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Abstract

An analysis of the structural properties of vapor–liquid equilibrium (VLE) diagrams provides a fundamental understanding of the7
thermodynamic behavior of azeotropic mixtures upon distillation.

In addition to a review of well-known fundamental work on the analysis of VLE diagrams, this survey comprises less-known published9
results, especially from the Russian literature. Some new results are also presented for the 6rst time.
? 2003 Elsevier Science Ltd. All rights reserved.11
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1. Introduction

Distillation, where a liquid mixture is separated by suc-49
cessive evaporation and condensation, is the most important
separation process in the chemical industry. The basis for51
the separation is that the vapor phase is richer in the more
volatile components than the liquid. This enrichment is de-53
termined by the vapor–liquid phase equilibrium. As a result,
feasible separations in distillation columns and the operat-55
ing parameters required for these separations depend on the
vapor–liquid equilibrium of the mixture to be separated.57

For ideal and nearly ideal mixtures the components can
be ranked in order of their volatility, or, equivalently, in59
order of the pure components boiling points, and one can
easily list all feasible separation sequences. In practice, we61
often have to deal with nonideal mixtures where the com-
position space is split into regions with diIerent volatility63
order of the components, and the identi6cation of feasible
sequences is much more diAcult. Furthermore, azeotropic65
behavior is often encountered where at some point(s) in the
composition space the equilibrium vapor and liquid mixture67
compositions are equal for a given pressure and tempera-
ture. These points are called azeotropes and mixtures with69
this phenomena are called azeotropic mixtures. The highly
nonlinear vapor–liquid equilibrium behavior of azeotropic71
mixtures complicates the prediction of feasible separation
sequences further.73

An azeotrope itself cannot be separated by ordinary dis-
tillation since no enrichment of the vapor phase occurs at75
this point. Usually, special methods are required.

Azeotropic distillation is de6ned as distillation that in-77
volves components that form azeotropes. Generally, there
are two cases of azeotropic distillation: (1) where the orig-79
inal mixture to be separated is an azeotropic mixture, and,
(2) where an azeotropic mixture is formed deliberately by81
adding one or more azeotrope-forming components to the
original mixture. In the 6rst case we have to 6nd a way to83
separate the azeotropic mixture and obtain the desired prod-
uct speci6cations and recovery. In the second case, in ad-85
dition, we have to select an azeotrope-forming component
(called entrainer) that is eIective for the desired separation87
and easily recovered afterwards. In either case we should
establish the options before analyzing them in detail. For89
this purpose we need a tool to qualitatively predict the feasi-
ble separations of multicomponent azeotropic mixtures. The91
tool is known as thermodynamic topological analysis of
distillation (in Russian literature) or residue curve (or dis-93
tillation line) map analysis. It provides an eAcient way for

preliminary analysis of nonideal distillation problems and 1
presynthesis of separation sequences.

1.1. Thermodynamic topological analysis 3

The thermodynamic topological analysis is based on the
classical works of Schreinemakers (1901b, c, 1902) and 5
Ostwald (1902), where the relationship between the vapor–
liquid equilibrium of a mixture and the behavior of open 7
evaporation residue curves for ternary mixtures was estab-
lished. Although open evaporation (a single vaporization 9
step with no re>ux) itself is not of much industrial interest in
the 21st century, it nevertheless forms an important basis for 11
the understanding of distillation (a sequence of partial vapor-
ization steps with re>ux). The 6ndings by Schreinemakers 13
did not receive recognition until the 1940s when Reinders
and de Minjer (1940) and Ewell and Welch (1945) showed 15
the possibility to use this approach to predict the behavior
of batch distillation. These achievements stimulated subse- 17
quent investigations by Haase (1949, 1950a, b), Haase and
Lang (1951), Bushmakin and Kish (1957) and Bushmakin 19
and Molodenko (1957) on the structure of phase equilibrium
diagrams and its connection with batch distillation behavior. 21
In 1958, Gurikov (1958) formulated the Rule of azeotropy
and proposed a classi6cation of ternary mixtures based on 23
their thermodynamic topological structures (that is, residue
curve map analysis). 25

In the late 1960s, Zharov (1967, 1968c) gave a more
rigorous mathematical foundation of the residue curve map 27
analysis and expanded it to multicomponent mixtures. Dur-
ing the same period, Sera6mov (1968a, d) proposed to use 29
structural information of VLE diagrams to predict feasible
separations in continuous distillation. The results of Zharov 31
and Sera6mov initiated a large eIort in Russia (USSR) on
the development and application of qualitative analysis of 33
multicomponent nonideal and azeotropic distillation. One
reason for this large interest in this “pen-and-paper” ap- 35
proach in Russia in the 1960s and 1970s was the fact that
during these years the Russian chemical industry expanded 37
whereas there was a shortage of computers and limited pos-
sibilities for numerical computation. 39

The contribution of Doherty and Perkins and co-workers
(1978a, b, 1979a, b), Van Dongen and Doherty (1985a, b), 41
Levy, Van Dongen, and Doherty (1985), and Doherty and
Caldarola (1985) formed the basis for a renewed interest in 43
this subject also in the West. The reason for this renewed

CES4722



UNCORRECTED P
ROOF

ARTICLE IN PRESS

V. N. Kiva et al. / Chemical Engineering Science ( ) – 3

interest was the realization that, in spite of (or maybe be-45
cause of) the great advances in vapor–liquid equilibrium
calculations and simulations, there was a need for simpler47
tools to understand the fundamental limitations and possi-
bilities in distillation of azeotropic mixtures. These tools49
are today well-established, and residue curve map analysis
is included in the main recent encyclopedia in chemical51
engineering (Perry, 1997, Stichlmair, 1988, Doherty &
Knapp, 1993). Four review papers have been published53
during the last few years (PPollmann & Blass, 1994, Fien
& Liu, 1994, Widagdo & Seider, 1996, Westerberg &55
WahnschaIt, 1996). Furthermore, the topic is treated in
recent textbooks (Biegler, Grossman, & Westerberg, 1997,57
Seader & Henley, 1998, Stichlmair & Fair, 1998, Doherty
& Malone, 2001) as a fundamental part of chemical59
engineering.

Nevertheless, the 6eld is still rather bewildering and we61
believe that many of the recent results have not been put
into proper perspective and compared to earlier work, espe-63
cially to work in the Russian literature. The main objective
of this paper is therefore to present a broad survey of the65
6eld, which includes references also to papers that are less
recognized in the English-language literature.67

The theory of thermodynamic topological analysis (TTA)
of distillation can be divided into two parts.

69
1. The 6rst considers in detail the feasible structures of VLE

diagrams (including their classi6cation). The main con-71
cept is that there is a unique and relatively simple corre-
spondence between the vapor–liquid equilibrium charac-73
teristics of a given mixture and the path of equilibrium
phase transformations such as residue curves and distil-75
lation lines.

2. The second part of the TTA is directed to the prediction77
of feasible separations in distillation, for which the main
concepts are:79
◦ There is a unique correspondence between the state

of a distillation column at extreme operating condi-81
tions (in6nite >ows or in6nite stages) and the com-
position trajectories of simple phase transformations83
like residue curves. Consequently, these column states
can be determined from speci6c VLE characteristics85
of the mixture to be separated depending on the feed
composition of the mixture.87

◦ The state of a distillation column at real operating con-
ditions can be qualitatively determined from the col-89
umn states at extreme operating conditions, that is,
from the composition trajectories of the simple equi-91
librium phase transformations such as residue curve
maps.93

◦ As a result, the product composition areas for all com-
binations of the operating parameters can be predicted95
qualitatively based on information about the simple
phase transformation map (distillation line or residue97
curve map) and, thus, the feasible separations and sep-
aration sequences can be determined.99

Therefore, analysis of VLE diagrams is the starting point 1
for the prediction of feasible separations by distillation. It
allows us to determine the thermodynamic possibilities and 3
limitations of the separation caused by the nature of the
mixture. After determining the feasible separations, we can 5
synthesize the alternative separation sequences that should
be subject to further investigation and comparison in or- 7
der to choose the appropriate one. Such an approach is
called analysis-driven distillation synthesis (Westerberg & 9
WahnschaIt, 1996). As a result of the analysis it may turn
out that the mixture cannot be separated by conventional 11
distillation. Then, special distillation methods may be em-
ployed. TTA (or residue curve map analysis) also provides 13
a tool for the evaluation of these separation techniques. In
particular, TTA is very useful for the screening of entrain- 15
ers for heteroazeotropic and extractive distillation (see, for
example, Hilmen, 2000). 17

1.2. Comment on terminology

There are many alternative and even con>icting terms in 19
the distillation literature. Table 1 gives the correspondence
between four central terms in the English-language, Russian 21
and German literature. Note in particular that in many Rus-
sian publications “distillation lines” means residue curves, 23
“c-lines” means distillation lines and “node” means vector.
One reason for this incompatible terminology is due to the 25
historical fact that the term distillation was originally used
to denote simple distillation (open evaporation or Rayleigh 27
distillation). Schreinemakers (1901b) and succeeding re-
searchers used the term “distillation lines” as a short term 29
for distillation line of the residue, which was later termed
residue curves by Doherty and Perkins (1978a). Today, the 31
term distillation has in English become synonymous with
fractional distillation with re-ux. Stichlmair (1988) uses 33
the term distillation line to denote the total re>ux composi-
tion pro6le in an equilibrium staged distillation column. The 35
term “node” is just a result of poor translation from Rus-
sian to English. In the present text we use the terms that are 37
broadly accepted in English-language publications. See also
list De6nitions of Terms given in the back of this paper for 39
more detail.

1.3. Structure of the survey 41

This survey is devoted to the 6rst part of thermodynamic
topological analysis, that is, to the characteristics of vapor– 43
liquid equilibrium diagrams. The thermodynamic basis of
vapor–liquid equilibrium and ways to graphically represent 45
the VLE of a mixture are brie>y given in Section 2. The
various representations of the VLE for ternary mixtures in 47
particular are considered in detail in the subsequent sections:
isotherm maps (Section 3); residue curve maps and open 49
evaporation distillate curve maps (Section 4); open conden-
sation curve maps and distillation line maps (Section 5). 51
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Table 1
Correspondence between English, Russian and German terms in the distillation literature

Current terms commonly Equivalent terms mainly Example of reference
found in English-language found in Russian- and where this term is used
literature (and in this paper) German-language literature

Equilibrium vector Tie-line Zharov and Sera6mov (1975)
Node line Sera6mov (1996)
Mapping vector Widagdo and Seider (1996)

Distillation line Connecting line (c-line) Zharov (1968c)
(continuous and discrete) Chain of conjugated tie-lines Zharov (1968c)

Tie-line curve Westerberg (1997)
Equilibrium recti6cation line Pelkonen, Kaesemann, and GQorak (1997)

Residue curve Distillation line of the residue Schreinemakers (1901c)
Residue curve Ostwald (1902)
Distillation line Sera6mov (1968b)

Distillate curve Distillation line of the vapor Schreinemakers (1901b)
Vapor line Bushmakin and Kish (1957)
Boil-oI curve Fidkowski, Doherty, and Malone (1993)

These sections also include the structures of these maps
and the relationship between the diIerent representations.53
Some peculiarities of the simple equilibrium phase transfor-
mation maps for heterogeneous mixtures are considered in55
Section 6.

Section 7 is devoted to the classi6cation of VLE di-57
agrams for ternary mixtures and related issues such as
completeness of classi6cation, occurrence of the various59
structure classes in nature, and more. Determination of the
VLE diagram structures based on incomplete information is61
discussed. Section 8 covers unidistribution and univolatility
line diagrams and their role in the determination of the ge-63
ometry (pathway) of the residue curve and distillation line
maps. Finally, overall conclusions made from this paper are1
summarized in Section 9.

1.4. Contributions3

Fundamental theory on structural properties of VLE di-
agrams for azeotropic mixtures are reviewed. In addition,5
some new results and concepts are presented for the 6rst
time. In particular:

7
• A simple rule on residue curve regions is formulated: the

composition space splits into the same number of residue9
curve regions as there are repeated nodes in the system.
For example, if the residue curve system has two stable11
nodes and one unstable node, the number of nodes of the
same type is two, and the residue curve map is split into13
two regions.

• The relative location of the region boundaries (separa-15
trices) of residue curves, distillate curves and distillation
lines in the composition space are presented.17

• The thermodynamical meaning of distillation lines is em-
phasized and explained.

• Peculiarities of residue curves for heterogeneous mixtures 19
are examined. Although the topology of the residue curve
maps generally do not diIer from homogeneous mixtures, 21
and can be determined in a similar way from the shape
of the boiling temperature surface, there are some pecu- 23
liarities of the inner topology of heterogeneous mixtures.

• A table of correspondence between the di1erent classi2- 25
cations of ternary VLE diagrams is given. The classi6ca-
tions by Gurikov (1958), Sera6mov (1970b), Zharov and 27
Sera6mov (1975) and Matsuyama and Nishimura (1977)
are included. 29

• The question of the existence of all the classi6ed struc-
tures is evaluated. Although a structure may be thermo- 31
dynamically and topologically feasible, its occurrence is
determined by the probability of certain combinations of 33
molecular interactions. We present data on the reported
occurrence of real ternary mixtures, and reveal factors 35
that limit the natural occurrence of mixtures with certain
VLE diagram structures. 37

• The problem of indeterminacy in predicting ternary VLE
diagram structures based on incomplete information (bi- 39
nary or experimental data only) is critically considered.

• Feasible patterns of the VLE functions for binary mix- 41
tures represented by the equilibrium line, distribution co-
eAcients and relative volatility depending on the molec- 43
ular interactions are presented.

• The structures of unidistribution and univolatility line di- 45
agrams for ternary mixtures of diIerent classes and types,
and the relation to the shape of simple equilibrium phase 47
transformation trajectories such as residue curves and dis-
tillation lines, are considered in detail. We show that a 49
combined diagram of these unitylines can successfully be
used as a characteristic of the VLE. These maps are easy 51
to generate and a lot of information can be retrieved from
them.
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• Rules on the location of the in-ection point curves in the1
composition space are given.

2. Thermodynamic basis3

The fundamental laws of thermodynamics and phase equi-
librium are all that is needed to derive the results presented5
in this paper, and in this section we brie>y review the ther-
modynamic basis. From thermodynamics, the compositions7
of liquid and vapor in phase equilibrium are determined by
the vapor–liquid equilibrium condition which may be ex-9
pressed as

y= f(P; T; x); (1)

where x and y are the liquid and vapor composition vec-11
tors, and P and T are the system pressure and temperature,
respectively. P, T and x are not independent at the equilib-13
rium state since
n∑

i=1

yi = 1: (2)

For example, [T; y] may be determined as a function of15
[P; x]. Thus, at isobaric conditions we may use only the liq-
uid composition x as the independent variable, and we may17
write

y= E(x); T = Tbp(x) = Tdp(y); (3)

where E is the equilibrium mapping function, E-mapping,19
that assigns a composition in the liquid phase to the corre-
sponding equilibrium vapor phase composition, and Tbp and21
Tdp are the mixture boiling temperature (bubble-point) and
condensation temperature (dew-point), respectively. Equiv-23
alently, we may write

x= C(y); T = Tdp(y) = Tbp(x); (4)

where C=E−1 is the inverse equilibrium mapping function,25
C-mapping, that assigns a composition in the vapor phase
to the corresponding equilibrium liquid phase composition.27

For any liquid composition x, there is a point [T; x] on
the boiling temperature surface Tbp(x) and a correspond-29
ing point [T; y] on the condensation (dewpoint) temperature
surface Tdp(y) that are connected by an equilibrium vec-31
tor, also called a vapor–liquid tie-line. The projection of this
equilibrium vector onto the composition space represents33
the equilibrium mapping vector −→xy, that is, the graph of the
function E : x→ y. In this sense, the condensation tempera-35
ture surface Tdp(y) is simply an equilibrium E-mapping of
the boiling temperature surface Tbp(x). The two tempera-37
ture surfaces merge at the points of pure components where
xi = yi = 1 for component i and xj = yj = 0 for all other39
components j �= i. According to Gibbs–Konovalov Law for-
mulated in the 1880s (Prigogine & Defay, 1954; Tester &41
Modell, 1997) the existence of a singular point of the boiling
temperature function Tbp(x) leads to a singular point of the43
condensation temperature function Tdp(y). At the singular

points, the liquid and its equilibrium vapor compositions are45
equal and the temperature surfaces are in contact. The exis-
tence of such singular points not connected to pure compo- 47
nents is called azeotropy, and the corresponding composi-
tions where y=x are called azeotropes. Mixtures that form 49
azeotropes are called azeotropic, and mixtures that do not
form azeotropes are called zeotropic. 51

The existence of azeotropes complicates the shape of the
boiling and condensation temperature surfaces and the struc- 53
ture of the vapor–liquid envelope between them, and the
equilibrium mapping functions. The envelope of the equi- 55
librium temperature surfaces de6nes the operating region in
T − x; y space in which any real distillation process must 57
operate. This motivates a more careful analysis of the VLE
behavior. For the prediction of feasible separations upon dis- 59
tillation of azeotropic mixtures we need a qualitative charac-
terization of the VLE, preferable a graphical representation. 61

2.1. Graphical VLE representation

The possibility to graphically represent the VLE depends 63
on the number of components in the mixture. In a mixture of
n components, the composition space is (n−1)-dimensional 65
because the sum of molefractions must be equal to unity. For
binary mixtures the composition space is one-dimensional. 67
Graphical representations of the VLE for the most common
types of binary mixtures are presented in Fig. 1. The left 69
part of Fig. 1 shows a combined graph of the boiling and
condensation temperatures and the vapor–liquid equilibrium 71
phase mapping, which gives a complete representation of
the VLE. In addition, the right part gives the equilibrium 73
phase mapping alone. Each of these diagrams uniquely char-
acterizes the type of the mixture (zeotropic or azeotropic, 75
minimum- or maximum-boiling, etc.), and, what is more
important, we do not need the exact trajectories of the func- 77
tions to make this characterization. It is suAcient to know
the boiling points of the pure components and azeotropes, 79
if any, to determine the type of the mixture and to qualita-
tively predict the distillation behavior for various feed com- 81
positions of the mixture.

