

xA
� 0:5

Loss with

�1 � 2:0
Loss with

�2 � 1:80

Nominal 0 0 0 0 0 0 0 0

d1 : F � 0:7 0.62 0 0 0 0 0 0 0

d2 : zA � 0:6 0.00 0.00 1.67 inf.a 15.0b 0 3.35 0.36

d3 : zA � 1:0 0.00 0.00 1.00 5.00 1.75 0 1.39 0.28

d4 : kA � 1:5 0.24 0.24 0.24 4.24 0 1.39 0.06 0.82

d5 : kB � 1:5 0.16 0.16 0.16 inf. 0 2.83 0.04 0.72

dc :impl. errorc 0.05 0.17 0.05 inf. 0.05 0.20 0.29 1.72

Average loss 0.18 0.10 0.52 inf. 2.80b 0.74 0.86 0.65

Ranking 2 1 3 8 7 5 6 4

a inf, Denotes infeasible operation.
b At the limit to infeasibility (M=F � 0) for zA � 0:6.
c Impl. error: M � 1:1, M=F � 1:2, xA � 0:42, xB � 0:21, xC � 0:42, xB=xA � 0:55, �1 � 2:1, �2 � 1:9.
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u � V
D

� �
We could have introduced F as a third degree of free-

dom and added the constraint F4Fmax, but this would
give the same result as it is optimal to have F � Fmax in
this case with no capacity limit.

Step 2: Cost function and constraints. Ideally, the opti-
mal operation of the column should follow from con-
sidering the overall plant economics. However, to be
able to analyze the column separately, we introduce
prices for all streams entering and exiting the column
and consider the following pro®t function P which
should be maximized (i.e. J � ÿP)
P � pDD� pBBÿ pFFÿ pVV �18�

We use the following prices ($/kmol)

pD � 20; pB � 10ÿ 20xB; pF � 10; pV � 0:1

The price pV � 1:0 $/kmol on boilup includes the
costs for heating and cooling which both increase pro-
portionally with the boilup V. The price for the feed is
pF � 10 $/kmol, but its value has no signi®cance on the
optimal operation for the case with a given feed rate.
The price for the distillate product is 20 $/kmol, and its
purity speci®cation is

xD50:995

There is no purity speci®cation on the bottoms pro-
duct, but we note that its price is reduced in proportion
to the amount of light component (because the unnec-
cessary reprocessing of light component reduces the
overall capacity of the plant; this dependency is not
really important but it is realistic).
With a nominal feed rate F � 1 kmol/min the pro®t

value P of the column is of the order 4 $/min, and we
would like to ®nd a controlled variable which results in
a loss L less than 0.04 $/min for each disturbance (cor-
responding to a yearly loss of less than about $20,000).

Step 3: Disturbances. We consider ®ve disturbances:

d1: An increase in feed rate F from 1 to 1.3 kmol/min.
d2: A decrease in feed composition zF from 0.65 to 0.5;
d3: An increase in feed composition zF from 0.65 to
0.75;
d4: A decrease in feed liquid fraction qF from 1.0
(pure liquid) to 0.5 (50% vaporized);
dc: An Increase of the purity of distillate product xD

from 0.995 (its desired value) to 0.996.

The latter is a possible safety margin for xD which
may take into account its implementation error. In
addition, we will consider implementation errors for the
selected controlled variable (see below).

Step 4: Optimization. In Table 3 we give the optimal
operating point for the ®ve disturbances; larger feed rate
(F � 1:3), less and more light component in the feed
(zF � 0:5 and zF � 0:65), a partly vaporized feed
(qF � 0:5), and a purer distillate product (xD � 0:996).
In addition, we have considered the e�ect of a higher
price for the distillate product (pD � 30) and a ®ve times
higher energy price (pV � 0:5).
As expected, the optimal value of all the variables lis-

ted in the table (xD; xB;D=F;L=F;V=F;P=F) are com-
pletely insensitive to the feed rate, since the columns has
no capacity constraints, and the e�ciency is assumed
independent of the column load.

