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Abstract 

Real-time steady-state optimization (RTO) has become increasing popular in recent years. But how should this optimal policy 
be implemented in the control system? It is argued that the goal is to find a set of controlled variables which, when kept at 
constant setpoints, indirectly lead to near-optimal operation with acceptable loss. This is denoted ‘self-optimizing’ control. 0 2000 
Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

If we consider the control system in a chemical plant, 
then we find that it is structured hierarchically into 
several layers, each operating on a different time scale. 
Typically, layers include scheduling (weeks), site-wide 
(real-time) optimization (day), local optimization (h), 
supervisory/predictive control (min) and stabilizing and 
regulatory control (s); see Fig. 1. The layers are inter- 
connected through the controlled variable c, whereby 
the upper layer computes the setpoint value c, to be 
implemented by the lower layer. We usually assume 
time-scale separation, which for our purposes implies 
that, the setpoints c, can assumed to be immediately 
implemented by the layers below. Which should these 
internal controlled variable c be? That is, what should 
we control? This paper attempts to answer this 
question. 

More generally, the issue of selecting controlled vari- 
ables is the first subtask in the plantwide control or 
control structure design problem (Foss, 1973; Morari, 
1982; Skogestad & Postlethwaite, 1996): 
1. selection of controlled variable c; 
2. selection of manipulated variable m; 
3. selection of measurements v (for control purposes 

including stabilization); 
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4. selection of a control configuration (structure of the 
controller that interconnects measurements/set- 
points and manipulated variables); 

5. selection of controller type (control low specification, 
e.g. PID, decoupler, LQG, etc.). 

Even though control engineering is well developed in 
terms of providing optimal control algorithms, it is 
clear that must of the existing theories provide little 
help when it comes to making the above structural 
decisions. 

2. Previous work 

Inspired by the work of Findeisen, Bailey, Brdys, 
Malinowski, Tatjewski and Wozniak (1980), the basic 
idea of self-optimizing control was formulated about 20 
years ago by Morari, Stephanopoulos and Arkun 
(1980). Morari et al. (1980) wrote that ‘in attempting to 
synthesize a feedback optimizing control structure, our 
main objective is to translate the economic objectives 
into process control objectives. In other words, we want 
to find a function c of the process variables which when 
held constant, leads automatically to the optimal aa’just- 
ments of the manipulated variables, and with it, the 
optimal operating conditions. [. . .] This means that by 
keeping the function c(u, d) at the setpoint cs, through 
the use of the manipulated variable u, for various 
disturbances d, it follows uniquely that the process is 
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operating at the optimal steady-state’. If we replace ithe 
term ‘optimal adjustments’ by ‘acceptable adjustments 
(in terms of the loss)’ then the above is a precise 
description of what we in this paper denote a self-opti- 
mizing control structure. The only factor they fail to 
consider is the effect of implementation error c-c,. 
Somewhat surprisingly, the idea of ‘feedback optimiz- 
ing control’ of Morari et al. (1980) has up to now 
received very little attention. One reason is probably 
that the paper also dealt with the issue of finding the 
optimal operation (and not only on how to implement 
it), and another reason is that the only example in the 
paper happened to result in an implementation with the 
controlled variables at their constraints. The con- 
strained case is ‘easy’ from an implementation point of 
view, because the simplest and optimal implementation 
is to simply maintain the constrained variables at their 
constraints (‘active constraint control’). 

At about the same time, Shinnar (1981) published a 
more intuitive process-oriented approach for selecting 
controlled variables, and applied it to the control of a 
fluidized catalytic cracker (FCC). The work may at first 
seem unrelated but if one translates the words and 
notation, then one realizes that Shinnar’s ideas are close 
to the ideas presented in this paper and in Morari et al. 

Fig. 1. Typical control h&arch; in a chemical plant. 

