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Abstract: The computational effort involved in solution ofreal-time optimization problems
can be very demanding. Hence, simple but effective implementation of optimal policies are
attractive. A formal definition of simplicity is presented for a certain class of systems. Some
Heat Exchanger Network problems can be formulated as LinearPrograms. For this class of
problems, a simple and effective implementation of optimaloperation policy that avoids the
need for online optimization is described.
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1. INTRODUCTION

Optimal operation of a chemical process can generally
be formulated as a dynamic optimization problem.
Let x ∈ R

nx be the state variables,u ∈ R
nu the set of

available manipulations andd ∈ R
nd denote the set

of disturbances affecting the plant. LetJ(x,u,d) be
an economic objective that is to be minimized. The
dynamic optimization problem that we seek to solve
is:

min
u

J(x,u,d)

subject to
ẋ = f (x,u,d),
h(x,u,d) = 0,

}

(1)

g(x,u,d) ≤ 0, (2)

where (1) represents the model and (2) represents the
process design constraints. The solution and resulting
centralized implementation of this problem is very
complex and is seldom used in practice. Hence, a
number of simplifications are needed. The first sim-
plification is to use time scale separation. In a typi-
cal complex continuous chemical process, the central-
ized optimizing controller can be conceptually broken
down into several layers, for eg., into regulatory con-
trol, supervisory control and optimization layer with
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Fig. 1. Hierarchial decomposition

the layers arranged in an increasing level of hierarchy
(Refer Fig 1). Generally, the interaction between the
layers is such that at the optimization layer, we try
to determine optimal values of the setpoints or refer-
ence values by optimizing an economic cost function
and the control layers are devoted to ensuring that
the setpoints are maintained (Findeisenet al., 1980).
The efficient vertical decomposition between the opti-
mization and control layers requires that the economic
objective is determined largely by the slow time scale.
In the simplest case, steady state optimization may be
sufficient. It also requires that one can identify con-



trolled variables and set-points for the same that need
to be changed infrequently in spite of disturbances
and noise on the fast time scales. This is the concept
of self-optimizing control where we try to achieve an
acceptable loss with constant setpoint values for the
controlled variables (Skogestad, 2004b). More gener-
ally, the idea is to use offline optimization to gener-
ate optimal trajectories, choose appropriate controlled
variables such that disturbances and other changes are
handled by local feedback loops.

In addition to the above ideas, one also attempts to
look for other simplifications, viz., in terms of imple-
menting the optimal solution. The focus of this con-
tribution is to derive simple, but effective implementa-
tion of the optimal policies by primarily exploiting the
known properties of the optimal solution. We adopt
the position that in principle, offline calculations can
be performed easily and online computations need to
be minimized. Thus, offline optimization and analysis
should be used to simplify the online implementation
and make it robust. It may not be knowna priori if
such a simplification is possible and hence it is natural
to analyze classes of systems. A similar approach is
used by researchers in operations research or algo-
rithms where the properties of particular systems are
used to develop specific tailor-made algorithms or so-
lution procedures. However, the difference is that our
focus is online implementation. In particular, we seek
to characterize the properties of the optimal solution
offline and use this characterization to simplify the
implementation of the optimal solution by minimizing
online calculations and using feedback.

These ideas are further motivated in Section 2 with
examples and developed further for a specific class of
linear systems in subsequent sections.

2. STRUCTURE OF THE OPTIMAL SOLUTION

Given an abstraction of the optimization problem that
we seek to solve (1-2), an optimal solution satisfies
certain properties. For example the steady state and
the more general dynamic version of the optimization
problem require the KKT conditions and the Pontrya-
gin Minimum Principle to be satisfied respectively.
We shall discuss the structure of the optimal solution
for certain classes of systems by drawing on some
examples.

It is well known that the optimal solution to an infinite
time dynamic optimization problem with a quadratic
performance objective and linear dynamic model can
be expressed as a time invariant feedback law:u =
−Kx (Kalman, 1963; Bryson, 1999). In other words,
the optimal solution to a dynamic optimization prob-
lem has a simple feedback solution that can be imple-
mented effectively and also has the additional prop-
erty of robustness inherent to feedback systems. Re-
cently, this idea has been extended to control of lin-
ear constrained systems (Pistikopouloset al., 2002).

The authors show that the control law is a piece-
wise continuous linear function of the states for the
finite horizon problem (model predictive control) and
the infinite time horizon problem (constrained linear
quadratic regulation). The optimal solution is explic-
itly calculated offline. A different example is that of el-
evator dispatch during uppeak traffic (Pepyne, 1997),
where the authors show that the structure of the opti-
mal dispatching policy that minimizes the average or
discounted waiting time is a threshold based policy.
The determination of the constant gainK (in the op-
timal control problem) or the thresholds (in the eleva-
tor despatch problem described above) is non-trivial.
However, these essentially involve off-line calcula-
tions and thus are in consonance with the requirements
specified previously.