Step 5: Candidate controlled variables. The bottom pro-
duct purity constraint is always active, that is, it is
always optimal to have xD � 0:995, so the distillate
composition xD should be selected as a controlled
variable.
We are then left with one unconstrained degree of

freedom (Nopt;free � 1) which we want to specify by
keeping the setpoint of a controlled variable at a con-
stant value.
From Table 3 we see that, except in the last case with

a much higher energy price, the optimal bottom com-
position xB stays fairly constant around 0.04. This indi-
cates that a good strategy for implementation may be to
control xB at a constant value of 0.04. However, there
are at least two practical problems associated with this
choice. First, on-line composition measurements are
often unreliable and expensive. Second, dynamic per-
formance may be poor because it is generally di�cult to
control both product compositions (``dual'' or ``two-
point'' control) due to strong interactions. e.g. [26,31].
Thus, if possible, we would like to control some other
variable.

Table 3

Optimal operating point (with maximum pro®t P=F) for distillation

case study

xD xB D=F L=F V=F L=D P=F

Nominala 0.995 0.040 0.639 15.065 15.704 23.57 4.528

F � 1:3 0.995 0.040 0.639 15.065 15.704 23.57 4.528

zF � 0:5 0.995 0.032 0.486 15.202 15.525 31.28 2.978

zF � 0:75 0.995 0.050 0.741 14.543 15.284 19.62 5.620

qF � 0:5 0.995 0.040 0.639 15.133 15.272 23.68 4.571

xD � 0:996 0.996 0.042 0.637 15.594 16.232 24.47 4.443

pD � 30 0.995 0.035 0.641 15.714 16.355 24.51

pV � 0:5 0.995 0.138 0.597 11.026 11.623 18.47

a Nominal values: F � 1, zF � 0:65, qF � 1:0, pD � 20, pV � 0:1.
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The following six alternative controlled variables are
considered

xB; D=F; L; L=F; V=F; L=D

We consider implementation errors of about 20% in all
variables, including xD (the second controlled variable).
From Table 3 we see that the optimal value ofD=F varies
considerably, so we expect this to be a poor choice for the
controlled variable (as it violates requirement 1). For the
other alternatives, it is not easy to say from our require-
ments or from physical insight which variable to prefer.
We will, therefore, evaluate the loss.

Step 6: Evaluation of loss. In Table 4 we show for F � 1
mol/min the loss L � Popt ÿ P in $/min when each of
the six candidate controlled variables are kept constant
at their nominally optimal values. Recall that we would
like the loss to be less than 0.04 $/min for each dis-
turbance. We have the following comments to the
results given in Table 4:

1. As expected, we ®nd that the losses are small when
we keep xB constant.

2. Somewhat surprisingly, for disturbances in feed
composition zF it is even better to keep L=F or
V=F constant.

3. Not surprisingly, keeping D=F (or D) constant is
not an acceptable policy, e.g. operation is infea-
sible when zF is reduced from 0.65 to 0.5.

4. All alternatives are insensitive to disturbances in
feed enthalpy (qF).

5. L=D is not a good controlled variable, primarily
because its optimal value is rather sensitive to feed
composition changes.

6. For a implementation error (overpuri®cation) in
xD where xD is 0.996 rather than 0.995 all the
alternatives give an unacceptable loss of about
0.09. We conclude from this that we should try to
control xD close to its speci®cation.

7. For re¯ux L and boilup V one needs to include
``feedforward'' action from F (i.e. keep L=F and
V=F constant).

8. However, use of L=F or V=F as controlled vari-
ables is rather sensitive to implementation errors.

9. Other controlled variables have also been con-
sidered (not shown in Table). For example, a
constant composition (temperature) on stage 19
(towards the bottom), x19 � 0:20, gives a loss of
0.064 when zF is reduced to 0.5, but otherwise the
losses are similar to those with xB constant.