For ternary mixtures the composition space is a 83
two-dimensional normalized space and its graphical repre-
sentation is an equilateral or rectangular triangle. The VLE 85
functions are surfaces in a three-dimensional prism. The
complete representation of the VLE is the vapor–liquid 87
envelope of the boiling and condensation temperature sur-
faces, and the set of equilibrium vectors between them, 89
as illustrated in Fig. 2a. The equilibrium mapping func-
tion itself can be represented by pair of the surfaces yi(x) 91
and yj(x) in the prism Y–X , as illustrated in Fig. 2b.
It is diAcult to interpret three-dimensional surfaces in a 93
two-dimensional representation, thus other representations
are preferred for ternary mixtures. The most straightforward 95
approach is to use contour plots of the surfaces similar to
topographic maps with isolines of constant values of the 97
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(a)

(b)

(c)

(d)

Fig. 1. Graphical representations of the VLE for the most com-
mon types of binary mixtures at constant pressure: (a) zeotropic; (b)
minimum-boiling homoazeotrope; (c) minimum-boiling heteroazeotrope;
(d) maximum-boiling azeotrope. Left: boiling temperature Tbp and con-
densation temperature Tdp and the equilibrium mapping vectors in T−x; y
space. Right: x–y relationship (equilibrium line).

functions to be represented. Such isoline maps, specially1
isotherm map of the boiling temperature, play an important
role in the qualitative analysis of VLE diagrams. Isotherm3
maps are considered in Section 3.

The dependence of the equilibrium vapor composition on5
the liquid composition given by the equilibrium E-mapping
function can be graphically represented by a 6eld of equi-7
librium vectors in the composition plane. Such vector 6elds
usually appear rather chaotic (see, for example, the equi-9
librium vector 6elds for ternary mixtures in Gmehling’s

(a)

(b)

Fig. 2. Graphical representation of the VLE for a ternary zeotropic mixture:
(a) boiling and condensation temperature surfaces and the connecting
equilibrium vectors; (b) equilibrium vector surfaces.

“Vapor–Liquid Equilibrium Data Collection”). They do not 11
give a clear graphical representation of the VLE. In addi-
tion, this representation has the disadvantage of being dis- 13
crete and requires a great number of (experimental) data to
draw it. 15

An alternative method to graphically represent the VLE
for a given mixture is by using simple equilibrium phase 17
transformations such as open evaporation, open condensa-
tion and repeated equilibrium phase mapping. The liquid and 19
vapor composition changes during these transformations can
be represented by trajectories in the composition space. The 21
pathway of these trajectories depends on the vapor–liquid
equilibrium only, and in turn characterizes the VLE. This is 23
the topic of Sections 4 and 5.

For multicomponent mixtures (n¿ 4) the composition 25
space is (n − 1)-dimensional and its graphical image is a
polyhedron (tetrahedron for n = 4, pentahedron for n = 5 27
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Fig. 3. Liquid and vapor isotherms and the equilibrium vectors that
connects them for a ternary zeotropic mixture with pure component boiling
points T1, T2 and T3 at constant pressure (Schreinemakers, 1901b).

and so on). In the case of quaternary mixtures it is possible1
to graphically represent the VLE functions in a composition
tetrahedron, but it may be complicated to interpret. If the3
number of components is more than four, graphical repre-
sentation is diAcult. However, a multicomponent mixture5
may be divided into ternary (or even binary) subsystems of
components and pseudo-components, and the ternary VLE7
sub-diagrams evaluated as a whole. Alternatively, a multi-
component mixture may be represented by a pseudo-ternary9
or quaternary system of three or four of its key components.
Obviously, VLE information may be used without graphical11
representation too.

In conclusion, most of the studies on the qualitative anal-13
ysis of VLE are focused on ternary mixtures where graph-
ical representations are readily visible and can be used for15
the prediction of distillation behavior.

3. Isotherm maps of ternary mixtures17

Throughout this paper we consider systems of constant
pressure. Isotherms are contour lines of constant temper-19
ature (also called isotherm-isobars). Isotherm maps as a
way to represent the system of VLE functions given by21
Eqs. (3) and (4) were 6rst used by Schreinemakers (1901b).
Isotherms of the boiling temperature surface Tbp(x) and the23
isotherms of the condensation temperature surface Tdp(y)
were later called liquid isotherms and vapor isotherms,25
respectively, by Reinders and de Minjer (1940). The liquid
compositions of a liquid isotherm are connected with the27
vapor compositions of the corresponding vapor isotherm
(at the same temperature) by the equilibrium vectors in the29
composition space −→xy illustrated in Fig. 3. Such a diagram
is a complete graphical representation of the VLE system31
equation (4). Schreinemakers (1901c) studied complete

80 C° 90 C°

100 C°

80 C°

80 C°

90 C°

70 C°

75 C°

85 C°
°

°65 C

70 C

90 C°

100 C°

100 C°

75 C°

75 C°
90 C°80 C°

80 C° 90 C°
75 C°

70 C°

78 C°

90 C°80 C°
75 C°

85 C°

(a)

(c) (d)

(b)

(e) (f)

Fig. 4. Liquid and vapor isotherms and equilibrium vectors in the
composition space at constant system pressure: (a–d) examples from
Schreinemakers (1901b); (e,f) additional examples.

graphical representations of the VLE system equation (3) 33
for various combinations of a given binary azeotropic mix-
ture with a third component that forms additional binary and 35
ternary azeotropes. He also showed the analogy between an
isobar map at constant temperature and the isotherm maps at 37
constant pressure. Isotherm maps are presented in Fig. 4 as
they are given in the original publication by Schreinemakers 39
(1901b). From this study, Schreinemakers established
that

41
1. Ternary mixtures may exhibit distinctly diIerent

isotherm maps depending on the existence of azeotropes, 43
their type (binary or ternary, minimum-, maximum- or
intermediate-boiling), their location, and the relative 45
order of the boiling points of the pure components and
azeotropes. 47

2. A binary azeotrope that is an extremal point of the binary
mixture temperature functions, is not necessary a global 49
temperature extreme for the ternary mixture as a whole,
thus being a saddle point. 51

3. In the same way, a ternary azeotrope is not necessary
a global temperature extreme for the ternary mixture, 53
thus being a saddle point (min-max) of the temperature
surface. 55

The examples of isotherm maps given in Fig. 4 are only for
purposes of illustration. In practice, it is diAcult to draw 57
such combined diagrams of liquid and vapor isotherms (at
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Fig. 5. Relationship between the path of residue curves and the isotherms and equilibrium vectors in the composition space (Schreinemakers, 1901c).

constant pressure) because an isotherm of one phase may be1
(and usually is) intersected by isotherms of the other phase
at other temperatures. Equilibrium vector 6eld diagrams are3
also confusing since the equilibrium vector projections in
the composition space intersect each other. The more de-5
tailed diagram we want to draw, the less understandable it
becomes. Isotherm maps, for example as a representation7
of the boiling temperature function, are more readable. But,
with the exception of binary mixtures, it is diAcult to imme-9
diately understand the distillation behavior of ternary mix-
tures from the liquid isotherm map without special knowl-11
edge. Schreinemakers demonstrated the severity of the prob-
lem, and it has taken the eIorts of many investigators to 6nd13
a proper way of characterizing vapor–liquid equilibrium di-
agrams.15

The key to a qualitative characterization of the VLE lies
with the analysis of simple equilibrium phase transforma-17
tion processes, and above all that of open evaporation which
is the topic of the next section.19

4. Open evaporation

4.1. Residue curves21

Open evaporation, also known as simple distillation or
Rayleigh distillation, is batch distillation with one equi-23
librium stage where the vapor formed is continuously re-
moved so that the vapor at any instant is in equilibrium25
with the still-pot liquid (residue). Schreinemakers (1901c)
considered the instantaneous mass balance equation of this27
process:

d(Lxi) = −yi dV ⇒ L dxi = −dV (yi − xi); (5)

where L (mol) is the amount of the residue liquid in the29
still-pot, dV (mol) is the amount vapor evaporated, xi and
yi are the mole fractions of the component i in the still-pot31
liquid and in the vapor, respectively. Schreinemakers called
the liquid composition trajectory of simple distillation a33

distillation line of the residue. The present term used in
English-language literature is residue curve (Doherty & 35
Perkins, 1978a). Schreinemakers proposed for ternary mix-
tures (i = 1; 2; 3) to consider the ratio of still-pot liquid 37
components:

dxi
dxj

=
(yi − xi)
(yj − xj)

: (6)

Integrating Eq. (6) from any initial composition x0 will gen- 39
erate a residue curve. It is evident from Eq. (6) that the
residue curve paths are governed by the VLE solely, that is, 41
by the set of functions in equation system (3), and, in turn,
can characterize the VLE of any given mixture. We also 43
see from Eq. (6) that the equilibrium vector in the composi-
tion space −→xy is tangent to the line of still-pot residue liquid 45
composition change at any point x.

Schreinemakers established that the interior of the com- 47
position space is 6lled in with residue curves. The points
of components and azeotropes are isolated residue curves, 49
and the edges of the composition space between the singu-
lar points are also residue curves. He analyzed the relation 51
between the position of the equilibrium vectors at the liquid
isotherms and the path of the residue curves. This connec- 53
tion is presented in Fig. 5. Based on this, he derived what in
the Russian literature is referred to as the Schreinemakers’ 55
Rules:

1. A residue curve always moves along the boiling temper- 57
ature surface in the direction of increasing temperature
and cannot intersect twice with the same liquid isotherm; 59

2. Residue curves cannot intersect each other.

The path of the residue curves can be determined from 61
the isotherm map, but the intersection angle between the
liquid isotherm and the residue curve does not depend 63
on the shape of the isotherm but rather on the direction
of the equilibrium vector at this point. Hence, the path 65
of residue curves can only be qualitatively determined
from the isotherm map. A residue curve map is a more 67
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Fig. 6. Residue curve maps for the mixtures whose isotherm maps are
presented in Fig. 4: (a–d) examples from Schreinemakers (1901b); (e,f)
additional examples.

legible representation of the VLE than isotherms because1
from this diagram we can immediately see the behavior
of the given mixture during the simple distillation process3
(open evaporation). Further, we can determine the change
of the relative volatility order of the components in the mix-5
ture from the change of the tangent slope along the residue
curves.7

Residue curve maps that corresponds to the mixtures pre-
sented in Fig. 4 (isotherm maps) are given in Fig. 6. A point9
with minimum boiling temperature is an initial point of the
residue curves. A point with maximum-boiling temperature11
is a terminal point of the residue curves. For zeotropic mix-
tures, Fig. 6a, the residue curves have a hyperbolic path in13
the vicinity of singular points with intermediate boiling tem-
perature. For azeotropic mixtures, the residue curves some-15
times have a hyperbolic path in the vicinity of intermedi-
ate singular boiling points (Fig. 6 b,f), and, in other cases,17
a singular point with intermediate boiling temperature is
an initial or 6nal point of the residue curves (Fig. 6c–e).19
Schreinemakers established that in some cases the residue
curves are split into residue curve regions where the residue21
curves of each region have the same initial and 6nal points
(Fig. 6c–e). Schreinemakers established the existence of sin-23
gular residue curves as boundaries of these regions. It has
been shown (Schreinemakers, 1902) that, in general, against25
the opinion by Ostwald, the residue curve boundaries are
curved.

Haase (1949) proved the validity of the Schreinemakers’ 27
Rules for ternary mixtures analytically by solving both the
residue curve equation and the phase equilibrium condition. 29
The assumptions by Schreinemakers were con6rmed exper-
imentally by Reinders and DeMinjer (1940a, b, 1947a, b, c), 31
Ewell and Welch (1945) and Bushmakin and Kish (1957). In
particular, Ewell and Welch was the 6rst to report a ternary 33
saddle azeotrope, the existence of which was predicted the-
oretically about 1900 by Ostwald and Schreinemakers. 35

In conclusion, Schreinemakers not only introduced the
concept of residue curves, but revealed their main properties 37
as well.

4.2. Properties of residue curves’ singular points 39

Haase (1949) studied the behavior of the residue curves
near the vertices of the composition triangle and the 41
azeotropic points (i.e., near the residue curves’ singular
points). In particular, he found that a pure component vertex 43
is an initial or a 6nal point (node) of the residue curves if
the liquid boiling temperature increases or decreases (near 45
it) by the movement from the vertex along both adjoining
edges. At other singular points (saddles), the residue curves 47
have a hyperbolic shape in the vicinity of the vertex if the
liquid boiling point temperature increases at the movement 49
from the vertex along one of the edges and decreases at
the movement along another edge. This observations are 51
known in Russian literature as Haase’s Rule. In summary,
the residue curves originate and ends at nodes of the boil- 53
ing temperature surface and have a hyperbolic path in the
vicinity of their saddles. 55

Considering the feasible paths of isotherms and residue
curves in the vicinity of nodes and saddles for homogeneous 57
mixtures, Bushmakin and Kish (1957) and Bushmakin and
Molodenko (1957) established the correspondence between 59
their trajectories. It was found that residue curves begin
or end at a (node) singular point that is an isotherm point 61
itself (named dot isotherm), Figs. 7a–c. Residue curves
have a hyperbolic shape near the singular point if a 2- 63
nite length isotherm passes through this (saddle) singular
point, Figs. 7d–f. If all the residue curves terminates in 65
a singular point, then the point is a stable node. If all
the residue curves extend from a singular point, then the 67
point is an unstable node. If the residue curves both ap-
proach and depart a singular point, then the point is a 69
saddle.

Gurikov (1958) proposed to use the qualitative theory of 71
ordinary diIerential equations to analyze the behavior of
residue curves, and in this context, a singular point that is an 73
initial or a 6nal point of the residue curves is a node, and a
singular point in which the residue curves have a hyperbolic 75
shape near it is a saddle. Analyzing the combined solution
of Eq. (6) and the thermodynamic stability criteria, Gurikov 77
showed that the residue curve system for ternary mixtures
does not have singular points of the type focus or isola. 79

CES4722



UNCORRECTED P
ROOF

ARTICLE IN PRESS

10 V. N. Kiva et al. / Chemical Engineering Science ( ) –

(a)

(d) (e) (f)

(b) (c)

Fig. 7. Patterns of isotherms and residue curves near singular points at constant pressure (Bushmakin & Molodenko, 1957).

However, the singular points can be nonelementary (i.e.,1
armchair saddles) (see Section 7.2).

Zharov (1967, 1968a, b) and Zharov and Storonkin3
(1969), Sera6mov (1968a, b, c, d, 1969a, b, c) and later
Doherty and Perkins (1978a, b) considered open evapora-5
tion residue curves for the general case of multicomponent
mixtures given by the following set of autonomous diIer-7
ential equations:

dxi
d�

= −(yi − xi); i = 1; 2; : : : ; n− 1: (7)

Here � is a dimensionless time describing the relative loss9
of the liquid in the still-pot; d� = dV=L. Note that Zharov
and Sera6mov use opposite sign of Eq. (7) according to11
their de6nition of �, and thus the sign of the eigenvalues are
opposite in their thermodynamic topological analyses. For-13
tunately, the results on the properties of the residue curves’
singular points are independent of this choice of preserving15
the minus sign in Eq. (7) or not. By solving Eq. (7) to-
gether with the Van der Waals–Storonkin condition of the17
coexistence of phases, 3 Zharov proved that the Schreine-
makers’ rules are valid also for multicomponent mixtures.19
The right-hand side of Eq. (7) is equal to zero at the points
of pure components and azeotropes, and the system has no21
other singular points. From the theory of diIerential equa-
tions it is known that the type of a singular point depends23
on the signs of the eigenvalues of Eq. (7) in the vicinity of
the singular point. From this, Zharov showed that the sin-25
gular point of Eq. (7) can only be a generalized node or a
generalized saddle. The signs of the eigenvalues of Eq. (7)27
can also be determined from the signs of the derivatives

3 That is, a generalization of Van der Waals’ equation of two-component
two-phase system and Clausius’ equation for one-component system for
the general case of multicomponent multiphase system.

�T=�xi in the vicinity of the singular point. The eigenvalue 29
is negative (positive) if the liquid boiling point temperature
decreases (increases) as we move from the singular point in 31
the direction of the eigenvalue:

• If the temperature decreases in all directions (all eigen- 33
values are negative), the singular point is a stable node
(SN ). 35

• If the temperature increases in all directions (all eigenval-
ues are positive), the singular point is an unstable node 37
(UN ).

• If the temperature decreases in some directions and in- 39
creases in other directions (eigenvalues of diIerent signs),
the singular point is a saddle (S). 41

Thus, the character of the behavior of the residue curves
in the vicinity of a singular point uniquely depends on 43
the shape of the boiling temperature surface near this
point. 45

The 10 possible types of singular points for ternary
mixtures given by Zharov and Sera6mov (1975) are pre- 47
sented in Fig. 8. The arrows point in direction of increasing
temperature, or equivalently, in the direction of increasing 49
�. Similar diagrams are also presented by Matsuyama and
Nishimura (1977) and by Doherty and Caldarola (1985). 51
Whereas Fig. 7 is determined from the direction of in-
creasing temperature moving along the boiling temperature 53
surface Tbp(x), Fig. 8 is determined based on stability
properties of the singular points. For ternary mixtures, the 55
type of singular points of the residue curves of any dimen-
sion (one-component, binary or ternary) is characterized by 57
two eigenvalues. The singular point is a stable node (SN)
if both eigenvalues are negative (Fig. 8a–c left triangles). 59
The singular point is an unstable node (UN) if both eigen-
values are positive (Fig. 8a–c right triangles). If one of the 61
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Types of singular points for ternary mixtures indicated by • stable node (SN), ◦ unstable node (UN), and � saddle (S) (Zharov & Sera6mov,
1975). Arrows point in the direction of increasing boiling temperature, and the letters (a, b, c, d, e, f) show the correspondence to Fig. 7.

eigenvalues is negative and the other is positive, the singular1
point is a saddle (Fig. 8d–f).