(1980). The similar later paper by Arbel, Rinard and 
Shinnar (1996) extended the FCC case study, and intro- 
duced the concepts of ‘dominant variables’ and ‘partial 
control’. Tyreus (1999) provides some interesting ideas 
on how to select dominant variables. 

Luyben (1988) introduced the term ‘eigenstructure’ to 
describe the inherently best control structure (with the 
best self-regulating and self-optimizing property). How- 
ever, he did not really define the term, and also the 
name is unfortunate since ‘eigenstructure’ has another 
unrelated mathematical meaning in terms of eigenval- 
ues. Fisher, Doherty and Douglas (1988) discuss selec- 
tion of controlled variables, mainly focused towards 
active constraint control. However, somewhat hidden in 
their HDA example (p. 614) one finds statements about 
selecting controlled variables which optimal values are 
insensitive to disturbances. Narraway and Perkins 
(1993, 1994), Narraway, Perkins and Barton (1991) 
strongly stress the need to base the selection of the 
control structure on economics, and they discuss the 
effect of disturbances on the economics. However, they 
do not formulate any rules or procedures for selecting 
controlled variables. In his book Rijnsdorp (1991) gives 
on page 99 a stepwise design procedure for designing 
optimizing control systems for process units. One step 
is to ‘transfer the result into on-line algorithms for 
adjusting the degrees of freedom for optimization’. 
Marlin and Hrymak (1997) and Mizoguchi, Marlin and 
Hrymak (1995) stress the need to find a good way of 
implementing the optimal solution in terms how the 
control system should respond to disturbances, ‘i.e. the 
key constraints to remain active, variables to be maxi- 
mized, priority for adjusting manipulated variables, and 
so forth’. Finally, Zheng, Mahajannam and Douglas 
(1999) present a procedure for selecting controlled vari- 
ables based on economic penalties that is similar to the 
approach presented in this paper (apparently, the work 
has been performed independently), but they also do 
not consider the implementation error. 

3. Optimal operation and its implementation 

When controlling a chemical plant our first concern 
is to stabilize the plant and keep its operation within 
given constraints. These issues may consume some de- 
grees of freedom (e.g. to stabilize levels with no steady- 
state effect and to satisfy ‘active’ product 
specifications), but there will generally be many degrees 
of freedom u left. What should these be used for? 

Loosely speaking, they should be used to ‘optimize 
the operation’. There may be many issues involved, and 
to trade them off against each other in a systematic 
manner we usually quantify a scalar performance (cost) 
index J, which should be minimized. In many cases this 
index is an economic measure, e.g. the operation cost. 
For example, J could be of the form 
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cost I 

II 

Disturbance d 

Fig. 2. Loss imposed by keeping constant setpoint for the controlled 
variable. 

J= J,(u, d) = 
s 

I- $(u, d)dt (1) 
0 

where, u are the degrees of freedom for optimization, d 
are time-varying disturbances, and T is the total opera- 
tion time. The optimizing control problem may then be 
formulated as 

min J,(u, d) 
u 

subject to the inequality constraints 

(2) 

g(u, d) I 0 (3) 

where, u are the independent variables we can affect 
(degrees of freedom), and d are independent variables 
we cannot affect (disturbances). In this paper we will 
for simplicity use steady-state models and the integra- 
tion in Eq. (1) may be replaced by time-averaging over 
the various steady-states. The main justification for 
using a steady-state analysis is that the economic per- 
formance is primarily determined by steady-state con- 
siderations. The effect of the dynamic control 
performance can be partly included in the economic 
analysis by introducing a control error term as an 
additional disturbance. 

There are two main issues when it comes to optimiz- 
ing control. The first is the mathematical and numerical 
problem of solving the optimization in Eq. (2) to obtain 
the optimal operating point. The optimization problem 
may be very large, with hundreds of thousands of 
equations and hundreds of degree of freedom (e.g. for a 
complete ethylene plant), but with today’s computers 
and optimization methods this problem is solvable, and 
it is indeed solved routinely today in some plants. The 
second issue, the focus of this paper is how the optimal 
solution should be implemented in practice, that is, 
which variable c should be held constant between each 
reoptimization. Surprisingly, this issue has received 
much less attention. 