10. We have not computed the e�ect of changes in
prices in Table 4, because these do not e�ect col-
umn behavior, so all alternatives behave the same
(with the same loss). Thus, if there are price chan-
ges, then one must recompute new optimal values
for the variables.

Step 7: Selection of controlled variables. From Table 4
the following three candidate sets of controlled variables
yield the lowest losses

c1 � xB

xD

� �
; c2 � L=F

xD

� �
; c3 � V=F

xD

� �
;

As mentioned, the ``two-point'' control structure c1
where both compositions are controlled, results in a
di�cult control problem. The loss will then be larger
than indicated, and it is probably better to keep L=F or
V=F constant. Since it is usually simpler to keep a liquid
¯ow L=F rather than a vapor ¯ow V=F constant (less
implementation error), we conclude as follows:
Proposed control system.

. V is used4 to keep xD � 0:995

. L=F � 15:07 is kept constant.

4 There are other possible choices for controlling xD e.g. we could

use the distillate ¯ow D. However, V has a more direct e�ect.

Table 4

Loss $/min for distillation case study

xB � 0:04 D=F � 0:639 L � 15:065 L=F � 15:065 V=F � 15:704 L=D � 23:57

Nominalb 0 0 0 0 0 0

F � 1:3 0 0 0.514 0 0 0

zF � 0:5 0.023 inf.a 0.000 0.000 0.001 1.096

zF � 0:75 0.019 2.530 0.006 0.006 0.004 0.129

qF � 0:5 0.000 0.000 0.001 0.001 0.003 0.000

xD � 0:996 0.086d 0.089 0.091 0.091 0.091 0.093

20% impl. errorc 0.012 inf. 0.119 0.119 0.127 0.130

a inf, Denotes infeasible operation.
b Nominal values: xD � 0:995, zF � 0:65, qF � 1:0.
c 20% impl. error: xB � 0:048, D=F � 0:766, L � 18:08, L=F � 18:08, V=F � 18:85, L=D � 28:28.
d Unacceptable loss (larger than 0.04) shown in bold face.
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Alternative control system.

. L is used to keep xD � 0:995.

. V=F � 15:70 is kept constant.

Remark. If it turns out to be di�cult to keep L=F (or
V=F) constant, then we may considering using L (or V)
to keep a temperature towards the bottom of the column
constant.

7.1. Another case: column with feed rate as degree of
freedom

Above we assumed that the feed rate was given and
that the column had no capacity limit. However, the
feed rate is often a degree of freedom (at least for the
overall plant), and all columns have a capacity limit,
and this will obviously a�ect its operation.
To understand this better, let us include the feed rate

as a degree of freedom, i.e. we have Nopt � Nu � 3. The
capacity limit on the column is given in terms of a
maximum value on the vapor ¯ow (boilup),

V4Vmax � 20 kmol=min

The feed rate is now a degree of freedom, but it has an
upper limit,

F4Fmax

where we will here treat the ``available'' feed rate Fmax

as a parameter. Otherwise, the speci®cations and cost
data are as above. In summary, we have three steady-
state degrees of freedom (e.g. F, V and D) and three
constraints (on F, V and xD).
We ®nd again that the constraint on xD is always

active, but we ®nd that the e�ect of the two constraints
on V and F depends on the value of Fmax. Let us ®rst
recall the case studied above with no capacity limitations,
for which we found V=F� �opt� 15:70 (nominally) corre-
sponding to xB � 0:04. With Vmax � 20 this operation is
optimal for F4Vmax= V=F� �opt � 20=15:70� 1:274 kmol/
min. Is this the largest feed rate we should accept? No,
some more careful thinking reveals that if we have
reached V � Vmax, and are free to decide on the feed rate,
then we should try to optimize (maximize) P=V (instead
of P=F as done above). With the given column data, we
®nd that P=V� �opt� 0:331 $/kmol is obtained when
xB � 0:09, V=F � 12:77 and L=F � 12:15. Thus, with
Vmax � 20 kmol/min, the optimal pro®t is obtained with
a feed rate of Fopt � 20=12:77 � 1:506 kmol/min, which
is then the largest feed rate we should accept.
Let us try to explain this in words. The distillate is the