The 20 types of singular points for quaternary mixtures3
that are given in Zharov and Sera6mov (1975) are presented
in Fig. 9. The sign of the topological indices are valid ac-5
cording to the sign of Eq. (7). For quaternary mixtures, the
type of the residue curves’ singular points of any dimension7
(one-component, binary, ternary or quaternary) is charac-
terized by three eigenvalues. The singular point is a stable9
node if all the three eigenvalues are negative (Fig. 9a, e, k,
q). The singular point is an unstable node if all three eigen-11
values are positive (Fig. 9b, f, l, r). The singular point is a
saddle if one eigenvalue is positive and the other eigenval-13
ues are negative (Fig. 9c, g, i, m, o, s), or, if one eigenvalue
is negative and the other eigenvalues are positive (Fig. 9d,15
h, j, n, p, t). Only elementary singular points are presented
in Figs. 8 and 9.17

In summary, the type of singular points (nodes and sad-
dles) of the residue curves can be determined from the di-19
rection of increasing boiling temperature in the vicinity of
these point.21

4.3. Rule of azeotropy

The boiling temperature surface, in which simple distil-23
lation residue curves belong, is a continuous surface. It fol-
lows from topological theory that a combination of singular25
points of such surfaces corresponds to certain topological
restrictions. Using Poincare’s theory of topological proper-27
ties of continuous surfaces, Gurikov (1958) showed that for
ternary simple distillation the combination of the singular29
points of diIerent type always satis6es the rule:

2N3 + N2 + N1 = 2S3 + S2 + 2; (8)

where N3(S3) is the number of ternary nodes (saddles),31
N2(S2) is the number of binary nodes (saddles), and N1 is
the number of pure component nodes. All thermodynami-33
cally and topologically feasible combinations of the singular
points of ternary residue curve maps must obey this “Rule35
of azeotropy”. Zharov (1969a) extended this consideration
to multicomponent mixtures. Using the concept of topolog-37

ical index (theorems by Kronecker and Hoppf) he obtained
the generalized rule of azeotropy for n-component mixtures: 39

n∑

k=1

[2k(N+
k + S+

k − N−
k − S−k )] = 1 + (−1)n−1; (9)

where N+
k (N−

k ) is the number of k-component nodes
with positive (negative) index, S+

k (S−k ) is the number of 41
k-component saddles with positive (negative) index. The
index of the singular point can be determined from the 43
signs of the eigenvalues of Eq. (7). An index is positive
(negative) if the number of negative eigenvalues is even 45
(odd). Gurikov’s equation (8) is the speci6c case of Eq. (9)
for ternary mixtures. From the topological analysis of the 47
singular points given in Section 4.2 we have for ternary
mixtures that all nodes (stable or unstable, one-component, 49
binary or ternary) have an index +1 and all saddles have an
index −1. The numbers of negative nodes and positive sad- 51
dles are equal to zero. Thus, for ternary mixtures Eq. (9)
has the form 53

8(N+
3 − S−3 ) + 4(N+

2 − S−2 ) + 2(N+
1 − S−1 ) = 2: (10)

Excluding all the indices and taking into account that S1 =
3 − N1 we obtain Gurikov’s rule of azeotropy given by 55
Eq. (8). For quaternary mixtures, the unstable and stable
nodes have diIerent indices, and the saddles can be positive 57
or negative. Referring to Fig. 9, where the diIerent types of
singular points are given for a quaternary mixture, we can 59
determine the topological indices given in Table 2.

Another approach to the analysis of topological restriction 61
was independently performed by Sera6mov (1968a, b, c,
1969a, b, c). The results of both authors were summarized in 63
Sera6mov, Zharov, and Timofeyev (1971) and Zharov and
Sera6mov (1975), and recently presented again in Sera6mov 65
(1996).

In conclusion, the rule of azeotropy simply means that a 67
de6nite combination of singular points of the various types
must lead to a de6nite system of residue curves. It is used 69
in the topological classi6cation of VLE diagrams that is
presented in Section 7.
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Fig. 9. Types of singular points for quaternary mixtures indicated by • stable node SN, ◦ unstable node UN, and � saddle S, and their corresponding
topological indices (Zharov & Sera6mov, 1975). Arrows point in the direction of increasing boiling temperature.

Table 2
Topological indices for quaternary mixtures

Case in Number of negative Type of Topological Nomination
Fig. 9 eigenvalues singular point index

a, e, k, q 3 Stable node −1 N−
k

b, f, l, r 0 Unstable node +1 N+
k

c, g, i, m, o, s 2 Saddle +1 S+
k

d, h, j, n, p, t 1 Saddle −1 S−k
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Fig. 10. Examples of qualitative residue curve map construction: (a) directions of residue curves near the singular points; (b) sketch of the residue curve
diagram.

4.4. Structure of residue curve maps1

Based on the rule of azeotropy and the postulate that
residue curves must be closed (that is, originate and end in3
nodes), it has been found that if we know the type of all
singular points (i.e., the direction of the residue curves near5

all points of pure components and azeotropes), then we
can qualitatively construct the diagram of residue curves 7
(Sera6mov, 1968d; Zharov & Sera6mov ,1975; Doherty,
1985). Some examples of qualitatively residue curve map 9
construction are given in Fig. 10 for various cases of
azeotropy of a ternary mixture of component 1, 2 and 3, 11
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where the boiling points are T1 ¡T2 ¡T3. We can see that1
in some cases (Cases 2, 3 and 5) the composition trian-
gle is split into several residue curve regions. Recall that3
Schreinemakers (1901c) de6nes a residue curve region as a
set of residue curves with common initial and 6nal points.5
The residue curve boundaries are the singular residue curves
that divide the composition space into these regions. Only7
saddle separatrices interior to the composition space can be
residue curve boundaries.9

Bushmakin and Molodenko (1957) and Doherty and
Perkins (1978a) proposed to distinguish between stable11
separatrices (boundaries going from a saddle to a stable
node), and unstable separatrices (boundaries going from13
an unstable node to a saddle). In Fig. 10 we can see the
unstable separatrices (Case 2 and 4, and the separatrices15
1O and AO in Case 5), and the stable separatrices (Case 3,
and the separatrices O2 and O3 in Case 5). Bushmakin and17
Molodenko (1957) assumed (correctly) that the composi-
tion triangle is split into residue curve regions only when19
there is at least one saddle binary azeotrope, or, in other
words, when there is at least one separatrix interior to the21
composition triangle (necessary condition). However, we
can see by the example of Case 4 in Fig. 10 where we only23
have one residue curve region in spite of the existence of
an unstable separatrix, that the existence of a binary saddle25
(A) and its separatrix (OA) is not a suAcient condition for
the splitting of the composition space into several residue27
curve regions. This may cause confusion (see, for example,
Safrit, 1996), but the “contradiction” has a simple answer.29
Strictly speaking, the separatrix itself is a simple distillation
region and the existence of the binary saddle leads to the31
splitting of the interior of the composition triangle into two
regions with distinct 6nal points: (1) the separatrix itself33
and (2) the set of the liquid compositions belonging to all
other non-singular residue curves. Here, the separatrix is not35
a boundary because it does not correspond to the adopted
de6nition of a boundary (it does not divide the family of37
the residue curves into diIerent bundles).

Thus, a boundary is a separatrix but a separatrix is not39
necessarily a boundary. We can formulate the general
rule:

41
• The composition space is split into several residue curve
regions if there are several unstable or several stable nodes43
(necessary condition).

• The number of residue curve regions equals the total num-45
ber of repeated nodes, that is, nodes of the same type
(stable or unstable). For example, if we have three stable47
nodes and one unstable node the total number of repeated
nodes is three and we have three residue curve regions.49
If we have two stable nodes and two unstable nodes the
total number of repeated nodes is four and we have four51
residue curve regions.

Here, a residue curve region is de6ned as the set of residue53
curves with common initial and 6nal points. Doherty and

Perkins (1978a) proposed another de6nition of residue curve 55
regions as the set of liquid compositions that belong to the
residue curves with a common stable node. Thus, any un- 57
stable separatrix is a residue curve region boundary, and
only unstable separatrices can be the boundaries of residue 59
curve regions. We can see from Fig. 10 that both statements
are invalid. In Case 4 there is an unstable separatrix which 61
is not a residue curve boundary. Furthermore, Case 3 has
two residue curve regions separated by a stable separatrix 63
boundary. The de6nitions were corrected by Doherty and
Caldarola (1985) and Doherty and Knapp (1993), but the 65
error appeared again in Rev (1992) and in the review paper
by Fien and Liu (1994). 67

It should be stressed that we cannot construct an exact
map of residue curves for a given mixture without knowing 69
the (exact) location and shape of the separatrices (in addi-
tion to knowing the initial and terminal points), and the exact 71
location and shape of the ordinary residue curves. Thus, we
hereafter distinguish between a residue curve map, a sketch 73
of the residue curve map and the structure of a residue
curve map. The 6rst term means the exact representation of 75
the residue curves and must be constructed by integration
of the simple distillation residue curve Eq. (7). The term 77
“sketch” means the qualitative diagram of residue curves
representing the sign of curvature (convex/concave) and 79
the existence (or nonexistence) of in>ection points (quali-
tatively), but not the exact location of the residue curves. 81
This is the focus in Section 7.4. Finally, the term structure
of the residue curve map is the simplest graphical represen- 83
tation that characterizes the VLE and open evaporation of a
given mixture (Sera6mov, 1968d). The structural diagram 85
represent the topology of the residue curve map as given
by the residue curves’ singular points (nodes and saddles), 87
the residue curves going along the edges of the composi-
tion triangle, and the saddles separatrices located interior 89
to the composition space (Sera6mov, 1968d), that is, only
the singular residue curves. For example, the dashed residue 91
curves in Fig. 10 are unnecessary for the characterization of
the structure. 93

As mentioned earlier, using information about the shape
of the boiling temperature surface near the singular points we 95
can only determine the structure of the residue curve map.
Since the residue curves follow the direction of increasing 97
boiling temperature, the structure of the residue curve map
is also the structure of the boiling temperature surface. Rep- 99
resenting the VLE diagram structure by an oriented graph
of the boiling temperature increase allows us to determine 101
the structure of the diagrams for multicomponent mixtures.
Algorithms for this were proposed by Vitman and Zharov 103
(1971a, b) and Babich (1972). These oriented graphs may
be visualized for quaternary mixtures, but not readily if the 105
number of components is more than four. Instead, the graphs
can be represented in matrix form and the determination of 107
the VLE diagram structure can be computerized. Algorithms
for computer-aided determination of multicomponent VLE 109
diagrams structures were developed by Petlyuk, Kieuski,
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and Sera6mov (1975a, b, 1977a, b, c, 1978) and are also1
given by Julka and Doherty (1993), Rooks, Julka, Doherty,
and Malone (1998) and Safrit and Westerberg (1997) and3
others.

4.5. Separatrices of residue curves and -exure of the5
boiling temperature surface

A surface can be characterized by its topology. As just7
noted the topology of the residue curve diagram and the
boiling temperature surface coincide. That is, their stable9
nodes (peaks), unstable nodes (pits) and saddle points are
the same. Thus, it may appear that the stable separatrices11
of a residue curve diagram are coincident with the pro-
jections of the locus of the ridges in the boiling temper-13
ature surface onto the composition simplex, and the un-
stable separatrices with the valleys. This was claimed by15
Reinders and de Minjer (1940) based on the intuitive as-
sumption that residue curves could not cross the ridges or17
valleys in the boiling temperature function Tbp(x), since this
would violate the Schreinemakers’ rules. Opposed to this,19
Haase (1949) stated that the location of the >exures (ridges
and valleys) in the boiling temperature surface cannot coin-21
cide with the boundaries of the simple distillation regions.
Haase was right, however, this point was not immediately23
recognized.

Based on experiments, Bushmakin and Kish (1957)25
argued that for the mixture methyl acetate–chloroform–
methanol the boundaries of simple distillation regions run27
along the projections of the >exures in the boiling tempera-
ture surface on the plane of the composition triangle “within29
the limits of the experimental accuracy”. However, they
did not describe how they localized the >exures, nor did31
they give a quantitative comparison of the path of the boil-
ing temperature surface >exures and the simple distillation33
region boundaries. It should be noted that Bushmakin and
Kish did not vigorously claim the identity of the bound-35
aries with the >exures in the boiling temperature surface
in the general case, but wrote about the correspondence37
between them (Bushmakin & Molodenko, 1957). Never-
theless, these papers supported the hypothesis by Reinders39
and DeMinjer resulting in its added con6dence. Numerous
attempts were subsequently made to prove the identity of41
the simple distillation boundaries with the >exures in the
boiling temperature surface. The interest in this problem is43
understandable. Although a separatrix is the singular line
of the residue curve family, its equation is not distinct from45
the equation of the ordinary residue curves. Under integra-
tion of Eq. (7), the separatrix can be localized only as a line47
which arrives at �-vicinity of a saddle at � → ∞, or, starts
from �-vicinity of a saddle at �→ −∞. In other words, the49
localization is only approximate. If the separatrix had the
speci6c property that it coincides with the >exure of the51
boiling temperature function it could be exactly localized
in a simple way.

Various ways to determine the >exure (ridges and valleys) 53
in the boiling temperature surface have been proposed:

• As the locus of extremal boiling temperatures when mov- 55
ing along straight lines parallel to the edges of the com-
position triangle (see, for example, Doherty & Perkins, 57
1978a);

• As the separatrix of the steepest gradient lines (Malenko, 59
1970; Kogan & Kafarov, 1977a, b; Van Dongen &
Doherty, 1984); 61

• As the locus of liquid composition points with maximum
isotherm curvature (Boyarinov, Vetokhin, Gartman, 63
Kafarov, & Motyl’, 1974). Path of the largest gradi-
ent on the boiling point surface (Stichlmair & Fair, 65
1998);

• As the locus of liquid composition points where the equi- 67
librium vector is co-linear with the temperature gradient
(Sobolev, Shul’gin, Lovchikov, Malenko, & Romankov, 69
1980).

However, as it was demonstrated by Van Dongen and 71
Doherty (1984) and Rev (1992), these >exures do not
coincide with the separatrices of residue curves. This 6- 73
nally con6rmed the conclusion made by Haase as early as
1949. 75

This conclusion is not surprising since the pathways of
the residue curves do not only depend on the boiling tem- 77
perature surface, but also on the direction of the equilibrium
vectors between the phases. The direction of the equilibrium 79
vectors are not necessarily the same as that of the tempera-
ture gradient. 81

Kiva and Sera6mov (1973a) showed that residue curves
crossing the valley or ridges of the boiling temperature 83
surface do not violate Schreinemakers’ rules since the
residue curve “[ : : : ] rises along the slope, intersects the 85
fold [ridge] at an acute angle, and, [ : : : ] continues to rise,
moving along the opposite slope of the curved fold [ridge] 87
to its highest point”. Even when a residue curve crosses a
ridge or valley, the residue temperature is continuously in- 89
creasing. Similar considerations are given in more detail by
Rev (1992). 91

In conclusion, although the structure of a residue curve
map can be determined solely from the shape of the boiling 93
temperature surface, the exact location of the residue curve
separatrices cannot. 95

4.6. Structure of distillate curve maps

The vapor composition trajectory during open evapo- 97
ration can be represented graphically by the vapor line
(Schreinemakers, 1901c), later named distillate curve by 99
Doherty and Perkins (1978a). Each distillate curve is con-
nected to a residue curve and moves along the condensation 101
temperature surface Tdp(y). The distillate curves are going
through the vapor ends of the equilibrium vectors that are 103
tangent to the corresponding residue curve. The projection
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Fig. 11. Vapor and liquid composition trajectories of open evaporation and open condensation going through the points x and y of an equilibrium vector
in the composition space.

of the distillate curve in the composition space is always1
positioned at the convex side of the corresponding residue
curve projection. The less the curvature of the residue3
curve, the less is the gap between it and the correspond-
ing distillate curve. The vapor condensation temperature5
is equal to the liquid boiling temperature at any instant
and increases monotonically during the open equilibrium7
evaporation process. The system of distillate curves has
the same singular points as the system of residue curves,9
and the singular point type is the same as the type of the
corresponding singular point of the residue curves (Haase,11
1950b; Storonkin, 1967).

5. Other simple equilibrium phase transformations13

5.1. Open condensation

Open condensation is another equilibrium phase process15
that solely depends on the VLE, that is, no design or operat-
ing parameters, and can in turn characterize it. Open conden-17
sation is a hypothetical process where drops of condensate
are continuously removed from a bulk of vapor in such a19
way that the composition of the condensate is in equilibrium
with the still-pot vapor composition, at any instant. This pro-21
cess is symmetrical to the open evaporation process (Kiva
& Sera6mov, 1973b). It may appear that the open conden-23
sation curves are directed opposite to the open evaporation
residue curves, but this is not correct. Only the structure is25
the same, but they do not coincide in general. This is ev-
ident from Fig. 11 where open evaporation residue curves27
and open condensation curves going through points x and y
of an arbitrary equilibrium vector are given. Nevertheless,29
open condensation and open evaporation are symmetrical
processes with isomorphus (topologically equivalent) com-31
position trajectory maps for antipodal VLE diagrams, that
is diagrams with inverted signs of the nodes and opposite33
directed trajectories.

Fig. 12. Equilibrium distillation line (also named tie-line curve) is a chain
of conjugated vapor–liquid equilibrium vectors in the composition space,
that is, a sequence of repeated equilibrium phase mappings.