Another example is the problem of maximizing through-
put in a network. Under certain conditions, optimal
operation of the plant is equivalent to maximizing
throughput. The solution to the problem of determin-
ing maximum flow in a flow network has the property
that maximal amount of a flow is equal to the capac-
ity of a minimal cut (Nemhauser and Wolsey, 1999).
Hence, the maximum flow is limited by a bottleneck
and optimal operation can be achieved by focussing
on the bottleneck. This results in the following imple-
mentation policy: identify the bottleneck and maintain
maximum flow at the bottleneck (Askeet al., 2006).
The authors have described how this can be achieved
by a control hierarchy using a coordinator MPC at the
top and several local MPCs at the lower levels.

In the following sections, we give a formal definition
of simplicity for a certain class of systems and give
examples of a simple implementation for a class of
systems that can be formulated as linear programs.

3. WHAT IS A SIMPLE STRATEGY?

Since the primary aim of this contribution is to demon-
strate simple but effective implementation of an opti-
mal solution, we would like to define simplicity. As
a general definition would be difficult, we consider a
special case of switching between active constraints.

At the optimal solution, a subset of the inequality con-
straints are active. The set of constraints that are active
at the optimal solution could form a subset of the con-
trolled variables (Arkun and Stephanopoulos, 1980).
When the optimal solution changes due the effect of
disturbances, the sign of the Lagrange multipliers can
be used to determine new search directions to move
the plant operation towards optimality (Arkun and
Stephanopoulos, 1980). If the model equations, con-
straints and objective are linear (Linear Program), it is
well known that the optimal solution (if it exists) is at a
vertex of the simplex. Hence, the available degrees of
freedom can be used to control the active constraints.
Under the effect of disturbances, the optimal vertex



can move and and it is possible that the set of ac-
tive constraints change. Hence implementation of the
optimal policy is aided if we are able to characterize
the set of possible optimal vertices. It is possible to
determine the set of optimal vertices and the cost func-
tions as functions of these parameters using paramet-
ric programming (Gal, 1979) or explicitly solving the
linear program. It is possible to perform these calcula-
tions offline. Since the focus is on simple implemen-
tation, offline computations (even extensive) may be
preferred to online computation. A similar approach
is adopted by (Pistikopouloset al., 2002) where the
solution to the dynamic MPC optimization problem is
computed offline using parametric programming.

As a simple example, consider the following scenario
with 3 manipulationsu1,u2,u3 and 2 controlled vari-
ablesy1 andy2. We assume that the manipulations are
bounded below. Characterizing the optimal solution
in different possible operating regimes gives rise to
the following table, where A and I denote that the
corresponding manipulations are saturated and not sat-
urated respectively. In Region 1,u1 has saturated to

Table 1. Motivating example

Region u1 u2 u3

1 A I I
2 I A I

its lower constraint and so it has to be given up as a
manipulating variable.u2 andu3 are however within
the feasible region and so can be used to controly1 and
y2 using an appropriate feedback control structure. In
Region 2,u2 has saturated and sou1 and u3 can be
used to controly1 andy2.

Developing this idea further, we seek to characterize
the optimal solution by decomposing the operating
region into smaller regions. In each region, we seek
to control set of variables through an appropriate feed-
back control structure. The effect of the disturbances is
to change the optimal value of the cost indexJ and/or
the set of constraints that are active at the solution.
It must be noted that it may not be possible to arrive
at such a decomposition for all systems. For such a
decomposition, a strategyD is defined as:

D = {(U1,Y1,r1,c1),(U2,Y2,r2,c2), . . . ,(Uk,Yk,rk,ck)},
(3)

whereUi is the set of indices of manipulated vari-
ables,Yi is the set of indices of controlled variables,
ri is the set of reference trajectories for the controlled
variables inYi andci = ci(Ui,Yi,ri) is the complexity
of the controlleri which could be a function of the
structural complexity (Skogestad, 2004a) and com-
putational complexity. Intuitively, the relationship be-
tween controller complexity and performance can be
described as in Fig. 2. Controller performance at point
P is maximized. However, if the loss in performance
at Q is acceptable, it may be preferred overP as the
controller complexity ofQ is lower. PointR (and in-
deed all points on the shaded region) is never preferred
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Fig. 2. Performance- complexity tradeoffs

as it is inferior toP in both controller performance
and complexity. Thus, it is clear that there is an in-
herent trade-off between controller performance and
complexity.

Having computed these tuples offline, an online
switching mechanism may be used to switch between
the different control laws. Associated with the switch-
ing between two neighbouring regimesi, j is the cost
of switchingcs

i j. The complexity index of such a strat-
egy is then defined as:

S = ∑
i

ci +∑
i

∑
j, j 6=i

cs
i j. (4)

A strategyD1 is preferable to another strategyD2

if the complexity index ofD1 is lower than that of
D2. Although it can be quite difficult to determine
the quantities described above, the above definition
suggests us as what to look for in a simple imple-
mentation. For example, we could require that the
controllers and the switching logic or process be easily
implementable, the measurement errors and imple-
mentation errors in the control be small etc.