4. Self-optimizing control 

The method advocated in this paper for selecting 
controlled variables (task 1) follows the ideas of 
Skogestad and Postlethwaite (1996) and Morari et al. 
(1980) is very simple. The basis is to define mathemati- 
cally the quality of operation in terms of a scalar cost 
function J to be minimized. To achieve truly optimal 
operation we would need a perfect model, we would 
need to measure all disturbances, and we would need to 
solve the resulting dynamic optimization problem on- 
line. This is unrealistic in most cases, and the question 
is if it is possible to find a simpler implementation, 
which still operates satisfactorily (with an acceptable 
loss). More precisely, the loss L is defined as the 
difference between the actual value of the cost function 
obtained with a specific control strategy, and the truly 
optimal value of the cost function, i.e. 

L=J-Jopt 

The cimplest operation would result if we could select 
controlled variables such that we obtained acceptable 
operation with constant setpoints, thus effectively turn- 
ing the complex optimization problem into a simple 
feedback problem and achieve what we here call ‘self- 
optimizing control’: 

Self-optimizing control is when we can achieve an 
acceptable loss L with constant setpoint values c, for 
the controlled variables. 

(The reader is probably familiar with the term self- 
regulation, which is when acceptable dynamic control 
performance can be obtained with constant manipu- 
lated inputs. Self-optimizing control is a direct general- 
ization to the case where we can achieve acceptable 
(economic) performance with constant controlled 
variables.) 

The idea is that by locally controlling the right 
variable c, we can take care of most of the disturbances, 
and thus reduce the need for continuous reoptimiza- 
tion. This also reduces the need for model information 
and tends to make the implementation more robust. On 
the other hand, it usually implies a performance loss 
compared with the ‘true’ optimal (centralized) solution, 
and the challenge is to find a ‘self-optimizing’ control 
structure (i.e. to find the right controlled variable c) for 
which the loss L is acceptable. 

A well-known example of self-optimizing control is 
the ‘cake baking process’, where the operation is indi- 
rectly kept close to its optimum by controlling the oven 
temperature at the setpoint given in the cook book 
(which is this case is the ‘optimizer’). 

The idea is further illustrated in Fig. 2, where we see 
that there is a loss if we keep a constant setpoint rather 
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than reoptimizing when a disturbance moves the pro- 
cess away from its nominally optimal operating point 
(denoted *). For the case illustrated in the figure it is 
better (with a smaller loss) to keep the setpoint clS 
constant than to keep c,, constant. 

An additional concern with the constant setpoint 
policy is that there will always be an implementation 
error d, = c - c,, e.g. caused by measurement error. The 
implementation error may cause a large additional loss 
if the optimum surface is ‘sharp’. To be more specific, 
we may, as illustrated in Fig. 3 distinguish between 
three classes of problems when it comes to the actual 
implementation: 

(a) Constrained optimum: implementation easy. In the 
figure it is shown the case where the minimum value 
of the cost J is obtained for c = c,i”. In this case 
there is no loss imposed by keeping a constant c, = 
c,i”. In addition, implementation of an ‘active’ con- 
straint is usually easy; e.g. it is easy to keep a valve 
closed. 
(b) Unconstrained flat optimum: implementation easy. 
In this case the cost is insensitive to value of the 

Fig. 3. 

(b) (a 

Implementing the controlled variable. 
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Fig. 4. Typical distillation column controlled with the LV-configura- 
tion. 

controlled variable c, and implementation is again 
easy. 
(c) Unconstrained sharp optimum: implementation 
dzjjficult. The more difficult problems for implementa- 
tion is when the cost (operation) is sensitive to value 
of the controlled variable c. In this case, we want to 
find another controlled variable c in which the opti- 
mum is flatter. 