5.2. Repeated equilibrium phase mapping and distillation
lines 35

Zharov (1968c, 1969b) proposed the use of repeated
phase equilibrium E-mapping as a characterization of the 37
VLE:

x1
E1

→y1; y1 = x2; x2
E2

→y2; · · · ; xN
EN→yN : (11)

Zharov named the sequence ENx1 a “chain of conjugated 39
tie-lines [equilibrium vectors]”, today often referred to as
tie-line curves or discrete distillation lines. The repeated 41
equilibrium phase mapping is illustrated in Fig. 12. The
chain describes the stepwise movement along both the boil- 43
ing and condensation surfaces similar to the McCabe–Thiele
approach for binary mixtures at total re>ux. Starting with 45
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Fig. 13. Distillation line (smooth) and tie-line curves (chains of conjugated
vapor–liquid equilibrium vectors).

a given liquid composition x1, the equilibrium relationship1
(E-mapping) determines the corresponding equilibrium va-
por composition y1. The vapor is totally condensed and,3
thus, the vapor and liquid compositions are equal at each
step, yN = xN+1, which gives the initial point x2 of the next5
step and so forth. The VLE describes movement horizon-
tally (T constant) in Fig. 12. Projection of a sequence of7
equilibrium phase mappings onto the composition plane is
a discrete line. In a series of repeated mappings, the se-9
quence strives to the component or azeotropic point that has
a minimum boiling temperature. The sequence will follow11
the direction of decreasing boiling (condensation) temper-
ature, that is, it has the same direction as the composition13
trajectories of open condensation. Choosing several diIer-
ent initial points x1, we will obtain a set of equilibrium vec-15
tor chains. With the proper choice of the initial points we
obtain a map of conjugated equilibrium vector chains in the17
composition space that characterizes the equilibrium map-
ping function E : x→ y. The set of these equilibrium vector19
chains is an organized selection from the equilibrium vec-
tor 6eld. Zharov proposed to consider smooth “connecting21
lines” instead of the discrete chains of conjugated equilib-
rium vectors. The term connecting line (“c-line”) means a23
smooth line going in such a way that the vapor–liquid equi-
librium vector at an arbitrary point is a chord of this line.25
As result, any connecting line is a common arc of in6nite
equilibrium mappings as illustrated in Fig. 13. Today, these27
lines are commonly named distillation lines. For homoge-
neous mixtures the continuous distillation lines cannot in-29
tersect each other in contrast to the discrete chains of conju-
gated vectors in the composition space as shown in Fig. 13,31
and qualitative diIerential equation theory can be used for

their analysis. Based on this analysis, Zharov showed that 33
the properties of distillation lines near the pure component
and azeotropic points are identical with those of the residue 35
curves, but the signs of the eigenvalues and indices of the
singular points are inverted according to their opposite di- 37
rection (which is just a matter of de6nition). As a result, the
structure of the distillation line map (and conjugated vector 39
chain map) can be determined from the shape of the boiling
temperature surface in the same way as the structure of the 41
residue curve map.

Zharov (1968c) noted that the discrete distillation line co- 43
incides with the composition pro6le of an equilibrium staged
distillation column at total re>ux. Based on this coincidence, 45
Stichlmair (1988) and Stichlmair, Fair, and Bravo (1989)
use the name distillation line for the smooth connection line 47
through chains of conjugated vapor–liquid equilibrium vec-
tors. WahnschaIt, Koehler, Blass, and Westerberg (1992) 49
named the discrete chain of conjugated equilibrium vectors
a tie-line curve. WahnschaIt et al. (1992) and Widagdo and 51
Seider (1996) de6ne a tie-line curve and a distillation line as
the liquid composition pro6le of a distillation column at to- 53
tal re>ux. Distillation lines and (equilibrium) tie-line curves
are de6ned uniquely from the VLE, regardless of their con- 55
nection with the column composition pro6le. Thus, distilla-
tion lines are equivalent to residue curves as characteristics 57
of the VLE in a thermodynamic sense. Stichlmair (1988)
underlines that the (discrete) distillation lines give informa- 59
tion about the lengths of the vapor–liquid equilibrium vec-
tors which can characterize not only the qualitative course 61
of distillation, but the distillation separability as well. The
larger distance between the points on the distillation line, 63
the easier is the separation. Residue curves do not bring this
information. 65

Discrete distillation lines are readily constructed for any
given mixture by computation if the mathematical descrip- 67
tion of the VLE is available. This computation is quicker
than the computation of residue curves. However, the ex- 69
act construction of the distillation lines is more ambiguous
because the equation of this line is not uniquely de6ned. 71
Various algorithms for the construction of continuous distil-
lation lines, for example as given by PPollmann, Bauer, and 73
Blass (1996), is not be simpler than the integration proce-
dure for the construction of the residue curves. Eitherway, 75
the structure of the distillation line maps does not diIer
from the residue curve map structures. Along with N -fold 77
and in6nity E-mappings, we can consider N -fold and in6-
nite C-mappings, that is, the sequence CNy1: 79

y1
C1

→x1; x1 = y2; y2
C2

→x2; · · · ; yN
CN→xN : (12)

We name this chain of conjugated vapor-to-liquid vectors
a reverse discrete distillation line, or, alternatively, reverse 81
tie-line curve. It is apparent that the chains of conjugated
vectors −→yx and their smooth connecting lines will follow the 83
direction of increasing boiling (condensation) temperature.
Thus, they have the same direction as residue curves of 85
open evaporation. For homogeneous mixtures the reverse
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Fig. 14. Bands of residue curves and condensation curves crossing an
arbitrary distillation line for a ternary zeotropic mixture.

distillation lines are direct inversions of distillation lines. In1
other words, distillation lines (discrete and continuous) are
reversible.3

Similar to residue curves, the system of distillation lines
may split into distinct regions. A distillation line region is the5
set of compositions that belongs to distillation lines with the
same initial and 6nal points. The structure of a distillation7
line map is isomorphus (equal in form) to the structure of
the open condensation curve maps, or, symmetric to the9
structure of the residue curve map for any given mixture.
Distillation line region boundaries are saddle separatrices of11
the distillation line system.

5.3. Relationship between residue curves, distillation lines13
and condensation curves

It is apparent from simple geometric considerations that15
a residue curve and a distillation line that go through an
arbitrary liquid composition point do not coincide (see for17
example Fig. 3 in WahnschaIt et al. (1992), and Fig. 7 in
Widagdo and Seider (1996)). Fidkowski et al. (1993) write19

Fig. 15. Relative location of boundaries of diIerent simple equilibrium phase transformations: (•) stable node, (◦) unstable node, and (�) saddle.

that “the di1erence between these types of curves are neg- 21
ligible unless stated otherwise”. WahnschaIt et al. (1992)
were more subtle writing “the di1erence between residue 23
curves and distillation lines is normally not very signi2-
cant”. However, any general statements are not valid here 25
because the diIerence between both types of lines depends
on their curvature and the lengths of the equilibrium vec- 27
tors. A residue curve is crossed by distillation lines and con-
densation curves at any point along the line. In the same 29
way, a distillation line is crossed by residue curves and con-
densation curves at any points. Fig. 14 shows the bands of 31
residue curves and condensation curves that intersects an ar-
bitrary distillation line for a ternary zeotropic mixture. The 33
diIerence between these ordinary residue curves and distil-
lation lines raises a concern regarding the diIerence between 35
residue curve boundaries and distillation line boundaries.
It is apparent that maps of the diIerent lines have similar 37
topology for a given mixture, and that the separatrices of all
systems of lines have the same set of singular points. But, 39
the exact location of the separatrix does generally not coin-
cide for the diIerent line systems. The relative location of 41
the composition trajectory separatrices of open evaporation,
open condensation and repeated phase mapping are consid- 43
ered by Kiva and Sera6mov (1975, 1976) based on simple
geometric considerations. The relationship between separa- 45
trices is shown in Fig. 15. The relative location of bound-
aries of diIerent simple phase transformations satis6es the 47
following rules:

(a) If the residue curve separatrix goes from an unstable 49
node to a saddle (unstable separatrix), then the distilla-
tion line separatrix lies on its convex side. The conden- 51
sation curve separatrix lies on the convex side of the
distillation line separatrix. The distillate curve separa- 53
trix is located between the separatrices of residue curves
and distillation lines, and the separatrix of the conden- 55
sate curves lies on the convex side of the separatrix of
condensation curves (see Fig. 15a). 57
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(b) If the residue curve separatrix goes from a saddle to a1
stable node (stable separatrix), then the distillation line
separatrix lies on its concave side. The condensation3
curve separatrix lies on the concave side of the distil-
lation line separatrix. The separatrix of the condensate5
curves is located between the separatrices of the distil-
lation lines and the condensation lines. The separatrix7
of the distillate curves lies on the convex side of the
residue curve separatrix (see Fig. 15b).9

6. Heterogeneous mixtures

Heterogeneous mixtures include a composition region of11
two immiscible liquid phases as a result of molecular inter-
action or repulsion. Equilibrium between two liquid phases13
is considered in detail in textbooks and encyclopedia, for
example Treybal (1963), Walas (1985), MPuller (1988). An15
example of the vapor and liquid isotherm map and the con-
nection between by the vapor–liquid equilibrium vectors for17
a heterogeneous mixture is shown in Fig. 16. The compo-
sitions that belong to one liquid–liquid tie-line

−−→
x′x′′ have19

the same boiling temperature and are in equilibrium with
the same vapor composition y∗. The heterogeneous region21
is a >at fragment of the boiling temperature surface (liquid
boiling envelope), and the liquid isotherms in this region23
coincide with the liquid–liquid tie-lines (Schreinemakers,
1901a). A singular vapor line corresponds to all phase com-25
plexes of the heterogeneous region (Haase, 1950a; Storonkin
& Smirnova, 1963; Pham & Doherty, 1990).27

Fig. 16. An example of liquid and vapor isotherm map for a heterogeneous
mixture.

6.1. Simple phase transformations in heterogeneous
mixtures 29

The speci6c features of vapor–liquid–liquid phase equi-
libria lead to peculiarities of the simple phase transforma- 31
tions in heterogeneous mixtures. It has been shown by Haase
(1950a) that Eq. (6) for open evaporation residue curves for 33
ternary mixtures can be applied to heterogeneous mixtures
when xi refers to the overall liquid composition. In the ho- 35
mogenous region, the tangents to the residue curves are the
vapor–liquid equilibrium vectors. In the heterogeneous re- 37
gion, these tangents are the vapor–liquid equilibrium vectors
connected to the overall liquid composition. Storonkin and 39
Smirnova (1963) proved that the residue curves move con-
tinuously in the direction of increasing boiling temperature 41
and cross the binodal curves without a gap or a discontinuity.
Timofeev, Sera6mov, and Beregovyh (1970) proved that all 43
the conclusions concerning the behavior of open evapora-
tion residue curves are valid also for ternary and multicom- 45
ponent heterogeneous mixtures. In other words, the residue
curves are the same for homogeneous and heterogeneous 47
azeotropic mixtures.

The main feature that distinguishes heterogeneous mix- 49
tures from homogeneous mixtures is that a heterogeneous
azeotrope, hereafter called a heteroazeotrope, is either an 51
unstable node or a saddle. It cannot be a stable node since
heteroazeotropes cannot be maximum-boiling azeotropes. 53
This is easily explained by physical reasoning: heterogene-
ity (liquid-liquid phase splitting) and minimum-boiling 55
azeotropes are phenomena that occurs when the diIer-
ent components of the mixture repel each other, whereas 57
maximum-boiling azeotrope occurs when the components
attract each other. 59

The relationship between isotherms and residue curves for
ternary heterogeneous mixtures presented by Timofeev et al. 61
(1970) is shown in Fig. 17. Unlike homogeneous mixtures,
the isotherm passing through the point of a heteroazeotrope 63
is always an isotherm of 2nal length. Bushmakin’s de6nition
of the connection between an isotherm and the patterns of 65
the residue curves (Section 4.2) should be reformulated as
follows:

67
(a) A heteroazeotropic point is a saddle point if the isotherm

passing through this point is a closed isotherm or an 69
isotherm which ends at the edges of the composition
triangle (see Fig. 17a and b). 71

(b) A heteroazeotropic point is a nodal point if the isotherm
passing through this point is an “isolated” isotherm sur- 73
rounded by the closed isotherms or by the isotherms
which end at the edges of the composition triangle (see 75
Fig. 17c and d).

Thus, the main relationship between the structure of the 77
boiling temperature surface and the structure of the residue
curve map applies to both homogeneous and heterogeneous 79
mixtures. Pham and Doherty (1990) arrived at the same
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Fig. 17. Patterns of isotherms and residue curves near heterogeneous
azeotropic points (Timofeev et al., 1970).

conclusions. The topology of a residue curve map of a het-1
erogeneous mixture does not diIer from that of a homoge-
neous mixture with the same set of singular points.3

Distillate curves do not satisfy the uniqueness condition
in the whole composition space. For the part of a residue5
curve in the heterogeneous region, the corresponding distil-
late curve moves along the singular vapor line. As a result,7
the distillate curves partially coincide with each other and
with the singular vapor line (Storonkin & Smirnova, 1963;9
Pham & Doherty, 1990). This means that the behavior of
the distillate curves will be somewhat diIerent from that of11

1

A13

A12

23

Type A

1

A13

A12

23

Type B

1

A13

A12

23

Type C

xp

yp

xp

yp

binodal curve

liquid-liquid tie-line
singular vapor line

vapor-liquid equilibrium vector for plait point

Fig. 18. Three possible types (A, B, C) of heterogeneity for a mixture with the boiling temperature structure of Sera6mov’s class 2.0–2b. The singular
points are indicated by: (•) stable node, (◦) unstable node, and (�) saddle.

the residue curves for the same mixture, namely:
13

(1) There is a singular vapor line in addition to the pure
component and azeotropic points; 15

(2) If the composition space is split into residue curve re-
gions and the boundary is related to the existence of 17
the singular vapor line (this is not necessary), then the
boundary of the distillate regions coincide partially or 19
completely with the singular vapor line, and the coin-
ciding part of both lines will be a manifold of contact 21
for adjacent regions;

(3) The system of distillate curves can include a nonele- 23
mentary singular point in addition to the component and
azeotropic points. 25

Nevertheless, the global structure of the distillate curve
map (initial and 6nal points and splitting into regions) will 27
be identical to the residue curve map.

6.2. Examples of simple equilibrium phase transformation 29
maps

As an example, let us consider a mixture belonging to 31
Sera6mov’s class 2.0–2b (Section 7.1). Three types of het-
erogeneity for this structure are presented in Fig. 18. When 33
the heterogeneous region includes both the unstable node
A12 and the binary saddle A13, the singular vapor line moves 35
from the unstable node to the saddle inside the heteroge-
neous region (Type A). When the heterogeneous region only 37
includes the unstable node A12, the singular vapor line moves
from the unstable node in the direction of increasing tem- 39
perature and has the end point yP inside the heterogeneous
region (Type B). When the heterogeneous region only in- 41
cludes the saddle A13, the singular vapor line moves from
the saddle in the direction of decreasing temperature and has 43
the end point yP outside the heterogeneous region (Type C).

The structures of the residue curve maps for these cases 45
are presented in Fig. 19. In all the cases the residue curve

47
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Fig. 19. Residue curve maps for the three types of heterogeneity given
in Fig. 18.

maps have the same structure, though the shapes of the1
residue curves will diIer from one another. In all cases the
residue curve boundary is located at the concave side of the3
singular vapor line.

The structures of the distillate curve maps are presented5
in Fig. 20. For the mixture of Type A all equilibrium vectors
that extend from the residue curve separatrix terminate at7
the singular vapor line. Hence, the singular vapor line is a
separatrix (region boundary) of the distillate curves.9

For the mixture of Type B, the equilibrium vectors arrive
at the singular vapor line for the part of the residue curve11
separatrix that is located in the heterogeneous region (that
is, from the point A12 to the point of intersection of the13
separatrix with the binodal curve xb). Hence, the part of the
singular vapor line from A12 to yb will coincide with the15
boundary of the distillate regions, where point yb is the end
point of the equilibrium vector which is tangential to the17
separatrix of the residue curves at the point xb.

For the mixture of Type C, the equilibrium vectors arrive19
at the singular vapor line for the part of the residue curve
separatrix that is located in the heterogeneous region (that21
is, from the point A13 to the point of intersection of the
separatrix with the binodal curve xb). Hence, the part of23
the singular vapor line from A13 to xb will coincide with
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Fig. 20. Distillate curve maps for the three types of heterogeneity in
Fig. 18.

the boundary of the distillate regions, where point yb is the 25
end point of the equilibrium vector which is tangential to
the separatrix of the residue curves at the point xb. For both 27
diagrams of Types B and C, point yb is a point of bifurcation
of the singular vapor line and the separatrix of the distillate 29
curves.

One can see that, unlike the residue curves, the behavior 31
of distillate curves depends not only on the structure of the
boiling temperature surface but on the location of the binodal 33
curve as well. The peculiarities of the inner topology of the
distillate curve maps include:

35
(1) Distillate curves may coincide with each other along

the singular vapor line; 37
(2) The coinciding part of singular vapor line and the dis-

tillate curve boundary is a manifold of contact for ad- 39
jacent regions;

(3) The system of distillate curves can include a nonele- 41
mentary singular point in addition to the pure compo-
nent and azeotropic points. 43

The global structure of the distillate curve map (initial
and 6nal points and splitting into regions) is similar to that 45
of the residue curve map.
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Analysis of the structure of the distillation line map and1
of the composition trajectory map for open condensation
has not been made yet. We assume that the “inner” topol-3
ogy of these maps will be more complex than the topology
of the residue curve map. Nevertheless, it is reasonably safe5
to suggest that the topology in general (that is, the initial
and 6nal points of the composition trajectories and the split-7
ting into regions) will depend on the shape of the boiling
temperature surface in a similar way as of homogeneous9
mixtures.

7. Ternary VLE diagrams: classi)cation, occurrence and11
structure determination

7.1. Classi2cations of ternary VLE diagrams13

From the previous discussions we concluded that the
structure of simple phase transformations maps is deter-15
mined, in general, by the shape of the boiling temperature
surface for both homogeneous and heterogeneous mixtures.17
As a consequence, knowledge of the shape of the boiling
temperature surface alone permits us to characterize, distin-19
guish and classify any ternary mixture. Feasible structures
must satisfy the Rule of azeotropy (Section 4.3), and this21
may be used to classify ternary VLE diagrams. Such a clas-
si6cation was 6rst proposed by Gurikov (1958). Gurikov23
considers ternary mixtures with no more than one binary
azeotrope for each binary pair of the components and no25
more than one ternary azeotrope (that is, no biazeotropy),
i.e., N3 +S36 1 and N2 +S26 3. He denotes the total num-27
ber of binary azeotropes as being M where M = N2 + S2.
Substitution into Eq. (8) gives29

2S3 +M + 2 = 2N3 + 2N2 + N1: (13)

Both M and N1 can take the values 0, 1, 2 or 3. From
Eq. (13) we see that the quantities M and N1 are bound to31
be of equal parity. If M is an even number (0 or 2), then
N1 is also even. If M is an odd number (1 or 3), then N133
is also an odd number. Gurikov uses the quantity M as a
classi6cation parameter. Specifying the value of M he con-35
siders feasible structures of residue curve maps for each
of the two corresponding values of N1. A structure is con-37
sidered feasible if it does not violate the set of Schreine-
makers’ Rules (Section 4.1), and the condition of closed39
sets of the residue curves (i.e., extending from and termi-
nating in pure component and azeotropic singular points).41
From this analysis Gurikov revealed 22 feasible topologi-
cal structures of residue curve maps (or boiling temperature43
surfaces).