In the context of the linear programs, the strategy
essentially would be to move from one vertex, which
is characterized by the set of active constraints to an-
other. This is trivially possible if all disturbances are
measured, which might not possible in practice. An-
other possibility is to estimate the disturbances online
using parameter estimation techniques or estimators
or soft sensors. However, for such an implementation,
(4),ci would be very high. Since the focus is on simple
implementation, such a strategy would not be prefer-
able and hence, we seek implementations with lowci,
but acceptable levels of performance.

Having loweredci, the next step would be to choose
an appropriate switching technique that results in low
cs

i j. An example of a simple constraint switching tech-
nique is split range control where, when a manipu-
lation saturates another manipulation is used. More
detailed information on implementation issues can be
found in (Lersbamrungsuket al., 2006; Glemmes-
tad, 1997). In the above example, it is clear thatu1

andu2 can be combined in a split range pair, i.e., when
u1 saturates,u2 is available as a manipulating variable



and vice versa. The set of manipulations that need to
be combined in a split range can be determined by
solving an Integer Linear Program (ILP). However, it
must be noted that it may not be possible to use such
a split range control structure for all linear systems.

In the succeeding section, we describe a Heat Ex-
changer Network and the optimal operation policy for
the same based on the above ideas.

4. OPTIMAL OPERATION OF HEAT
EXCHANGER NETWORKS

The general mathematical model of a Heat Exchanger
Network (HEN) yields nonlinear equations and hence,
optimization of the same would involve solving a non-
linear programming problem. However, under certain
conditions, the problem of optimal operation of a HEN
can be reformulated as a Linear Program (Aguilera
and Marchetti, 1998; Lersbamrungsuket al., 2006).
The advantages are that the optimization problem can
be solved efficiently and the properties of the optimal
solution are readily characterized. The following HEN
(Fig. 3) is a modified example from (Aguilera and
Marchetti, 1998).

The network consists of 3 process-process exchang-
ers, 3 utilities and 4 streams. The outlet temperatures
of all streams are to be controlled and maintained at
target values. Inlet temperatures of all streams are as-
sumed to be unmeasured disturbances. Nominal inlet
and outlet temperatures (targets) are indicated in the
figure. The objective function to be minimized is the
overall utility consumption. The optimization problem
can be solved offline for the expected operating regime
(or using the method of parametric programming).
Following is a table listing which manipulations are
saturated in different regions of the disturbance space,
using the same notation as in Table 1.

Table 2. List of saturated manipulations

Set of active Qc1 Qc2 Qh ub1 ub2 ub3

constraints
1 A I A I I I
2 A A I I I I
3 I A I A I I
4 I I A A I I
5 I I A I I A

Since the optimal operation problem is a LP, the
optimal solution is at a vertex. Hence, the problem
of optimal operation is one of identifying the correct
active constraints and implementing them. The split
range control structure described earlier is used to
switch between constraints. The manipulations that
need to be combined in a split range structure are
determined by solving an ILP. This results in the
following control structure (Table 3 and Fig. 4) that
allows a split range implementation and also ensures
that the operation is optimal.ub2 does not saturate
and so does not appear in an split range and is used

Table 3. Controller structure for optimal
operation

Region Controller pairing
Tc1out Tc2out Th1out Th2out

1 ub3 ub2 ub1 Qc2

2 ub3 ub2 ub1 Qh

3 ub3 ub2 Qc1 Qh

4 ub3 ub2 Qc1 Qc2

5 Qc1 ub2 ub1 Qc2

to controlTc2out . Qc2 andQh are combined in a split
range pair to controlTh2out , ub3 is used to control
Tc1out , ub1 is used to controlTh1out and Qc1 is used
when eitherub1 or ub3 are saturated. In the spirit of
the earlier definition of simplicity, it can be seen that
the switching can be implemented easily with the split
range control architecture. The local controllers can
be implemented using the controller of choice, for
eg., PI. Such an implementation has low controller
complexity with acceptable levels of performance and
low switching costs and hence, in the spirit of (4) is an
example of a simple strategy.

5. CONCLUSIONS

The need for simple implementation of optimal opera-
tion policies was motivated with examples. Simplicity
of operation was formally defined for a certain class of
systems. The optimal operation of a HEN can be refor-
mulated as a LP. An example of a simple implementa-
tion of optimal operation of a HEN was provided using
a simple switching strategy and feedback. However, it
may be possible that such a simple implementation is
not possible for all linear systems. The type of sys-
tems for which such a solution is possible needs to be
investigated.
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