5. Requirements for controlled variables 

We can derive the following four requirements for a 
good candidate controlled c variable (also see Skoge- 
stad & Postlethwaite (1996) page 404): 

Requirement 1. Its optimal value is insensitive to 
disturbances (so that the setpoint error is small). 
Requirement 2. It is easy to measure and control 
accurately (so that the implementation error is small). 
Requirement 3. Its value is sensitive to changes in the 
manipulated variable u; that is, the gain from u to y 
is large (so that even a large error in controlled 
variable c results in only a small error in u). Equiva- 
lently, the optimum should be ‘flat’ with respect to 
the variable c. 
Requirement 4. For cases with two or more con- 
trolled variables, the selected variables should not be 
closely correlated. 

All four requirements should be satisfied. For exam- 
ple, assume that we have a mixture of three compo- 
nents, and we have a measurement of the sum of the 
three mole fractions, c = XA + xB + xc. This measure- 
ment is always 1 and thus independent of disturbances 
(so requirement 1 is satisfied), but it is of course not a 
suitably controlled variable because it is also insensitive 
to the manipulated variable u (so requirement 3 is not 
satisfied). Requirement 3 also eliminates variables that 
have an extremum (maximum or minimum) when the 
cost has its minimum, because the gain is 0 for such 
variables. 

6. Distillation example 

To give the reader some appreciation of the issues, 
we consider a distillation plant where the plant eco- 
nomics are mainly determined by its steady-state behav- 
ior. With a given feed stream and a specified column 
pressure, a conventional two-product distillation 
column, as shown in Fig. 4, has two degrees of freedom 
at steady-state (N,,, = N, = 2). (From a control point 
of view the column has N,,, = 5 degrees of freedom, but 
two degrees of freedom are needed to stabilize the 
reboiler and condenser holdups, which have no steady- 
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Table 1 
Losses in $/min for various disturbances 

xB = 0.04 D/F= 0.639 L/F= 15.065 L/D = 23.51 

F:l+ 1.3 0 0 0 0 
zgO.65 + 0.75 0.019 2.530 0.006 0.129 
qgl-tO.5 0.000 0.000 0.001 o.OOo 
20% Imple- 0.012 hf.” 0.119 0.130 
mentation error 

a Inf. denotes infeasible operation. 

state effect, and one degree of freedom is used to 
control the pressure at its given value). The two 
steady-state degrees of freedom, e.g. selected to be the 
reflux flow L and the distillate flow D, 

L 
U= [I D 

(this is not a unique choice) may be used to optimize 
the operation of the plant. However the question is, 
how should the optimal solution be implemented, that 
is which two variables c should be specified and con- 
trolled during operation? 

To answer this question in a quantitative manner, 
we need to define the constraints for the operation 
and the cost function J to be minimized. 

Constraints. We assume that the mole fraction of 
light component in the distillate product xD must be 
above 0.95, and that to avoid flooding the capacity of 
the column is limited by a maximum allowed vapor 
load. 

XD 2 XD,min = 0.95; V/I V,,, 

Cost function. Rather than minimizing the cost J, it 
is more natural in this case to maximize the profit 
P = -J, which is the product value minus the feed 
costs and the operational (energy) costs which are 
proportional to the vapor flow V, 

P=p,D+p,B-p,F-p,V (4) 

V.pt = Max; X~,opt = XD,min = 0.95 

Thus, the optimum lies at constraints and imple- 
mentation is obvious: we should select the vapor rate 
V and the distillate composition xD as the controlled 
variables, 

In practice, we may implement this using a lower- 
level feedback control system where we adjust the 
boilup V to keep the pressure drop over the column 
(an indicator of flooding, i.e. V,,) below a certain 
limit, and adjust the reflux L (or some other flow, 
depending on how the level and pressure control sys- 
tem is configured) so that x, is kept constant. 