Sera6mov (1968d, 1970b) extended the work of Gurikov45
and used the total number of binary azeotropes M and the
number of ternary azeotropes T as classi6cation parame-47
ters. Sera6mov’s classi6cation denotes a structure class by
the symbol “M:T” where M can take the values 0, 1, 2 or49
3 and T can take the values 0 or 1 (i.e., same assumption

as Gurikov that the ternary mixture does not exhibit bi- 51
azeotropy). These classes are further divided into types and
subtypes denoted by a number and a letter. As a result of this 53
detailed analysis, four more feasible topological structures,
not found by Gurikov, were revealed. Thus Sera6mov’s clas- 55
si6cation includes 26 classes of feasible topological struc-
tures of VLE diagrams for ternary mixtures. The foundation 57
of this work is also presented more recently (Sera6mov,
1996). 59

Both the classi6cations of Gurikov and Sera6mov con-
sider topological structures and thus do not distinguish be- 61
tween antipodal (exact opposite) structures since they have
the same topology. Thus, the above classi6cations include 63
ternary mixtures with opposite signs of the singular points
and opposite direction of the residue curves (antipodal di- 65
agrams). Sera6mov’s classi6cation is presented graphically
in Fig. 21. The transition from one antipode to the other (e.g. 67
changing from minimum- to maximum-boiling azeotropes)
can be made by simply changing the signs of the nodes 69
and inverting the direction of the arrows. As discussed in
Sections 3–5, all the representations of the VLE (isotherm 71
map, residue curve map, vector 6eld of equilibrium vec-
tors in the composition space) are related and are equally 73
capable of classifying the mixtures. Feasible structures of
residue curve maps, isotherm maps and vector 6elds for 75
ternary mixtures are presented by Sera6mov (1971a, b, c, d),
1973. 77

The classi6cation of ternary mixtures may be re6ned
by distinguishing between antipodes inside each struc- 79
ture class, based on the reasoning that “minimum- and
maximum-boiling azeotropes have dissimilar physical na- 81
ture and dissimilar behavior during distillation” (Zharov
& Sera6mov, 1975). This re6ned classi6cation includes 83
a total of 49 types of feasible VLE diagrams (Zharov &
Sera6mov, 1975, pp. 96–98). An even more detailed classi- 85
6cation is proposed by Matsuyama and Nishimura (1977).
This classi6cation is founded on the same principles, but the 87
diagrams are further distinguished according to the relative
location of the binary azeotropic points on the edges of the 89
composition triangle. The components are ranked in the or-
der of their boiling temperature (“light”, “intermediate” and 91
“heavy”). The classi6cation includes 113 diagram classes
of which 87 are presented graphically by Doherty and 93
Caldarola (1985). Nevertheless, among these 113 classes
there are still only the 26 topologically distinct structures 95
of Sera6mov. Matsuyama and Nishimura’s classes are de-
noted by three digits according to the existence and type 97
of binary azeotropes at the edges 12, 23 and 13. The dig-
its can take values 0 (no azeotrope), 1 (minimum-boiling 99
azeotrope, unstable node), 2 (minimum-boiling azeotrope,
saddle), 3 (maximum-boiling azeotrope, stable node) or 101
4 (maximum-boiling azeotrope, saddle). When a ternary
azeotrope exists, a letter follows the three-digit classi6ca- 103
tion code: m (minimum-boiling ternary azeotrope, unstable
node), M (maximum-boiling ternary azeotrope, stable node) 105
and S (intermediate-boiling ternary azeotrope, saddle).
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Fig. 21. Feasible topological structures of VLE diagrams for ternary mixtures according to classi6cation by Sera6mov (1970b): (•) stable (unstable)
node, (◦)-unstable (stable) node, (�) saddle.

In this connection we want to emphasize that the rela-1
tive volatility of the components in an azeotropic mixture
change within the composition space. The terms “light”,3
“intermediate” and “heavy” component have little mean-
ing in general for nonideal and azeotropic mixtures. This5
distinction made in Matsuyama and Nishimura’s classi-
6cation does not give any additional information. Actu-7
ally, it is sometimes ambiguous, as some of Matsuyama
and Nishimura’s classes where a ternary saddle azeotrope9
is present have two or even three possible topological
structures. For example, code 112-S can be either of11
Sera6mov’s topological class 3.1–3a or 3.1–3b depend-
ing on whether there is a saddle–saddle separatrix or13

not. This ambiguity was also pointed out by Foucher,
Doherty, and Malone (1991) who recommend an exten- 15
sion of the Matsuyama and Nishimura’s classi6cation code
name in these cases. This issue is further discussed in 17
Section 7.4.

The relationship between the diIerent classi6cations is 19
presented in Table 3 where the classes are ordered accord-
ing to Sera6mov’s classi6cation (1970b) with increasing 21
number of azeotropes occurring in the ternary mixture.
Hereafter we use Sera6mov’s (1970b) nomenclature for 23
the topological classes and Zharov and Sera6mov’s (1975)
nomenclature for the antipodal structure types (referred to 25
as the ZS-type).
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Table 3
Correspondence between diIerent classi6cations of ternary VLE diagrams

Gurikov (1958) Sera6mov (1970) ZS-typea Matsuyama and Nishimura (1977)
22 classes 26 classes 49 classes 113 classes

1 0 1 000
4a 1.0–1a 3a 100

7a 030
4b 1.0–1b 3b 001

7b 003
3 1.0—2 4 020

8 400

2a 1.1–1a 2a 200-m
6a 040-M

2b 1.1–1b 2b 002-m
6b 004-M

5 1.1–2 5 010-S
9 300-S

9 2.0–1 15 031, 103, 130
8a 2.0–2a 17 023, 320

18 401, 410
8c 2.0–2b 11a 102, 120, 021

21a 043, 430, 403
8b 2.0–2c 11b 201, 210, 012

21b 034, 304, 340

7 2.1–1 13 032-m, 230-m, 203-m
14 041-M, 140-M, 104-M

— 2.1–2a 16a 420-m, 402-m
16b 024-m, 420-M

6 2.1–2b 10 022-m, 220-m, 202-m
20 044-M, 440-M, 404-M

10a 2.1–3a 19 013-S, 310-S, 301-S
10b 2.1–3b 12 011-S, 110-S, 101-S

22 033-S, 330-S, 303-S

14a 3.0–1a 29 411
33 323

14b 3.0–1b 28 123, 321, 132, 213, 312, 231
34 413, 314, 431, 341, 134, 143

13 3.0–2 24 212, 122, 221
37 434, 344, 443

— 3.1–1a 27b 421-m, 412-m
32b 423-M, 324-M

12 3.1–1b 26 232-m, 223-m, 322-m
31 414-M, 441-M, 144-M

— 3.1–1c 27a 142-M, 241-M, 124-M, 214-M, 421-M, 412-M
32a 423-m, 324-m, 432-m, 342-m, 234-m, 243-m

11 3.1–2 23 222-m
36 444-M

15 3.1–3a 25a 121-S, 112-S, 211-S
38a 343-S, 334-S, 433-S

— 3.1–3b 25b 121-S, 112-S
38b 343-S, 334-S, 433-S

16 3.1–4 30 131-S, 113-S, 311-S
35 133-S, 313-S, 331-S

aZS-type refers to the re6ned classi6cation on antipodal structures by Zharov and Sera6mov (1975).

7.2. Completeness of classi2cations1

The classi6cations presented above do not include (by
assumption) biazeotropic mixtures, i.e. mixtures where two3

binary azeotropes exist for one or more of the binary con-
stituents or where there exists two ternary azeotropes. Kogan 5
(1971) suggested that the rule of azeotropy is not valid for
biazeotropic mixtures. However, this is not true, because the 7
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N2

S1 N1

N3

N1

Fig. 22. The rule of azeotropy also applies to biazeotropic mixtures: Hy-
pothetical mixture with two ternary azeotropes and two binary azeotropes
for one of the binary pairs.

rule of azeotropy is a topological rule based on the com-1
bination of singular points of diIerent types for continuous
surfaces (without a gap), and its validity does not depend on3
the number of singular points of one element of the surface.
This fact has been proved by Komarova, Sera6mov, and5
Garber (1974) and by Matsuyama and Nishimura (1977),
and is also discussed in Sera6mov (1996). An example of7
a hypothetical biazeotropic mixture is given in Fig. 22. The
set of singular points in the mixture is S3 = 1, N3 = 1,9
N2 = 2, S2 = 2, S1 = 1 and N1 = 2, which satis6es the rule of
azeotropy.11

The classi6cations do not take into account structures
with nonelementary singular points. The existence of bi-13
azeotropy and nonelementary singular points of the residue
curves is closely connected to tangential azeotropy. The15
structure of residue curve maps and the rule of azeotropy
for such mixtures are considered in the papers by Sera6mov17
(1971a, b, c, d), and Sera6mov, Komoarova, and Garber
(1974), Doherty and Perkins (1979a), Kushner, Shul’ga, and19
Sera6mov (1992) and Sera6mov, Kushner, and Cheluskina
(1996), It is beyond the scope of this survey to review these21
papers, though they touch upon interesting aspects. For ex-
ample, structures with biazeotropic elements and nonele-23
mentary singular points are encountered in the transition
from one topology to another with pressure (or temperature)25
change. At bifurcation pressures, one or more of the singular
points will be nonelementary. The fact that the classi6ca-27
tions do not include such transient structures, which usually
exist over only very small pressure (temperature) intervals,29
does not limit their practical use.

7.3. Occurrence of predicted structures31

Experimental VLE data indicates the natural occurrence
of ternary mixtures for at least 16 of Sera6mov’s 26 topo-33
logical classes, and 28 of the 49 antipodal types given by

Zharov and Sera6mov (1975). Sera6mov (1968d) analyzed 35
the occurrence of diIerent types of VLE diagrams among
418 reported data on azeotropic mixtures. Later, Reshetov 37
made a similar study for 1609 ternary mixtures (in which
1365 are azeotropic) based on thermodynamic data pub- 39
lished during the period from 1965 to 1988 (Reshetov,
1998). The occurrence of the various classes and types of 41
ternary mixtures based on these data are presented in Ta-
ble 4, and a graphical representation is given in Fig. 23, 43
using the mixture group number (No.) in Table 4. The
structures are divided into groups including only or mostly 45
minimum-boiling azeotropes (“min”), only or mostly
maximum-boiling azeotropes (“max”), equal number of 47
minimum- and maximum-boiling azeotropes (“min–max”),
and minimum- and maximum-boiling ternary azeotropes 49
(“UN3” and “SN3”, respectively).

Obviously, the distribution reported in these studies does 51
not necessarily re>ect the real occurrence in nature. The
azeotropic data selection is small and occasional. Moreover, 53
the distribution can be distorted compared to the unknown
“natural” distribution since the published components data 55
are the results of a deliberate search for entrainers for speci6c
industrial separation problems. Nevertheless, these data are 57
interesting and can be used for some deductions.

Both statistics, from Sera6mov (1968d) and Reshetov 59
(1965–1988) show the same trend. Sera6mov’s class 3.1–
2 with three minimum-boiling binary azeotrope and one 61
minimum-boiling ternary azeotrope has the largest num-
ber of reported mixtures. About 26% of the 1365 ternary 63
azeotropic mixtures in the study by Reshetov, and 41% of
418 mixtures in the study by Sera6mov, are of this class. 65
In the statistics by Reshetov, the second largest class (1.0
–1a) has one minimum-boiling binary azeotrope, and the 67
third largest class (2.0–2b) has two minimum-boiling bi-
nary azeotropes. 69

Baburina, Platonov, and Slin’ko (1983, 1988) claimed
that some types of the VLE diagrams are thermodynamically 71
inconsistent, namely Sera6mov’s classes 1.0–1a, 1.0–1b,
2.1–1, 3.0–1a, 2.0–2a, 3.0–1a, 3.0–1b, 3.1–3a and 3.1–3b. 73
Thus, according to Baburina, the number of feasible classes
of topological VLE diagram structures is only 15 rather than 75
26. This statement was based on the reasoning that: (a)
mixtures of these classes were not reported in Sera6mov’s 77
statistics (Sera6mov, 1968d); (b) these diagrams cannot be
described by the Wilson activity coeAcient equation; (c) 79
theoretical analysis by the authors con6rms the inconsis-
tency of these diagrams. All these arguments appear to be 81
incorrect: (a) real mixtures representing the classes 1.0–1a,
1.0–1b, 2.0–2a, and 3.0–1b are found as shown in the statis- 83
tics given above; (b) Zhvanetskij, Reshetov, Sluchenkov,
Orlova, and Alukhanova (1993) demonstrated that all the 85
26 classes of VLE diagrams can be simulated by the Wilson
activity coeAcient equation; (c) it has been shown that the 87
theoretical analysis by Baburina et al. is not valid (Reshetov,
Sluchenkov, Ryzhova, & Zhvanetskij, 1990; Zhvanetskij 89
et al., 1993). Later, accepting Baburina’s claims, PPollmann
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Table 4
Occurrence of classes of ternary VLE diagrams found in published mixture data

No. Sera6mov’s Occurrence ZS-type of Set of azeotropes Occurrence
class Sera6mov antipodal Reshetov

(until 1968) structure (1965–1988)

0 0 — 1 Zeotropic 244

1 1.0–1a 13 3a Min 283
7a Max 12

2 1.0–1b 2 3b Min 4
7b Max 1

3 1.0–2 20 4 Min 95
8 Max 21

4 1.1–1a None 2a Min + Min A3 None
6a Max + Max A3 None

5 1.1–1b None 2b Min + Min A3 None
6b Max + Max A3 None

6 1.1–2 7 5 Min + S3 8
9 Max + S3 8

7 2.0–1 1 15 Min + Max 9
8 2.0–2a None 17 Min + Max 2

18 Max + Min 3
9 2.0–2b 77 11a Min + Min 280

21a Max + Max 6
10 2.0–2c 2 11b Min + Min 10

21b Max + Max 2

11 2.1–1 None 13 Min + Max + Min A3 None
14 Min + Max + Max A3 None

12 2.1–2a None 16a Min + Max + Min A3 None
16b Min + Max + Max A3 None

13 2.1–2b 3 10 Min + Min + Min A3 55
20 Max + Max + Max A3 None

14 2.1–3a 14 19 Min + Max + S3 37
15 2.1–3b 5 12 Min + Min + S3 2

22 Max + Max + S3 1

16 3.0–1a None 29 Min + Min + Max None
33 Max + Max + Min None

17 3.0–1b None 28 Min + Min + Max 9
34 Max + Max + Min 3

18 3.0–2 85 24 Min + Min + Min 114
37 Max + Max + Max None

19 3.1–1a 3 27b Min + Min + Max + Min A3 None
32b Max + Max + Min + Max A3 None

20 3.1–1b None 26 Min + Min + Max + Min A3 None
31 Max + Max + Min + Max A3 None

21 3.1–1c None 27a Min + Min + Max + Max A3 None
32a Max + Max + Min + Min A3 None

22 3.1–2 171 23 Min + Min + Min + Min A3 355
36 Max + Max + Max + Max A3 None

23 3.1–3a None 25a Min + Min + Min + S3 None
38a Max + Max + Max + S3 None

24 3.1–3b None 25b Min + Min + Min + S3 None
38b Max + Max + Max + S3 None

25 3.1–4 15 30 Min + Min + Max + S3 41
35 Max + Max + Min + S3 4

Min, minimum-boiling binary azeotrope; max, maximum-boiling binary azeotrope; A3, ternary node azeotrope; S3, ternary saddle azeotrope.
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Fig. 23. Occurrence of classes among published data for ternary mixtures (Reshetov’s statistics 1965–1988).

Fig. 24. Occurrence of various combination of binary azeotropes in ternary mixtures.

and Blass (1994) and PPollmann et al. (1996) proposed to1
reduce the number of ternary VLE diagrams to consider
only “physically meaningful” structures. The list of “physi-3
cally meaningful” structures in PPollmann and Blass (1994)
includes 19 structures of Sera6mov’s classes 0, 1.0–1a,5
1.0–1b, 1.0–2, 1.1–2, 2.0–1, 2.0–2a, 2.0–2b, 2.0–2c, 2.1–
2b, 2.1–3a, 2.1–3b, 3.0–1a, 3.–1b, 3.0–2, 3.1–1b, 3.1–2,7
3.1–3a, 3.1–4.

However, in our opinion, it is impossible in principle
to state that some classes of ternary mixtures cannot exist 9
in nature or are “physically meaningless” because all the
structures predicted by the rule of azeotropy are thermo- 11
dynamically and topologically consistent by de6nition. We
can only discuss the probability of the existence of some 13
types of the VLE diagram structure. It is well-known that
binary maximum-boiling azeotropes are less abundant than 15
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Table 5
Occurrence of antipodes of the most common topological classes of
ternary VLE diagrams

Sera6mov’s Reshetov’s Statistics (1965–1988)

Class Min. azeotrope(s) Max. azeotrope(s)

1.0–1a 283 12
1.0–2 95 21
2.0–2b 280 6
2.1–2b 55 None

minimum-boiling azeotropes. According to Lecat (1949)1
the ratio of the minimum-boiling versus maximum-boiling
azeotropes that occur in nature is about 9 to 1, and the3
statistics of Reshetov con6rms this approximate rule, see
Fig. 24. In particular, no ternary mixture with three binary5
maximum-boiling azeotropes has been found among the se-
lection of 1365 mixtures, and no ternary maximum-boiling7
azeotrope has been found. As a result, even for the
topological structures where existence is beyond ques-9
tion, the occurrence of antipodes with maximum-boiling
azeotropes is much less common than that of antipodes11
with minimum-boiling azeotropes, see Table 5.