most valuable product, so to maximize its ¯ow we want
to have it as ``unpure'' as possible (this also saves
energy), i.e. we keep its purity at the minimum speci®-

cation (xD � 0:995 in our case). To maximize the dis-
tillate ¯ow we also want to avoid putting light
component into the bottom product, so we want the
bottom product as ``pure'' as possible. However, this
costs energy (V), and we have nominally that the opti-
mum trade-o� is obtained for xB about 0.04. This
applies as long as there are no capacity limitations
within the column, but if the vapor ¯ow V exceeds its
maximum value, then we are forced to put more light
component (i.e. a larger fraction of the feed) into the
bottom product. For cases where the bottom product is
worth less than the feed (as in our case), we will even-
tually loose money by forcing more feed through the
column and the column becomes a real bottle-neck for
the overall plant (this occurs for xB � 0:09 in our case),
In summary, when we introduce the constraint

Vmax � 20 kmol/min and include the feed rate F as a
degree of freedom, we have the following three cases
depending on the available feed rate Fmax:

7.1.1. Low available feed rates
Fmax41:274 kmol/min. This is the case we studied

above where it is optimal to operate the column below
its vapor capacity limit and to keep F � Fmax. Thus, the
optimal solution is unconstrained in one variable, and
the nominally optimal value of xB is 0.04.
Proposed control system:

. L is used to keep xD � 0:995 (active constraint);

. V is adjusted to keep V=F � 15:70 constant;

. F is kept at its maximum available value Fmax

(active constraint).

This is the ``alternative control system'' proposed
above, but is chosen here because we can use the same
composition controller as for cases 2 and 3 (see below).

7.1.2. Intermediate available feed rates
1:274 < Fmax < 1:566 kmol/min. It is optimal to oper-

ate at maximum vapor capacity V � Vmax � 10 kmol/
min, and to process as much feed as possible, i.e.
F � Fmax. With xD � 0:995 there are then no remaining
degrees of freedom (i.e. all degrees of freedom are con-
sumed for ``active constraint control''). As Fmax is
increased from 1.274 to 1.566, the optimal value xB of
increases from 0.04 and 0.09.
Proposed control system:

. L is used to keep xD � 0:995 (active constraint);

. V is kept at Vmax � 20 (active constraint);

. F is kept at its maximum available value Fmax

(active constraint).

7.1.3. Large available feed rates
Fmax > 1:566 kmol/min. It is optimal to operate the

column at maximum vapor capacity V � Vmax � 20
kmol/min, and to maintain acceptable bottom purity we

504 S. Skogestad / Journal of Process Control 10 (2000) 487±507



should not process all the available feed, i.e. it is optimal
keep F � 1:566 < Fmax (the nominally optimal value of
xB is 0.09 in this case). In this case the column is a bot-
tleneck for the overall plant throughput.
Proposed control system:

. L is used to keep xD � 0:995 (active constraint);

. V is kept at Vmax � 20 (active constraint);

. F is adjusted to keep V=F � 12:77 constant (alter-
natively, we may keep F � 0:783 constant, but
using V=F is better if the value of Vmax changes).

The three above cases for the available feed rate can
easily be implemented in a single control system using
simple logic.
In summary, the distillation case study shows the

importance of selecting the right controlled variables
when implementing the optimal solution, and how the
column may limit the maximum throughput of the
plant. The analysis was mostly based on economic
considerations (loss), but the bottom composition xB

was excluded as a controlled variable based on other
considerations, namely the cost of measurement and
controllability.
We note that the implementation error was not

important in this case study, but we stress that it should
be included in the analysis. For example, the imple-
mentation error is the main reason why we rarely select
temperatures near the column ends as controlled
variables (because the measurement error is too large
compared to its sensitivity), but instead control a tem-
perature away from the column end.