4.2. Case 2: partly constrained operation 

Next, consider a case where 
l distillate is the more valuable product (p,, >p,J, 
l energy costs are relatively high (such that the term 

pJ contributes significantly to J). 

Also in this case it is optimal to have the distillate 
composition at its specification, XD = XD,min, but to 

save energy we will have V < V,,,. Again, we should 
select xD as a controlled variable, but it is not clear 
what the other variable should be. Some options may 
be xB, L, V, D, LIP or L/D. To find the best choice 
a more detailed choice is needed, for example, based 
on evaluating the economic loss for various distur- 
bances. We often find that the purity xB is a good 
choice, but ‘two-point’ composition control is gener- 
ally to be avoided because of poor dynamic perfor- 
mance. 

The losses for a propane-propylene column case 
study (Skogestad, 2000) are given in Table 1. We see 
that keeping L/F constant is a good alternative for 
‘self-optimizing’ control with a loss similar to that of 
keeping xB constant. However, it is not a good choice 
to keep D/F or LID constant. 

6.3. Case 3: unconstrained operation 
6.1. Case 1: constrained operation 

Let us first consider a case where 
l distillate is the more valuable product & >>pB), 
0 energy costs are low (pv is small). 

In this case, it is optimal to operate the column at 
maximum load (to reduce the loss of light component 
in the bottom) and with the distillate composition at 
its specification (to maximize distillate flow by includ- 
ing as much heavy component as possible) (Gordon, 
1986), i.e. 

For a case with 
l bottoms product is the more valuable product 

(pB >pD), but its price pB is reduced as it gets 
impure, 

l energy costs are relatively high, 
the optimum may be unconstrained in both variables 
that is, 

Vo,, < Vm,,; XD,opt ’ XD,min 

Implementation in this case is again not obvious. 
Some candidate sets of controlled variable c are 
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LID 
” = V/B [ 1 

and there are many others. Controlled variables ci and 
c2 will yield a ‘two-point’ control system where we close 
two loops for quality control; c3 yields a ‘one-point’ 
control system where only one quality loop is closed; 
whereas c, and c5 are ‘open-loop’ policies which require 
no additional feedback loops (except for the level and 
pressure loops already mentioned). All of these choices 
of controlled variables will have different self-optimiz- 
ing control properties and a more careful analysis is 
required. 

6.4. Case 4: feed rate as degree of freedom 

Let us go back to case 1, but assume now that the 
feed rate is a degree of freedom. Again we will find that 
the capacity and purity constraints are active, 

V,,t = J’,,,; XD,opt = XD,min = O-95 

but since we will attempt to push more feed through the 
column the operation will nevertheless be different from 
case 1. We will get a less pure bottom product and thus 
a larger loss of the valuable light component. 

Let us consider this in some more detail. In case 1 the 
objective of optimizing the profit P is equivalent to 
maximizing P/F (since F is given). On the other hand, 
in case 4 the feed rate is a degree of freedom and at the 
optimum we have aP/aF = 0, and the resulting value of 
P/F will obviously be smaller than in case 1. 

7. A fundamental difference between design and 
operation 

The last finding has some interesting implications 
regarding the difference between design and operation. 
In both cases we want to maximize the profit (value 
increase) P. During design we always assume a fixed 
feed rate and thus maximize P/F. On the other hand, 
during operation the feed rate is often a free variable, 
and as shown above we will get that 

Thus, if we optimize the operation we will use the 
raw materials and energy less effectively than we de- 
signed for. An obvious question is, is this an ethical and 
environmental dilemma? 

8. Conclusion 

The results from the steady-state optimization are 
implemented by computing the setpoints of the con- 
trolled variable c. A set of controlled variables is de- 
noted self-optimizing if we can achieve an acceptable 
(economic) loss with constant setpoints c,. Important 
steps in evaluating self-optimizing control are degrees 
of freedom analysis, definition of optimal operation 
(cost and constraints), and evaluation of the loss for the 
set of disturbances. 
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