We propose to consider some conditions that limit the13
natural occurrence of certain VLE diagram structures. First,
we 6nd for maximum-boiling azeotropes:

15
(1A) low probability of three binary maximum-boiling

azeotropes occurring in a ternary mixture;17
(1B) low probability of the occurrence of a ternary

maximum-boiling azeotrope.19

Second, the following structures require unlikely molecular
interactions:

21
(2A) low probability that there is a saddle separatrix that is

not a boundary of the residue curve region23
(2B) low probability that there is a ternary node in a mixture

with binary azeotropes of diIerent signs25
(2C) low probability that there is a ternary saddle in a mix-

ture with binary azeotropes of the same sign.27

Based on these assumptions, we can reveal the structures that
are expected to be rare. These “improbable” structures are29
presented in Table 6. The table includes two structures that
are on the list of “physically meaningful” structures given31
by PPollmann and Blass (classes 3.1–1b and 3.1–3a). None of
the structures in Table 6 are reported to occur in real mixtures33
according to the statistics presented in the previous section.
Low probability does not mean that these structures do not35
exist, but Table 6 can be used as an Ockham’s Razor in
analysis of VLE and azeotropic distillation. It is conceivable37
that some of these structures occur in nature but only as
tangential azeotropes (i.e., the singular points responsible39
for these structures are close to an edge of the composition
triangle to such an extent that they have not been detected41

experimentally or through modeling). For practical purposes
the existence of such singular points can be neglected in 43
such cases. The mixtures in the collection by Reshetov are
ranked in the order of decreasing occurrence in Table 7. 45
Most common VLE diagram structures are given in Group
A. Group B structures are also common, and Group C can 47
be considered as rare structures.

7.4. Determination of the structure 49

The question of whether it is possible to determine the
VLE diagram structure of a mixture solely from the boil- 51
ing temperatures of the pure components and azeotropes
has been discussed since the 6rst publications in this 6eld. 53
It was claimed by Gurikov (1958) and later con6rmed by
Sera6mov (1968a), and Zharov and Sera6mov (1975) that, 55
in general, pure component and azeotropic boiling temper-
ature data only are not suAcient to construct the diagram 57
uniquely and that additional information about the direc-
tion of increasing boiling temperature near some singular 59
points is needed. It has been proposed using ebulliometric
measurements to obtain this additional information exper- 61
imentally (Sera6mov, 1968a; Zharov & Sera6mov, 1975).
Obviously, a mathematical description of the VLE may be 63
used for this purpose too.

Doherty (1985) stated that the residue curve maps can 65
be uniquely and explicitly determined from the components
and azeotropes boiling points only. This concept is used 67
by Bernot (1990), Foucher et al. (1991) and Peterson and
Partin (1997). However, this assumption is not theoretically 69
founded and is not valid in general. On the other hand, as
noted by Foucher et al. (1991) and as we show below, in 71
most cases the simple ranking of singular points (compo-
nents and azeotropes) in order of increasing boiling points 73
is suAcient to construct the structure of the residue curve
map. In speci6c cases we have indeterminacy (Foucher 75
et al., 1991), but this is really a result of the lack of data
required for a unique solution. The cases where diIerent 77
structures of VLE diagrams correspond to the same order of
the boiling temperatures of the singular points are presented 79
in Figs. 25 and 26.

In Cases 1 and 2 the indetermination occurs for one topo- 81
logical class (antipodes). Case 1 is described by Foucher
et al. (1991). For all the cases in Fig. 25 the real structure 83
of the given mixture can be easily determined experimen-
tally. Depending on the direction of the increasing temper- 85
ature b or c near the singular point in the triangle given in
column a) the mixture has a structure as given in column 87
(b) or (c). A more complex situation presented in Fig. 26 is
also described by Foucher et al. (1991) and named “global” 89
indeterminacy. The real structure cannot be identi6ed from
additional investigation of the boiling temperature surface, 91
and computing the actual residue curve map is required.
Fortunately, this type of structure has low probability (no 93
mixtures reported yet, see Table 6).
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Table 6
Improbable types of topological classes of ternary VLE diagrams

Sera6mov’s ZSa-type Matsuyama and Nishimura’s Probability (1—low, Limiting
class class 2—very low, 3—improbable) factors

1.1–1a 2a 200-m 1 2A
6a 040-M 3 2A + 1B

1.1–1b 2b 020-m 1 2A
6b 004-M 3 2A + 1B

2.1–1 13 032-m, 230-m, 203-m 1 2B
14 041-M, 140-M, 104-M 3 2B + 1B

2.1–2a 16a 420-m, 402-m 1 2A
16b 024-m, 420-M 3 2A + 1B

2.1–2b 20 044-M, 440-M, 404-M 3 1B

3.1–1a 27b 421-m, 412-m 1 2A + 2B
32b 423-M, 324-M 3 2A + 2B + 1B

3.1–1b 26 232-m, 223-m, 322-m 1 2B
31 414-M, 441-M, 144-M 3 2B + 1B

3.1–1c 27a 142-M, 241-M, 124-M, 214-M, 421-M, 412-M 3 2A + 2B
32a 423-m, 324-m, 423-m, 342-m, 234-m, 243-m 1 2A + 2B + 1B

3.1–2 36 444-M 3 1A + 1B

3.1–3a 25a 121-S, 112-S, 211-S 1 2C
38a 343-S, 334-S, 433-S 2 2C + 1A

3.1–3b 25b 121-S, 112-S 1 2C
38b 343-S, 334-S, 433-S 2 2C + 1A

aZS-type refers to the re6ned classi6cation on antipodal structures by Zharov and Sera6mov (1975).

Table 7
Identi6ed structures of ternary VLE diagrams among real mixtures according to Reshetov’s statistics (1965–1988)

No. Structure of ternary VLE diagram

Sera6mov’s ZSa-type Matsuyama and Nishimura’s Occurence
class type class (%)

Group A 1 3.1–2 23 222-m 26.0
¿ 5% 2 1.0–1a 3a, 7a 100, 030 21.6

3 2.0–2b 11a, 21a 102, 120, 021, 043, 430, 403 21.0
4 1.0–2 4, 8 020, 400 8.5
5 3.0–2 24 212, 122, 221 8.4

Group B 6 2.1–2b 10 022-m, 220-m, 202-m 4.0
1–5% 7 3.1–4 30, 35 131-S, 113-S, 311-S, 133-S, 313-S, 331-S 3.3

8 2.1–3a 19 013-S, 310-S, 301-S 2.7
9 1.1–2 5, 9 010-S, 300-S 1.2

Group C 10 2.0–2c 11b, 21b 201, 210, 012, 034, 304, 340 0.9
¡ 1% 11 3.0–1b 28 123, 321, 132, 213, 312, 231 0.88

12 2.0–1 15 031, 103, 130 0.66
13, 14 2.0–2a 17, 18 023, 320, 401, 410 0.36
13, 14 1.0–1b 3b, 7b 001, 003 0.36
15 2.1–3b 12, 22 011-S, 110-S, 101-S, 033-S330-S, 303-S 0.22

aZS-type refers to the re6ned classi6cation on antipodal structures by Zharov and Sera6mov (1975).
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Fig. 25. Indeterminacy of the residue curve map structure for a ternary
mixture with the given order of the components and azeotropic temperature
points: (a) the given set of temperature ordered singular points; (b,c)
feasible structure alternatives.

There are some cases where identi6cation of the structure1
of VLE diagram can be made with a high degree of probabil-
ity from the data on the components and binary azeotropes.3
These cases are presented in Table 8. In all other cases, bi-
nary data are not suAcient for the precise identi6cation of5
the structure. By way of example let us consider the mix-
tures with two and three binary minimum-boiling azeotropes7
where we know all singular points at the edges of trian-
gle (Fig. 27a, cases 1 and 2). Three feasible structures are9
shown in Fig. 27 (b, c, d for each case). All feasible alter-
natives are likely to occur and it is very risky to assign a11
structure to the given mixture based on information about
the singular points at the edges of triangle only.13

Table 8
Window of prediction of ternary VLE diagram structures from binary data only

Singular points Structure alternatives Most probable structure
on the edges
12-23-13
(Matsuyama’s Sera6mov’s ZS- Sera6mov’s ZS- Sera6mov’s ZS- Comment
nomination) Class type Class type class type

100 1.0–1a 3a 1.1–1a 2a 1.0–1a 3a
030 1.0–1a 7a 1.1–1a 6a 1.0–1a 7a Almost certain
001 1.0–1b 3b 1.1–1b 2b 1.0–1b 3b
003 1.0–1b 7b 1.1–1b 6b 1.0–1b 7b Almost certain
103 ( or 130, 2.0–1 15 2.1–1 13 2.0–1 15
or 031) 2.1–1 14

T3

T4

T2
T1

3.1 - 3a 3.1 - 3b(a) (b) (c)

Fig. 26. Global indeterminacy of the residue curve map structure for
a given order of the components and azeotropic points (according to
Foucher et al., 1991): (a) the given order of the singular points; (b,c)
feasible structure alternatives.

This is also pointed out by Westerberg (1997): Gener-
ally, we cannot construct a unique diagram if we only know 15
the existence of the azeotropes and their boiling point tem-
peratures. If we know the temperature and also the nature 17
of all the pure component and azeotrope points (type of
saddle, stable node, unstable node), then we can sketch a 19
unique diagram.

It has been stated by Matsuyama and Nishimura (1977), 21
Yamakita, Shiozaki, and Matsuyama (1983) and Foucher
et al. (1991) that the rule of azeotropy can be used to check 23
the consistency of azeotropic data. It is appropriate to em-
phasize that this only applies to the consistency of the ex- 25
perimentally determined ternary azeotropic points. Further-
more, only when the boiling temperature of this point lies 27
between the temperatures of the singular point of a separa-
trix or a line between an unstable node and a stable node, 29
can an erroneous ternary azeotrope be singled out and ex-
cluded. If the experimentally determined singular point has 31
a boiling point temperature outside these intervals it cannot
be excluded on the basis of the rule of m azeotropy. This is 33
demonstrated in Fig. 28.

The issues concerning the identi6cation of the VLE dia- 35
gram structure on the basis of incomplete information (and
indeterminacy and inconsistency of such identi6cation) 37
were of great signi6cance before the mathematical modeling
of VLE became widely applicable. Today we can obtain an 39
appropriate mathematical description of the ternary VLE,
6nd all singular points and construct the diagram of residue 41
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Fig. 27. Feasible alternatives of the residue curve map structure for the given ranking of the singular points at the edges of the composition triangle: (a)
the given set of ranking of the components and azeotropic points at the edges of the composition triangle; (b) structure without ternary azeotrope; (c)
structure with a ternary unstable node azeotrope; (d) structure with a ternary saddle azeotrope.
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Fig. 28. Consistency test based on the rule of azeotropy may fail to detect an erroneous experimentally determined ternary azeotrope (�): (a) real
structure; (b) infeasible structure (existence of the false ternary azeotrope is excluded); (c) feasible structure (existence of the false ternary azeotrope
obeys the rule of azeotropy and cannot be excluded).
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BuAc BuOH

Water

BuAc BuOH

Water W a t e r

BuAc BuOH

(a) (b) (c)

3.0-2 Ternary biazeptropic mixture 3.1-2

Fig. 29. Prediction of the VLE diagram structure for the mixture butanol-butyl acetate–water based on thermodynamic models.

curves or distillation lines based on data for the binary con-1
stituents. It is also possible to predict the binary parame-
ters from the characteristics of the pure components (e.g.,3
by means of the group contribution models). VLE diagrams
obtained by modeling are determined and consistent by def-5
inition (but they do not necessarily represent the behavior of
the real mixtures properly). The real issue today is the accu-7
racy of the model description. The description of a ternary
mixture can be wrong even with reliable binary data because9
the ternary azeotrope can be found (or not found) mistakenly
by the model. For example, modeling the VLE for the mix-11
ture of n-butanol, n-butyl acetate and water by means of the
Wilson and NRTL activity coeAcient equations may give13
diIerent topological structures of the diagrams depending
on the binary parameters sets that were chosen, see Fig. 29.15
A ternary azeotrope is known to exist for this mixture. With
the given binary data, the Wilson equation does not predict17
a ternary azeotrope. However, the Wilson equation itself is
capable of predicting all the feasible ternary diagrams in19
Fig. 21.

The parameters for the model can be readily corrected21
if experimental data on the ternary azeotrope are available.
However, topological or thermodynamic considerations do23
not help to select the correct model in such a situation if
only binary data are available.25

8. Unidistribution and univolatility lines

This section deals with the geometry of the simple phase27
transformation trajectories. The very essence is given in Sec-
tion 8.2).29

8.1. Distribution coe@cient and relative volatility

The distribution coeAcient and relative volatility are31
well-known characteristics of the vapor–liquid equilibrium.
The distribution coeAcient Ki is de6ned by33

Ki = yi=xi: (14)

As the name implies, Ki characterizes the distribution of
component i between the vapor and liquid phases in equi-35
librium. The vapor is enriched with component i if Ki ¿ 1,

and is impoverished with component i if Ki ¡ 1 compared to 37
the liquid. The ratio of the distribution coeAcients of com-
ponents i and j gives the relative volatility of these compo- 39
nents, usually denoted by !ij:

!ij =
Ki
Kj

=
yi=xi
yj=xj

: (15)

The relative volatility characterizes the ability of component 41
i to transfer (evaporate) into the vapor phase compared to
the ability of component j. Component i is more volatile 43
than component j if !ij ¿ 1, and less volatile if !ij ¡ 1.
For ideal and nearly ideal mixtures, the relative volatilities 45
for all pair of components are nearly constant in the whole
composition space. The situation is diIerent for nonideal 47
and in particular azeotropic mixtures where the composition
dependence can be complex. The qualitative characteristics 49
of the distribution coeAcient and relative volatility functions
are also considered in a general form by the “pen-and-paper” 51
approach that is typical for the thermodynamic topological
analysis. 53

Sera6mov (1970a) considered the behavior of these func-
tions for binary mixtures. Based on Sera6mov’s approach 55
and the paper by Kushner et al. (1992), we present in Fig. 30
the feasible patterns of the distribution coeAcient func- 57
tions Ki(x) and Kj(x) for binary mixtures according to
the feasible paths of the equilibrium line y(x). The dis- 59
tribution coeAcients of azeotrope-forming components are
equal to unity in the points of the pure components and 61
the azeotrope. One of these distribution coeAcient functions
has an extremal point when the equilibrium line y(x) has 63
an in>ection point, and both distribution coeAcient func-
tions have extrema when there is an azeotrope in the mix- 65
ture. The relative volatility function !ij(x) intersect the line
! = 1 at the azeotrope points(s). The transitions from one 67
type of diagram to another is caused by the change of the
molecular interactions of the components resulting in posi- 69
tive or negative deviations from ideality given by Raoult’s
law. 71

In conclusion, the composition dependence of the dis-
tribution coeAcients are qualitative and quantitative char- 73
acteristics of the VLE for the given mixture. The patterns
of these functions determines not only the class of bi- 75
nary mixture (zeotropic, minimum- or maximum-boiling
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Fig. 30. Correspondence between the feasible patterns of the VLE func-
tions for binary mixtures of components 1 and 2: (a) equilibrium line
y(x); (b) distribution coeAcients Ki(x) and Kj(x); (c) relative volatility
!ij(x).

azeotrope, or biazeotropic), but the individual behavior of1
the given mixture as well, as will be shown in the following
section.

8.2. Univolatility and unidistribution line diagrams 3

The composition dependence of the distribution coeA-
cients of a ternary mixture of components 1, 2 and 3 can 5
be represented by three surfaces K1(x), K2(x) and K3(x).
Sera6mov (1970a) proposed to consider the system of uni- 7
distribution lines in the composition space where the dis-
tribution coeAcient of the given component i equals unity 9
Ki(x) = 1.

The dynamic system of open evaporation residue curves 11
given in Eq. (7) can be represented as
dxi
d�

= xi (1 − Ki) i = 1; : : : ; n− 1: (16)

The singular points of this system are related to the uni- 13
distribution lines, because

(a) in the point of pure component i, Ki = 1; xj = 0; xh = 0, 15
(b) in the point of binary azeotrope Aij ; Ki=Kj=1; xh=0,
(c) in the point of ternary azeotrope Aijh; Ki =Kj =Kh=1. 17

Thus, the existence of a binary azeotrope gives rise to two
unidistribution lines (Ki = 1 and Kj = 1), and the existence 19
of a ternary azeotrope gives rise to three unidistribution
lines (Ki = 1, Kj = 1, Kh = 1). The point of pure com- 21
ponent i may (or may not) give rise to an unidistribution
line of component i. Sera6mov (1970a, b), and Sera6mov, 23
Timofeyev, and Balashov (1973) showed that a given
residue curve map corresponds to a given set of feasible 25
diagrams of unidistribution lines.