8. Discussion

8.1. Region of feasibility

In this paper we have evaluated the (economic) loss
for disturbances of a given magnitude. Another impor-
tant issue to consider is the region of feasibility (stabi-
lity) [25]. We could evaluate feasibility loss, de®ned as
the di�erence between the disturbance region where
feasible operation is possible (using the optimal u) and
the disturbance region we can handle with constant
values of c, to be as small as possible.
For example, consider a case where there is an

inequality constraint on an input variable which opti-
mally is active only under certain conditions (dis-
turbances), but this constrained input variable is not
included as a controlled variable. Here one must be
careful to avoid infeasibility during implementation, for
example, there may be a disturbance such that the spe-
ci®ed value of the controlled variable can only be
achieved with a nonphysical value of the input (e.g. a
negative ¯owrate).

The on-line optimization is usually for simplicity
based on the nominal disturbance (d�), and two
approaches to avoid infeasibility in such a case are to

1. use ``back-o�s'' for the setpoints during imple-
mentation [20], or

2. add ``safety margins'' to the constraints during the
(nominal) optimization.

One approach for obtaining the values for the back-
o�s or safety margins may be to solve a ``robust opti-
mization problem'' [32] where one considers all possible
disturbances. There is clearly a need for more research
in this area.
A third, and better approach in terms of minimizing

the loss, is to track the active constraint. In particular,
model predictive control is very well suited and much
used for tracking active constraints. However, even if
we track active constaints, we still need to select the
unconstrained controlled variables, so the analysis pre-
sented in this paper is still needed.

8.2. Additional examples

Additional example for selecting controlled variables
are available in a number of publications and PhD the-
ses, e.g.

. PhD thesis of Morud [33], chapter 8: CSTR with
chemical reaction.

. Glemmestad et al. [32] and PhD thesis of
Glemmestad [34]: application to heat exchanger
networks; special emphasis on feasibility issues.

. PhD thesis of Havre [35]: application to selection
of temperature location in distillation.

. Halvorsen and Skogestad [5,36]: application to
integrated Petlyuk distillation columns.

The Petlyuk distillation example is particularly inter-
esting because in this case the choice of controlled vari-
ables makes a big di�erence (whereas the di�erences
for the rather simple examples presented in this paper
admittedly were quite small).

9. Conclusion

The focus in this paper has not been on ®nding the
optimal operation policy, but rather on how to imple-
ment it in a simple manner in the control system. The
idea is to ®nd a set of controlled variables c which, when
kept at constant setpoints, indirectly lead to near-opti-
mal operation (with acceptable loss). This is denoted
``self-optimizing'' control.
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To assist in selecting good candidate variables one
should look for variables that satisfy the following
requirements:

Requirement 1. Its optimal value should be insensitive to
disturbances.

Requirement 2. It should be easy to measure and control
accurately.

Requirement 3. Its value should be sensitive to changes
in the manipulated variables.

Requirement 4. For cases with two or more controlled
variables, the selected variables should not be too clo-
sely correlated.

In addition, we have presented a systematic procedure
for selecting controlled variables based on evaluating
the loss Jÿ Jopt for possible disturbances. The pro-
cedure requires a steady-state process model and a
clear de®nition of the cost function J to be minimized
during operation (obviously, without such a cost func-
tion one cannot judge what operation is the best). The
procedure was applied to three example; to a simple
``toy'' example, to a somewhat academic CSTR exam-
ple, and ®nally to a more realistic distillation column
example.
One problem is that in general it not is clear o�hand if

a self-optimizing structure exists, and going through the
various alternatives, for example using the given proce-
dure, can be quite tedious. On the other hand, since the
issue of ®nding good controlled variables is a structural
problem, then we often ®nd that a good structure
obtained for a particular case, also works well on
another similar process case with di�erent parameter
values. Thus, if we can actually ®nd a self-optimizing
structure for a process, then it is almost like an inven-
tion which may probably be patented.
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