In a similar way, the relative volatility function can be 27
represented by isovolatility lines, that is, contour lines in the
composition plane of the three surfaces !ij(x) for all pairs 29
of the components. It is diAcult to interpret all three iso-
volatility lines (!ij, !ih, !jh) in the same diagram. Sera6mov, 31
Gol’berg, Vitman, and Kiva (1972) propose to use the
system of univolatility lines where !ij = 1. In addition, iso- 33
volatility lines for other values than unity are useful to eval-
uate the in>uence of a component h on the relative volatility 35
of the other two components ij given by !hij, in the search for
an entrainer for extractive distillation (Laroche, Bekiaris, 37
Andersen, & Morari, 1993; WahnschaIt & Westerberg,
1993). We use the term univolatility lines to distinguish 39
between the lines where !ij = 1 from other isovolatility
lines where !ij �= 1. It is evident that the point of a binary 41
azeotrope Azij gives rise to an !ij-univolatility line and
that the point of a ternary azeotrope gives rise to the three 43
univolatility lines ( !ij = 1, !ih = 1, and !jh = 1). Sera6mov
et al. (1972) showed that there are also univolatility lines 45
which are not connected to azeotropic points, and that such
lines can occur even in zeotropic mixtures. 47

Analysis of feasible diagrams of unidistribution and
univolatility lines is given by Sera6mov (1970a,b), and 49
Sera6mov et al. (1972). The main aim of this work was to
consider feasible structures of the residue curve maps in 51
more detail, and in fact the approach helped to construct
more re6ned classi6cation of the ternary diagrams. Later, 53
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K =1(vap)2

K =1(liq)2

distillation line

residue curve

condensation curve

Fig. 31. The simple phase transformation trajectories have extremal com-
positions along the unidistribution lines (here shown for a zeotropic mix-
ture).

the diagrams of unidistribution lines were used as a main1
tool for analysis of tangential azeotropy and biazeotropy
(Sera6mov, 1971a, b, c, d; Kushner et al., 1992; Sera6mov3
et al., 1996). The diagrams of univolatility lines were
used for the same purpose by Zhvanetskij and Reshetov5
et al. (Zhvanetskij, Reshetov, & Sluchenkov, 1988, 1989,
1993; Reshetov et al., 1990; Sluchenkov, Reshetov, &7
Zhvanetskij, 1990). In addition, Zhvanetskij et al. (1988)
noted that univolatility lines split the composition triangle9
into regions of certain order of volatility of components
which they named “regions of K-ranking”, or, “K-ordered11
regions”.

In this paper we consider the feasible structures unidis-13
tribution and univolatility line diagrams given by Sera6-
mov for the purpose of sketching the simple phase trans-15
formation trajectories such as residue curves and distillation
lines.17

The unity lines are road signs for the pathway of residue
curves and distillation lines, that is, they give the exact di-19
rection of the equilibrium vectors in the composition space
(Kiva & Sera6mov, 1973b):

21
1. Along the unidistribution line (Ki = 1) all equilibrium

vectors in the composition space −→xy are parallel to the23
edge jh of the composition triangle (see Fig. 31).

2. Along the univolatility line (!ij =1) the equilibrium vec-25
tor −→xy lies on the secant going from the vertex H through
the given point x (see Fig. 32).27

3. At an intersection of a residue curve with the unidistri-
bution line (Ki = 1) there is an extremal point of the29
composition xi (dxi=d�= 0) (see Fig. 31).

4. If there are no univolatility lines, there are no in>ection31
points of the simple phase transformation trajectories (see
Fig. 31)33

5. The univolatility line !ij gives rise to an in>ection point
of the residue curves (and the other simple phase trans-35
formation trajectories) if there is no Ki or Kj unidistribu-
tion lines along the residue curve between the univolatil-37

1

3 2

K =12

α12=1

α23=1

Fig. 32. Residue curve map with two in>ection points on the residue
curves for a zeotropic mixture with two univolatility lines. The mixture
is of Sera6mov’s class 0.0–1 with two-sided arc-wise univolatility lines.

ity line in question and the stable or unstable nodes of
the residue curves. 39

This rule is illustrated in Fig. 32 for a zeotropic mixture
of components 1–2–3 with two univolatility lines (!12 =1 41
and !23 =1). It can be seen that there is no unidistribution
line between the unstable node 1 and the !23 univolatility 43
line, and there is an in>ection point on the residue curves
between the unstable node and the univolatility line. In 45
a similar way, there is no unidistribution line between
the !12 univolatility line and the stable node 3, and there 47
is an in>ection point of the residue curves between this
univolatility line and the stable node too. There is a K2 49
unidistribution line between the !23 univolatility line and
the !12 univolatility line, and there are no in>ection points 51
between the univolatility lines.

6. The in>ection points for all lines on the residue curve 53
bundle intersecting the univolatility line are located on the
in-ection line, that is, the locus of in>ection points. A rule 55
of the relative location of the in>ection lines for various
simple phase transformations can be determined from 57
simple geometric considerations. This rule is illustrated
for an example mixture in Fig. 33. 59

7. The in>ection line of the distillation lines coincides
with the univolatility line if the in>ection exists between 61
the univolatility line and the maximum-boiling node.
The in>ection line of the distillation lines coincides with 63
the E-mapping (Section 2) of the univolatility line if the
in>ection exists between the univolatility line and the 65
minimum-boiling node. The in>ection line of the residue
curves is shifted from the in>ection line of the distillation 67
lines in the direction of the residue curves movement
(the shift is less than one equilibrium vector). The in- 69
>ection line of the condensation curves is shifted from
the in>ection line of the distillation lines in the direction 71
of the condensation curves movement (the shift is less
than one equilibrium vector). In addition, the in>ection 73
points occur if the line of the simple phase transfor-
mation intersects the unidistribution lines of the same 75
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Fig. 33. Relative location of the in>ection lines for various simple phase transformations relative to the location of the univolatility lines and their
equilibrium vectors.
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3 2K1

K1
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A13

A12

α12α13

equilibrium vectors

residue curves

univolatility lines

inflection line

unidistribution lines

Fig. 34. Existence of in>ection points between two unidistribution lines of the same index K1. The mixture is of Sera6mov’s class 2.0–1.

1

3 2

K2= 1

α23

equilibrium vektors

distillation lines

univolatility line

inflection lines

unidistribution line

Fig. 35. Appearance of in>ection points between two intersections of the same univolatility line. The mixture is of Sera6mov’s class 0 with single-sided
arc-wise univolatility line.

index (component(s)) or the same univolatility lines1
twice in succession. Examples of these situations are
given in Figs. 34 and 35.3

For the mixture represented in Fig. 35 some of the
distillation lines have two in>ection points (between the 5
minimum-boiling node 1 and the !23 univolatility line,
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Fig. 36. Sketch of the distillation line map for a mixture of Sera6mov’s Class 1.0–2 based on the unity line roadmap.
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Fig. 37. Examples of how the composition space is split into regions of K-ranking (according to Zhvanetskij et al., 1988): (a) mixture given in Fig. 32;
(b) mixture given in Fig. 34; (c) mixture given in Fig. 35; (d) mixture given in Fig. 36.

and between two intersections of the !23 univolatility1
line.

Fig. 36 illustrates how, on the basis of unidistribution and3
univolatility lines, we can make a complete sketch of the
residue curve map.5

The splitting of the composition space into regions of
volatility ranking (K-ranking) is shown in Fig. 37 for7
the examples presented in Figs. 32 and 34–36. The re-
gions are determined by the combination of three digits9
corresponding to the number of components. The or-
der of the digits gives order of decreasing volatility,11
that is, 123 means that 1 is the most volatile and 3 the
least.13

The diagrams in Fig. 37 clearly illustrate that the volatil-
ity order of the components cannot coincide with their15
boiling point temperatures in the whole composition space
even for zeotropic mixtures if the diagram includes uni-17
volatility lines. The combined diagram of unidistribution
and univolatility lines permits us to construct the sketch19
of the simple phase transformation maps. It not only char-
acterizes the topology of the maps but their geometry as21
well. The unidistribution and univolatility lines can be
readily determined numerically based on a VLE model of23
the given mixture (see for example Bogdanov & Kiva,
1977), and their computation is much easier than the com-25
putation of the residue curves or especially the distillation
lines.

8.3. Structure of unidistribution and univolatility line 27
diagrams

The motivation of this section is that a combined diagram 29
of unidistribution and univolatility lines can characterize the
VLE for any given mixture, and enable us to sketch residue 31
curves and distillation lines maps without any computation.

An overview of the unity line diagrams for the most com- 33
mon classes of ternary mixtures (according to Reshetov’s
statistics given in Table 7, Section 7.3) is presented in 35
Fig. 38, where only the intrinsic univolatility lines are
shown. 37

To elaborate on the ideas presented in the two previ-
ous sections (8.1)–(8.3) we can study an unfolded trian- 39
gle shown in Fig. 39 where each binary composition dia-
gram is presented in detail. Such unfolded diagrams illustrate 41
how the various combinations of binary constituents and
shapes of the Ki(x) surfaces lead to various structures of the 43
ternary diagrams. Thus, by considering each binary pair of
a ternary mixture we can understand the phenomena behind 45
its ternary VLE behavior as well. This is shown in more
detail in the following 6ve examples. 47

Example 1. Zeotropic mixture 1–2–3.

(a) Let us assume that all three binary constituents are mix- 49
tures of Type 1. Unfolding the prism, we draw the
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Fig. 38. Unidistribution and univolatility line diagrams for the most common classes of ternary mixtures according to Reshetov’s statistics (Section 7.3).

curves Ki(x) at the edges of the prism and determine1
the values K∞

i( j) (in6nite dilution of i in j) at the edges
of the prism (Fig. 39). Here:3

(K1 = 1)¿K∞
2(1) ¿K∞

3(1);

K∞
1(2) ¿ (K2 = 1)¿K∞

3(2);

K∞
1(3) ¿K∞

2(3) ¿ (K3 = 1):

Assuming that the functions K∞
i( jh) are monotonous, we

construct their feasible trajectories at the edges of the5
prism. We can see that line K∞

2(13) intersects line K = 1

and there are only two points with the value K2 = 1 at 7
the edges of the triangle. These points are connected by
the K2-unidistribution line. There are no univolatility 9
lines and, consequently, there are no in>ection points at
the residue curves or distillation lines. A sketch of the 11
diagram is made based on the location of unidistribution
line. This cell of residue curves (distillation lines) is 13
C-shaped.

(b) Let us assume that the binary mixture 1–3 is the 15
mixture of Type 2′, i.e. it becomes more negative 17
or less positive than the mixture 2–3 (Fig. 40). 19
Then K∞

2(3) ¿K∞
1(3) ¿ (K3 = 1), and there are points of
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Fig. 39. The construction of the ternary VLE diagram for a zeotropic mixture 1–2–3 where all the binary constituents are mixtures of Type 1 (C-shaped
residue curves).
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Fig. 40. Univolatility and unidistribution line diagram and phase portrait of the residue curve map for a zeotropic mixture 1–2–3 where the binary
constituents 1–3 are a mixture of Type 2′ (S-shaped residue curves).

intersection of the lines K1(x) and K2(x) at the edges 131
and 23. As a result, the !12-univolatility line connects
edges 13 and 23 of the composition triangle (Fig. 40),3
and there is not a unidistribution line between this line
and the stable node of residue curves. This univolatility5

line gives rise to in>ection points of residue curves and
distillation lines. A sketch of the diagram is determined 7
based on the position of unidistribution and univolatility
lines. This cell of residue curves (distillation lines) is 9
S-shaped.
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Fig. 41. Unidistribution and univolatility line diagram and the sketch of residue curves for a zeotropic mixture 1–2–3 where the binary constituents 1–3
are a mixture of Type 2 (S-shaped residue curves).

(c) Let the binary mixture 1–3 be a mixture of Type 2, i.e.1
it becomes more positive than the mixture 12. In the
similar way we 6nd that there is an !23-univolatility3
line connecting edges 12 and 13 and no unidistribution
lines between it and the unstable node of the residue5
curves (Fig. 41). This univolatility line gives rise to
in>ection points of residue curves and distillation lines.7
A sketch of the diagram is determined basing on the
position of unidistribution and univolatility lines. This9
cell of residue curves (distillation lines) is S-shaped too
but with opposite sign of the curvature.11

(d) Let the binary mixture 1–3 be a mixture of Type 1′,
i.e., it has a mixed deviation from ideal mixtures. The13
diagram of unidistribution and univolatility lines and
the sketch of the RC (DL) map here is given above in15
Fig. 31. In this case there are both an !12-univolatility
line connecting edges 13 and 23 and an !23-univolatility17
line connecting edges 12 and 13. Any line of the simple
phase transformations has two in>ection points, and the19
lines are $-shaped.

(e) Let the binary mixture 1–2 be a mixture of Type 1′.21
The diagram of unidistribution and univolatility lines
and the sketch of the RC (DL) map here is given above23
in Fig. 35. Here, there is the !23-univolatility line as
an arc at edge 12 of the composition triangle. A part25
of the residue curves or distillation lines intersects this
univolatility line twice in succession. Each of these lines27
of a bunch will have two in>ection points (one point
between the intersection points and other between the29
univolatility line and the Apex 1. These lines have a
speci6c $-shape and other lines are C-shaped.31

It can be seen from these examples that the single uni-
distribution line going from the saddle point is an inherent 33
characteristic of zeotropic mixtures (Sera6mov’s Class 0).
Univolatility lines can optionally exist if the mixture is non- 35
ideal, and there is a diversity of the diagrams of univolatility
lines caused by various combinations of the deviation from 37
ideality in the binary constituents.

Detailed analysis of all feasible types of the univolatil- 39
ity lines for ternary zeotropic mixtures was made later by
Zhvanetskij et al. (1988), and 33 variants of these diagrams 41
were revealed. Though the occurrence of most of these types
is questioned, all these types are possible theoretically. 43

Example 2. Mixture 1–2–3 with minimum-boiling
azeotrope A12 (Sera6mov’s Class 1.0–1a). 45

(a) The mixture 1–2 in this ternary mixture must be the
mixture of Type 3. Let both mixtures 2–3 and 1–3 be 47
mixtures of Type 1. The diagram of unidistribution and
univolatility lines and the sketch of the RC (DL) map 49
are presented in Fig. 42a. The −univolatility line goes
from the point of azeotrope to the edge 13. The lines of 51
the simple phase transformations have in>ection points
between the univolatility line and Apex 3. A part of the 53
lines in this cell are C-shaped, ant the other lines are
S-shaped. 55

(b) Let the mixture 1–3 be a mixture of Type 2′, i.e. it is
more negative (or less positive) than mixture 2–3. Here 57
the −univolatility line goes from the point of azeotrope
to edge 23. The lines of the simple phase transforma- 59
tions have another sign of curvature (Fig. 42b).
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Fig. 42. Unidistribution and univolatility line diagram and the sketch of residue curves for a mixture 1–2–3 with a minimum-boiling azeotrope A12 for
various types of the binary constituents: (a) both mixtures 1–3 and 2–3 are mixtures of Type 1; (b) mixture 1–3 is a mixture of Type 2.
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Fig. 43. Distribution coeAcient trajectories Ki(x) at the edge K − 1 − 2 for a mixture 1–2–3 with minimum-boiling azeotrope 1–2: (a) mixture 2–3 is a
mixture of Type 2; (b) both mixtures 2–3 and 1–3 are the mixtures of Type 2; (c) additional positive deviations at the ternary mixture.

Let us consider now various trajectories of the functions1
Ki(x) at edge K − 1 − 2 of the prism. In the case where
mixtures 1–3 and 2–3 are the mixtures of Type 1, the only3
intersection of K-lines corresponds to the point of binary
azeotrope, and it leads to the structure presented in Fig. 42a.5
Other cases are presented in Fig. 43.

In Fig. 43a, the mixture 2–3 becomes more positive (Type7
2), and the line K∞

3(12) intersects twice in succession with the
lineK2(12). It leads to the appearance of two points !12=1 at9
edge 1–2. The lines of the simple phase transformation have
two in>ection points when they intersect twice in succession11
with the !23-univolatility line and there is a local deformation
of the residue curves or distillation lines. The corresponding13
ternary diagram is presented in Fig. 44a.

In Fig. 43b, both mixtures 1–3 and 2–3 are mixtures of15
Type 2 (more positive). Line K∞

3(12) intersects twice in suc-
cession with the line K2(12), and intersects twice in suc-17
cession with the line K1(12). It leads to the appearance of
two points !12 = 1 and !13 = 1 two points at the edge 1–2.19
The lines of simple phase transformation have two in>ec-
tion points where they intersect these arc-wise univolatility21
lines, and the map has two local deformations (Fig. 44b).

Both these diagrams are diagrams of Sera6mov’s Class23
1.0–1a but they have more complex geometry in the simple
phase transformation lines than the mixtures represented in25
Fig. 42, corresponding to a more complex diagram of uni-
volatility lines.

It can be seen that the inherent characteristic of the dia- 27
gram of Class 1.0–1a is just existence of two unidistribu-
tion lines going from the azeotrope point to tops 1 and 2 29
and the !12-univolatility line going between them to one of
sides 13 or 23. The movement of the !12-univolatility line 31
and the existence of other univolatility lines are the speci6c
characteristics of the given mixture. 33

Let us consider the situation where both mixtures 1–3
and 2–3 are mixtures of Type 2, but the positive devia- 35
tions in the ternary mixture are so strong that line K∞

3(12)
has a maximum with the value K ¿ 1 (Fig. 43c). Here 37
we have in addition two points at edge 12. This changes
the diagram of unidistribution and univolatility lines totally 39
and, consequently, changes the RC (DL) map (Fig. 44c).
We can see that strengthening of positive deviations leads 41
to appearance of ternary minimum-boiling azeotrope, and
this diagram is a diagram of another class (Sera6mov’s 43
Class 1.1-1a).

Example 3. Mixture 1–2–3 with the minimum-boiling 45
azeotrope 13 (Sera6mov’s Class 1.0–1b).

(a) The mixture 1–3 in this ternary mixture must be a mix- 47
ture of Type 3. Let the mixtures 1–2 and 2–3 be mix-
tures of Type 1. The diagram of unidistribution and uni- 49
volatility lines and the sketch of the RC (DL) map are
presented in Fig. 45. 51
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Fig. 44. Unidistribution and univolatility line diagram and the sketch of the residue curve (distillation line) map for the cases presented in Fig. 42.
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Fig. 45. Unidistribution and univolatility line diagram and the sketch of the residue curve map for the mixture of Class 1.0–1b (U-shaped residue curves).

This diagram includes two univolatility lines, one which1
(!23-univolatility line) is not connected with an azeotrope.
Both univolatility lines are blocked from each side by the3

corresponding unidistribution lines, and its existence does
not lead to the in>ection points of the lines of simple phase 5
transformations. These lines are U-shaped. This structure is
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Fig. 46. Types of unidistribution and univolatility line diagrams and of the sketch of residue curve map for mixture of Class 1.0–1b: (a) mixture 1–3 is
the Type 4 mixture; (b) mixture 2–3 is the Type 1′ mixture; (c) mixture 1–2 is the Type 2 mixture.

a diagram of Sera6mov’s Class 1.0–1b. This set of unidis-1
tribution and univolatility lines is an inherent characteristic
of the diagrams of this class. The feasible types of the dia-3
gram of this class are presented in Fig. 46 where additional
univolatility lines exist, optionally depending on the combi-5
nation of the binary constituents.

We can see that optional (additional) univolatility lines7
lead to the local deformation of the lines of the simple phase
transformations. They change the geometry of the diagram,9
but do not change the topological structure.

Example 4. Mixture 1–2–3 with minimum-boiling11
azeotrope 12 and maximum-boiling azeotrope 23 (Sera6-
mov’s Class 2.0–1)13

Let mixture 1–2 be a mixture of Type 3, mixture 1–3 be
a mixture of Type 3′, and mixture 2–3 be a mixture of Type15
1. The diagram of unidistribution and univolatility lines and
the sketch of residue curves (distillation lines) was pre-17
sented in Fig. 34. The univolatility lines are blocked from
both sides by the corresponding unidistribution lines and do19
not give rise to any in>ection points. However, part of the
lines of simple phase transformations intersect the unidis-21
tribution line of the same index (K1) twice in succession,

and it leads to the existence of in>ection points for these 23
lines. Some feasible variations of this diagram at the dif-
ferent combinations of the binary constituents are presented 25
in Fig. 47. Any or both of the additional univolatility lines
at side 1–2 can appear when mixture 23 is Type 2′ mix- 27
ture (Fig. 47a,b). Case (c) can appear when mixture 2–3 is
Type 2 mixture, and the case (d) can appear when the mix- 29
ture 2–3 is Type 2 mixture and the mixture 1–3 is Type 4′

mixture. 31
The additional univolatility lines lead to the local defor-

mation of the residue curves or distillation lines. However, 33
we can see that the set of the unidistribution and univolatility
lines of the “basic” diagram (Fig. 34) is an inherent char- 35
acteristic of this class of the topological structures (Sera6-
mov’s Class 2.0–1). 37

Example 5. Mixtures with three minimum-boiling binary
azeotropes. 39

Let us consider the diagrams of unidistribution and
univolatility lines and the sketches of the residue curves 41
(distillation lines) for the ternary mixture 1–2–3 with
minimum-boiling azeotrope in any binary constituent. The 43
diagrams are presented in Figs. 48–50 assuming that in
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Fig. 47. Types of the diagram of unidistribution and univolatility lines and of the sketch of the residue curve map for a mixture of Class 2.0–1.
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Fig. 48. Unidistribution and univolatility line diagram and sketch of the residue curve map for a mixture of Class 3.1–2.

all cases we have the same functions Ki(ij). We can see1
that the diIerent types of behavior of the curves K∞

i( jh)
lead to diIerent diagrams of unidistribution and univolatil-3
ity lines and also to a diIerent topological class of the

residue curve (distillation line) map. It is interesting to 5
note that the simplest behavior of the curves K∞

i( jh) leads
to the appearance of ternary minimum-boiling azeotrope 7
(Class 3.1–2, Fig. 48, and this type of mixture is the most

CES4722



UNCORRECTED P
ROOF

ARTICLE IN PRESS

44 V. N. Kiva et al. / Chemical Engineering Science ( ) –

1.0

1.0

1.0

K

K

3 2

K

A13
A12

1

α23
α12

α13

K1 (23)
∞

K3 (12)
∞

K2 (1)
∞

K1 (3)
∞

K2 (13)
∞

K3 (1)
∞

K1 (2)
∞

A23

K3 (2)
∞

K2 (3)
∞

K =13

K =12

K =11

K =13

Fig. 49. Unidistribution and univolatility line diagram and sketch of the simple phase transformation line map for a mixture of Class 3.0–2.
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Fig. 50. Unidistribution and univolatility line diagram and sketch of the simple phase transformation line map for a mixture of Class 3.1–3b.

common. More complex behavior of the curves K∞
i( jh) leads1

to the appearance of the diagram of Sera6mov’s Class 3.0–
2 (Fig. 49), and the mixtures of this class occur more rarely.3
The most complex behavior of the curves K∞

i( jh) leads to
the appearance of a ternary saddle azeotrope (Class 3.1–3b,5
Fig. 50), and the occurrence of such mixtures is almost
negligible.

9. Conclusions 7

The main conclusions that can be made from the liter-
ature on qualitative analysis of the VLE diagrams and the 9
additional investigations presented in this paper are:

1. Vapor–liquid equilibrium can be characterized by various 11
means; 6rst and foremost by simple phase transformation
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maps, among which open evaporation residue curve maps1
and distillation line maps have received broad acceptance.
Note that distillation lines (discrete and continuous) have3
a well-de6ned thermodynamical meaning. These lines are
rigorously de6ned by the VLE and, in turn, characterize5
it, as well as the residue curves.
The VLE can also be qualitatively characterized by uni-7
distribution line diagrams and univolatility line diagrams.
Univolatility line diagrams give additional information9
about the regions of the composition space with diIerent
volatility order of the components. The combined dia-11
gram of unidistribution and univolatility lines character-
izes the shape (geometry) of the trajectories of simple13
phase transformations.

2. We recommend that a distinction is made between the15
topological structure of simple phase transformation
maps (i.e., the set of singular points and the splitting into17
regions of the simple phase transformation trajectories),
the sketch of the map (i.e., the qualitative pattern of the19
trajectories with representation of their shape), and the
exact map of simple phase transformation trajectories21
like residue curves and distillation lines.

3. The structures of VLE diagrams of azeotropic mixtures23
are limited by rigorous topological constraints. The struc-
tures for ternary mixtures without biazeotropy are classi-25
6ed into 26 possible topological structures. All types of
the classi6ed diagrams are topologically and thermody-27
namically feasible, but their occurrence in nature is de-
termined by the probability of certain combinations of29
molecular interactions. Data on the natural occurrence of
various mixture classes permit us to exclude rare or im-31
probable diagrams from consideration in the investiga-
tion of the correlation between VLE diagram structures33
and feasible separations upon distillation.

4. Usually the (topological) structure of the VLE dia-35
gram for a given mixture can be uniquely determined
based solely on information about the existence and37
boiling point temperature of all singular points (pure
components and azeotropes). It should be noted how-39
ever, that there are some cases of indeterminate diagram
structures.41

5. The (topological) structure of the VLE diagram identi6es
the class of a given mixture, but not its speci6c charac-43
teristic like the shape of the singular and ordinary simple
phase transformation trajectories.45

6. A sketch of the simple phase transformation map (residue
curve or distillation line map), including the speci6c fea-47
tures of a given mixture (i.e., the shape of the trajecto-
ries), can be determined from the localization of the uni-49
distribution and univolatility lines. These lines give com-
plete information about the curvature (path) of singular51
and ordinary trajectories of the simple phase transforma-
tion.53

7. Generating an exact map including the localization of
simple phase transformation trajectory boundaries (sep-55
aratrices) requires numerical calculation. Often, only the

boundaries are located by appropriate simulation rather 57
than generating a complete trajectory map.

8. It is reasonable to use the combined diagram of unidis- 59
tribution and univolatility lines as a representative qual-
itative characteristic of the VLE. 61

Glossary

De2nitions of terms 63

This section contains an alphabetic listing with de6nitions
of central terms as they are used in this text. Note also that 65
Table 1 in the Introduction gives an overview and quick ref-
erence of the diIerent terms used for key concepts in the 67
azeotropic distillation literature and may be helpful in par-
ticular when reading Russian publications that are translated 69
into English.
Antipode: Exact opposite, but topological equivalent 71

structure.
Azeotrope: Mixture whose equilibrium vapor and liquid 73

compositions are equal at the given system temperature and
pressure. Mathematically: a singularity in the VLE manifold 75
that does not correspond to a pure component.
Azeotropic distillation: Distillation that involves 77

azeotropic mixtures. Note that this is a much broader def-
inition than traditionally used in the distillation literature 79
where the term is frequently used as an abbreviation of
heteroazeotropic distillation. 81
Azeotropic mixture: Mixture that forms one or several

azeotrope(s). 83
Biazeotropic mixture: Mixture that forms two binary

azeotropes for a binary pair or two ternary azeotropes. 85
Composition space: For an n-component mixture the

composition space contains all the n-dimensional vectors of 87
Rn where the elements sum to unity and are nonnegative.

Composition trajectory: The steady state or instantaneous 89
composition pro6le of a distillation column, or the trajectory
of composition change during batch distillation. 91
Condensate curve:Open condensation liquid composition

trajectory. 93
Condensation curve: Open condensation vapor composi-

tion trajectory. 95
Conjugate: An element of a mathematical group that is

equal to a given element of the group multiplied on the right 97
by another element and on the left by the inverse of the latter
element [Britannica]. 99
Distillate curve: Composition trajectory of the vapor dur-

ing open evaporation. 101
Distillation: The process of separating a liquid mixture

by successive evaporation and condensation. 103
Distillation boundary: Locus of compositions that can-

not be crossed by the given distillation process. The exis- 105
tence and location of such boundaries depend critically on
the type of distillation in question. Distillation boundaries 107
are thermodynamic barriers for multicomponent distillations
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in the same way that azeotropes are barriers to binary dis-1
tillation. They split the composition space into distillation
regions.3
Distillation line: The set of points x for which the vapor

composition in equilibrium y also lies on the same line in the5
composition space (Zharov & Sera6mov, 1975). A discrete
distillation line is drawn as a piecewise linear curve through7
a sequence of conjugated vapor–liquid equilibrium vectors
in the composition space. Continuous (smooth) distillation9
lines interpolate the same sequence of equilibrium points
and are not mathematically unique.11
Distillation line map: Diagram that shows distillation

lines for diIerent initial conditions for a given mixture in13
the composition space.
Distillation region: A subspace of the composition space15

de6ned by a family of distillation trajectories that join a
stable and unstable node.17
Distribution coe@cient: Ratio of mole fractions in vapor

and liquid phase for the given species. Commonly referred19
to as vapor–liquid equilibrium ratio or K-value.
Entrainer: Material (liquid component) that acts as a21

mass separating agent.
Equilibrium vector: Composition vector between two23

phases in equilibrium, also named tie-line.
Equilibrium staged distillation: Staged distillation col-25

umn where vapor–liquid equilibrium is assumed between
the phases on all trays.27
Heteroazeotrope: Azeotrope where the vapor phase co-

exists with two or more liquid phases.29
Heterogeneous mixture: Mixture with more than one liq-

uid phase.31
Homoazeotrope: Azeotrope where the vapor phase coex-

ists with one liquid phase.33
Homogeneous mixture: Mixture with a single liquid (and

vapor) phase.35
Ideal mixture: Mixture that obeys Raoult’s law (or

Henry’s law), i.e., the activity coeAcients for all compo-37
nents of the liquid are equal to unity. Ideal mixtures are a
special case of zeotropic mixtures.39
In-ection point: Root of the second order derivative of a

given function, point of change of function curvature.41
In-ection point curve: Locus of in>ection points.
Injective: Being a one-to-one mathematical function.43
Isodistribution line: Locus of points in the composition

space where the distribution coeAcient for a particular com-45
ponent is constant.
Isomorphic: Being of identical or similar form, shape, or47

structure. Antipodal topological VLE diagrams are isomor-
phous.49
Isotherm: Locus of points in the composition space where

the temperature for a given mixture at vapor–liquid equilib-51
rium is constant. Liquid isotherms are lines of constant value
of the boiling temperature and vapor isotherms are lines of53
constant value of the condensation temperature.
Isotherm map: Diagram that shows isotherms for a given55

mixture in the composition space. Contour plot of one or

both of the vapor–liquid equilibrium temperature surfaces 57
for a given mixture.
Isovolatility line: Locus of points in the composition 59

space where the relative volatility of a pair of components
is constant. 61
K-value: See distribution coeAcient.
Liquid–liquid tie-line: Equilibrium vector between two 63

liquid phases.
Mapping: To assign (as a set or element) in a mathemat- 65

ical correspondence.
Mapping function: Function that gives the mathematical 67

correspondence between two sets of elements.
Monoazeotropic mixture: Mixture that forms only one 69

azeotrope at each element of the composition simplex (only
one binary azeotrope for each binary pair in an azeotropic 71
mixture).
Node (mathematically): Critical point with all paths ei- 73

ther approaching (stable) or departing (unstable).
Nonideal mixture: Mixture that exhibits deviations from 75

Raoult’s law (or Henry’s law). Nonideal mixtures may be
zeotropic or azeotropic. 77
Ockham’s Razor: Principle stated by English philosopher

William of Ockham (1285–1347/49) that the simplest of 79
competing theories should be preferred to the more complex,
and that entities are not to be multiplied beyond necessity. 81
Open condensation:Condensation of a vapor phase where

the liquid formed is removed continuously. 83
Open distillation: Distillation with input and/or output

mass streams. 85
Open evaporation: Evaporation of a liquid phase where

the vapor formed is removed continuously. Also referred to 87
as simple distillation or Rayleigh distillation.
Open evaporation distillate curve: See distillate curve. 89
Relative volatility: The ratio of distribution coeAcients

for pair of components in a mixture. 91
Residue curve: Composition trajectory of the residue liq-

uid in the still during open equilibrium evaporation. 93
Sometimes referred to as “distillation line” in Russian and

old German-language literature. 95
Residue curve map: Diagram that shows residue curves

for diIerent initial still compositions for a given mixture in 97
the composition space.
Residue curve region: Set of liquid compositions in the 99

composition space that belong to a family of residue curves
with common initial and 6nal points. 101
Saddle: Singular point with 6nitely many paths both ap-

proaching and departing. Only separatrices extends or ter- 103
minate in the saddle point. All other paths have a hyperbolic
course in the vicinity of the singular point. 105
Separatrix: Locus of bifurcation points of diIerential

equations, i.e., points at which an in6nitesimal perturbation 107
causes at least one of the integration endpoints to change. A
separatrix may be stable or unstable dependent on whether 109
solutions in its vicinity approach or depart as the value of
the independent (integration) parameter goes to in6nity. 111
Simple distillation: See open evaporation.
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Simple distillation region: See residue curve region.1
Simple distillation residue curve: See residue curve.
Simple equilibrium phase transformation: Process where3

the composition of one phase changes according to its phases
equilibrium and where the other phase is continuously re-5
moved. Open evaporation and open condensation are such
processes.7
Simplex: Spatial con6guration of (n− 1) dimensions de-

termined by n points in a space of dimension equal to or9
greater than (n− 1). A triangle together with its interior de-
termined by its three vertices is a two-dimensional simplex11
in the plane.
Singular point: Root to the 6rst order derivative of a13

function. The singular points of the residue curve Eqs. (7)
are given by the solution of x= y= 0. Azeotropes and pure15
components are singular points of Eqs. (7).
Singular vapor line: Equilibrium vapor compositions that17

correspond to the liquid compositions lying on the hetero-
geneous liquid boiling envelope.19
Tie-line: See equilibrium vector.
Tie-line curve: Sequence of conjugated vapor–liquid21

equilibrium vectors (tie-lines) in the composition space. In
this paper also referred to as a discrete distillation line. See23
distillation line.
Topology: A branch of mathematics concerned with those25

properties of geometric con6gurations (as point sets) which
are unaltered by elastic deformations (as a stretching or a27
twisting).
TTA: Thermodynamic topological analysis.29
Unidistribution line: Locus of points in the composition

space where the distribution coeAcient of the given com-31
ponent equals unity. At each point along the unidistribution
line of component i, the equilibrium vector in the composi-33
tion space has a direction normal to the component i vertex
of the composition simplex.35
Unity lines: Collective term for unidistribution and uni-

volatility lines.37
Univolatility line: Locus of points in the composition

space where the relative volatility of pair of components39
equals unity. In ternary systems, a univolatility line of the
components i and j is the locus where the equilibrium vec-41
tors in the composition space point directly at the third com-
ponent h vertex.43
VLE: Vapor–liquid equilibrium.
VLE manifold: Union of all possible vapor–liquid equi-45

librium pairs in a mixture.
VLE diagram: Graphical presentation of the vapor–47

liquid equilibrium functions of a mixture like isotherm
maps, residue curve maps and distillation lines maps.49
Zeotropic mixture:Mixture that does not form azeotropes.

A mixture may be zeotropic, but still nonideal.
51

Authors’ note concerning the references

The following three Russian scienti6c journals have been53
published in English-language editions since about 1957:

Theoretical Foundations of Chemical Engineering: En- 55
glish edition of Teoreticeskie Osnovy Khimiceskoj Tech-
nologii, Maik nauka, Interperiodica Publ., Moscow. A com- 57
prehensive journal covering all aspects of theoretical and ap-
plied research in chemical engineering. Published six times 59
per year.
Russian Journal of Physical Chemistry: English edi- 61

tion of Zurnal Fiziceskoj Khimii, Akademija Nauk SSSR,
Moscow. Published monthly by The British Library Docu- 63
ment Supply Centre in cooperation with the Royal Society
of Chemistry, London. 65
Russian Journal of Applied Chemistry: English edi-

tion of Zurnal Prikladnoi Khimii, Akademija Nauk SSSR, 67
Moscow. Previously Journal of Applied Chemistry of the
USSR (until 1992). Published monthly by Consultants 69
Bureau, New York.

The papers in the English-language editions are trans- 71
lations of papers originally written in Russian. The early
translations are often poor and the titles sometimes inade- 73
quate and ambiguous. Therefore, we have given corrected
English titles in square brackets for some of the references. 75
For example, we have added corrected words in brackets in
the subtitle of Sera6mov (1968b)“II. The Form [Pattern] of 77
Distillation Lines [Residue Curves] in the Region of Singu-
lar Points Near Four-Component Singular Points” to show 79
that the Russian term distillation line is what is residue curve
in most English-language publications. 81

Furthermore, the page numbers refer to the page number-
ing in the English edition, whereas the page numbers given 83
in brackets correspond to the page numbering in the original
Russian edition of the journals. If a reference is only avail- 85
able in Russian language this is marked by (in Russian).
This also applies to other references that are not available 87
in English-language translations.
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